Search results for: intelligent control systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18639

Search results for: intelligent control systems

519 Seroprevalence of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) Infection among Healthy and High Risk Individuals in Qatar

Authors: Raham El-Kahlout, Hadi Yassin, Asmaa Athani, Marwan Abou Madi, Gheyath Nasrallah

Abstract:

Background: Since its first isolation in September 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has diffused across 27 countries infecting more than two thousand individuals with a high case fatality rate. MERS-CoV–specific antibodies are widely found in Dromedary camel along with viral shedding of similar viruses detected in human at same region, suggesting that MERS epidemiology may be central role by camel. Interestingly, MERS-CoV has also been also reported to be asymptomatic or to cause influenza-like mild illnesses. Therefore, in a country like Qatar (bordered Saudi Arabia), where camels are widely spread, serological surveys are important to explore the role of camels in MERS-CoV transmission. However, widespread strategic serological surveillances of MERS-CoV among populations, particularly in endemic country, are infrequent. In the absence of clear epidemiological view, cross-sectional MERS antibody surveillances in human populations are of global concern. Method: We performed a comparative serological screening of 4719 healthy blood donors, 135 baseline case contacts (high risk individual), and four MERS confirmed patients (by PCR) for the presence of anti-MERS IgG. Initially, samples were screened using Euroimmune anti- MERS-CoV IgG ELISA kit, the only commercial kit available in the market and recommended by the CDC as a screening kit. To confirm ELISA test results, farther serological testing was performed for all borderline and positive samples using two assays; the anti MERS-CoV IgG and IgM Euroimmune indirect immunofluorescent test (IIFT) and pseudoviral particle neutralizing assay (PPNA). Additionally, to test cross reactivity of anti-MERS-CoV antibody with other family members of coronavirus, borderline and positive samples were tested for the presence of the of IgG antibody of the following viruses; SARS, HCoV-229E, HKU1 using the Euroimmune IIFT for SARS and HCoV-229E and ELISA for HKU1. Results: In all of 4858 screened 15 samples [10 donors (0.21%, 10/4719), 1 case contact (0.77 %, 1/130), 3 patients (75%, 3/4)] anti-MERS IgG reactive/borderline samples were seen in ELISA. However, only 7 (0.14%) of them gave positive with in IIFT and only 3 (0.06%) was confirmed by the specific anti-MERS PPNA. One of the interesting findings was, a donor, who was selected in the control group as a negative anti-MERS IgG ELISA, yield reactive for anti-MERS IgM IIFT and was confirmed with the PPNA. Further, our preliminary results showed that there was a strong cross reactivity between anti- MERS-COV IgG with both HCoV-229E or anti-HKU1 IgG, yet, no cross reactivity of SARS were found. Conclusions: Our findings suggest that MERS-CoV is not heavily circulated among the population of Qatar and this is also indicated by low number of confirmed cases (only 18) since 2012. Additionally, the presence of antibody of other pathogenic human coronavirus may cause false positive results of both ELISA and IIFT, which stress the need for more evaluation studies for the available serological assays. Conclusion: this study provides an insight about the epidemiological view for MERS-CoV in Qatar population. It also provides a performance evaluation for the available serologic tests for MERS-CoV in a view of serologic status to other human coronaviruses.

Keywords: seroprevalence, MERS-CoV, healthy individuals, Qatar

Procedia PDF Downloads 266
518 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function

Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen

Abstract:

This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).

Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance

Procedia PDF Downloads 275
517 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 230
516 Measuring Entrepreneurship Intentions among Nigerian University Graduates: A Structural Equation Modeling Technique

Authors: Eunice Oluwakemi Chukwuma-Nwuba

Abstract:

Nigeria is a developing country with an increasing rate of graduate unemployment. This has triggered successive government administrations to promote the variety of programmes to address the situation. However, none of these efforts yielded the desired outcome. Accordingly, in 2006 the government included entrepreneurship module in the curriculum of universities as a compulsory general programme for all undergraduate courses. This is in the hope that the programme will help to promote entrepreneurial mind-set and new venture creation among graduates and as a result reduce the rate of graduate unemployment. The study explores the effectiveness of entrepreneurship education in promoting entrepreneurship. This study is significant in view of the endemic graduate unemployment in Nigeria and the social consequences such as youth restiveness and militancy. It is guided by the theory of planned behaviour. It employed the two-stage structural equation modelling (AMOS) to model entrepreneurial intentions as a function of innovative teaching methods, traditional teaching methods and culture Personal attitude and subjective norm are proposed to mediate the relationships between the exogenous and the endogenous variables. The first stage was tested using multi-group confirmatory factor analysis (MGCFA) framework to confirm that the two groups assign the same meaning to the scale items and to obtain goodness-of-fit indices. The multi-group confirmatory factor analysis included the tests of configural, metric and scalar invariance. With the attainment of full configural invariance and partial metric and scalar invariance, the second stage – the structural model was applied hypothesising that, the entrepreneurial intentions of graduates (respondents who have participated in the compulsory entrepreneurship programme) will be higher than those of undergraduates (respondents who are yet to participate in the programme). The study uses the quasi-experimental design. The samples comprised 409 graduates (experimental group) and 402 undergraduates (control group) from six federal universities in Nigeria. Our findings suggest that personal attitude is positively related with entrepreneurial intentions, largely confirming prior literature. However, unlike previous studies, our results indicate that subjective norm has significant direct and indirect impact on entrepreneurial intentions indicating that reference people of the participants have important roles to play in their decision to be entrepreneurial. Furthermore, unlike the assertions in prior studies, the result suggests that traditional teaching methods have indirect effect on entrepreneurial intentions supporting that since personal characteristics can change in an educational situation, an education purposively directed at entrepreneurship might achieve similar results if not better. This study has implication for practice and theory. The research extends to the theoretical understanding of the formation of entrepreneurial intentions and explains the role of the reference others in relation to how graduates perceive entrepreneurship. Further, the study adds to the body of knowledge on entrepreneurship education in Nigeria universities and provides a developing country perspective. It proposes further research in the exploration of entrepreneurship education and entrepreneurial intentions of graduates from across the country’s universities as necessary and imperative.

Keywords: entrepreneurship education, entrepreneurial intention, structural equation modeling, theory of planned behaviour

Procedia PDF Downloads 253
515 The Development of Modernist Chinese Architecture from the Perspective of Cultural Regionalism in Taiwan: Spatial Practice by the Fieldoffice Architects

Authors: Yilei Yu

Abstract:

Modernism, emerging in the Western world of the 20th century, attempted to create a universal international style, which pulled the architectural and social systems created by classicism back to an initial pure state. However, out of the introspection of the Modernism, Regionalism attempted to restore a humanistic environment and create flexible buildings during the 1950s. Meanwhile, as the first generation of architects came back, the wind of the Regionalism blew to Taiwan. However, with the increasing of political influence and the tightening of free creative space, from the second half of the 1950s to the 1980s, the "real" Regional Architecture, which should have taken roots in Taiwan, becomes the "fake" Regional Architecture filled with the oriental charm. Through the Comparative Method, which includes description, interpretation, juxtaposition, and comparison, this study analyses the difference of the style of the Modernist Chinese Architecture between the period before the 1980s and the after. The paper aims at exploring the development of Regionalism Architecture in Taiwan, which includes three parts. First, the burgeoning period of the "modernist Chinese architecture" in Taiwan was the beginning of the Chinese Nationalist Party's coming to Taiwan to consolidate political power. The architecture of the "Ming and Qing Dynasty Palace Revival Style" dominated the architectural circles in Taiwan. These superficial "regional buildings" have nearly no combination with the local customs of Taiwan, which is difficult to evoke the social identity. Second, in the late 1970s, the second generation of architects headed by Baode Han began focusing on the research and preservation of traditional Taiwanese architecture, and creating buildings combined the terroirs of Taiwan through the imitation of styles. However, some scholars have expressed regret that very few regionalist architectural works that appeared in the 1980s can respond specifically to regional conditions and forms of construction. Instead, most of them are vocabulary-led representations. Third, during the 1990s, by the end of the period of martial law, community building gradually emerged, which made the object of Taiwan's architectural concern gradually extended to the folk and ethnic groups. In the Yilan area, there are many architects who care about the local environment, such as the Field office Architects. Compared with the hollow regionality of the passionate national spirits that emerged during the martial law period, the local practice of the architect team in Yilan can better link the real local environmental life and reflect the true regionality. In conclusion, with the local practice case of the huge construction team in Yilan area, this paper focuses on the Spatial Practice by the Field office Architects to explore the spatial representation of the space and the practical enlightenment in the process of modernist Chinese architecture development in Taiwan.

Keywords: regionalism, modernism, Chinese architecture, political landscape, spatial representation

Procedia PDF Downloads 120
514 Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005).

Keywords: coal, ignition, plasma-fuel system, plasma torch, thermal power plant

Procedia PDF Downloads 271
513 The Influence of Liberal Arts and Sciences Pedagogy and Covid Pandemic on Global Health Workforce Training in China: A Qualitative Study

Authors: Meifang Chen

Abstract:

Background: As China increased its engagement in global health affairs and research, global Health (GH) emerged as a new discipline in China after 2010. Duke Kunshan University (DKU), as a member of the Chinese Consortium of Universities for Global Health, is the first university that experiments “Western-style” liberal arts and sciences (LAS) education pedagogy in GH undergraduate and postgraduate programs in China since 2014. The COVID-19 pandemic has brought significant disruption to education across the world. At the peak of the pandemic, 45 countries in the Europe and Central Asia regions closed their schools, affecting 185 million students. DKU, as many other universities and schools, was unprepared for this sudden abruptness and were forced to build emergency remote learning systems almost immediately. This qualitative study aims to gain a deeper understanding of 1) how Chinese students and parents embrace GH training in the liberal arts and sciences education context, and 2) how the COVID pandemic influences the students’ learning experience as well as affects students and parents’ perceptions of GH-related study and career development in China. Methods: students and parents at DKU were invited and recruited for open-ended, semi-structured interviews during Sept 2021-Mar 2022. Open coding procedures and thematic content analysis were conducted using Nvivo 12 software. Results: A total of 18 students and 36 parents were interviewed. Both students and parents were fond of delivering GH education using the liberal arts and sciences pedagogy. Strengths of LAS included focusing on whole person development, allowing personal enrichment, tailoring curriculum to individual’s interest, providing well-rounded knowledge through interdisciplinary learning, and increasing self-study capacity and adaptability. Limitations of LAS included less time to dive deep into disciplines. There was a significant improvement in independence, creativity, problem solving, and team coordinating capabilities among the students. The impact of the COVID pandemic on GH learning experience included less domestic and abroad fieldwork opportunities, less in-person interactions (especially with foreign students and faculty), less timely support, less lab experience, and coordination challenges due to time-zone difference. The COVID pandemic increased the public’s awareness of the importance of GH and acceptance of GH as a career path. More job and postgraduate program opportunities were expected in near future. However, some parents expressed concerns about GH-related employment opportunities in China. Conclusion: The application of the liberal arts and science education pedagogy in GH training were well-received by the Chinese students and parents. Although global pandemic like COVID disrupted GH learning in many ways, most Chinese students and parents held optimistic attitudes toward GH study and career development.

Keywords: COVID, global health, liberal arts and sciences pedagogy, China

Procedia PDF Downloads 109
512 Healthcare Providers’ Perception Towards Utilization of Health Information Applications and Its Associated Factors in Healthcare Delivery in Health Facilities in Cape Coast Metropolis, Ghana

Authors: Richard Okyere Boadu, Godwin Adzakpah, Nathan Kumasenu Mensah, Kwame Adu Okyere Boadu, Jonathan Kissi, Christiana Dziyaba, Rosemary Bermaa Abrefa

Abstract:

Information and communication technology (ICT) has significantly advanced global healthcare, with electronic health (e-Health) applications improving health records and delivery. These innovations, including electronic health records, strengthen healthcare systems. The study investigates healthcare professionals' perceptions of health information applications and their associated factors in the Cape Coast Metropolis of Ghana's health facilities. Methods: We used a descriptive cross-sectional study design to collect data from 632 healthcare professionals (HCPs), in the three purposively selected health facilities in the Cape Coast municipality of Ghana in July 2022. Shapiro-Wilk test was used to check the normality of dependent variables. Descriptive statistics were used to report means with corresponding standard deviations for continuous variables. Proportions were also reported for categorical variables. Bivariate regression analysis was conducted to determine the factors influencing the Benefits of Information Technology (BoIT); Barriers to Information Technology Use (BITU); and Motives of Information Technology Use (MoITU) in healthcare delivery. Stata SE version 15 was used for the analysis. A p-value of less than 0.05 served as the basis for considering a statistically significant accepting hypothesis. Results: Healthcare professionals (HCPs) generally perceived moderate benefits (Mean score (M)=5.67) from information technology (IT) in healthcare. However, they slightly agreed that barriers like insufficient computers (M=5.11), frequent system downtime (M=5.09), low system performance (M=5.04), and inadequate staff training (M=4.88) hindered IT utilization. Respondents slightly agreed that training (M=5.56), technical support (M=5.46), and changes in work procedures (M=5.10) motivated their IT use. Bivariate regression analysis revealed significant influences of education, working experience, healthcare profession, and IT training on attitudes towards IT utilization in healthcare delivery (BoIT, BITU, and MoITU). Additionally, the age of healthcare providers, education, and working experience significantly influenced BITU. Ultimately, age, education, working experience, healthcare profession, and IT training significantly influenced MoITU in healthcare delivery. Conclusions: Healthcare professionals acknowledge moderate benefits of IT in healthcare but encounter barriers like inadequate resources and training. Motives for IT use include staff training and support. Bivariate regression analysis shows education, working experience, profession, and IT training significantly influence attitudes toward IT adoption. Targeted interventions and policies can enhance IT utilization in the Cape Coast Metropolis, Ghana.

Keywords: health information application, utilization of information application, information technology use, healthcare

Procedia PDF Downloads 58
511 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories

Authors: Berna Çalışkan

Abstract:

The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.

Keywords: water resources management, hydro tool, water protection, transportation

Procedia PDF Downloads 49
510 Association between Polygenic Risk of Alzheimer's Dementia, Brain MRI and Cognition in UK Biobank

Authors: Rachana Tank, Donald. M. Lyall, Kristin Flegal, Joey Ward, Jonathan Cavanagh

Abstract:

Alzheimer’s research UK estimates by 2050, 2 million individuals will be living with Late Onset Alzheimer’s disease (LOAD). However, individuals experience considerable cognitive deficits and brain pathology over decades before reaching clinically diagnosable LOAD and studies have utilised gene candidate studies such as genome wide association studies (GWAS) and polygenic risk (PGR) scores to identify high risk individuals and potential pathways. This investigation aims to determine whether high genetic risk of LOAD is associated with worse brain MRI and cognitive performance in healthy older adults within the UK Biobank cohort. Previous studies investigating associations of PGR for LOAD and measures of MRI or cognitive functioning have focused on specific aspects of hippocampal structure, in relatively small sample sizes and with poor ‘controlling’ for confounders such as smoking. Both the sample size of this study and the discovery GWAS sample are bigger than previous studies to our knowledge. Genetic interaction between loci showing largest effects in GWAS have not been extensively studied and it is known that APOE e4 poses the largest genetic risk of LOAD with potential gene-gene and gene-environment interactions of e4, for this reason we  also analyse genetic interactions of PGR with the APOE e4 genotype. High genetic loading based on a polygenic risk score of 21 SNPs for LOAD is associated with worse brain MRI and cognitive outcomes in healthy individuals within the UK Biobank cohort. Summary statistics from Kunkle et al., GWAS meta-analyses (case: n=30,344, control: n=52,427) will be used to create polygenic risk scores based on 21 SNPs and analyses will be carried out in N=37,000 participants in the UK Biobank. This will be the largest study to date investigating PGR of LOAD in relation to MRI. MRI outcome measures include WM tracts, structural volumes. Cognitive function measures include reaction time, pairs matching, trail making, digit symbol substitution and prospective memory. Interaction of the APOE e4 alleles and PGR will be analysed by including APOE status as an interaction term coded as either 0, 1 or 2 e4 alleles. Models will be adjusted partially for adjusted for age, BMI, sex, genotyping chip, smoking, depression and social deprivation. Preliminary results suggest PGR score for LOAD is associated with decreased hippocampal volumes including hippocampal body (standardised beta = -0.04, P = 0.022) and tail (standardised beta = -0.037, P = 0.030), but not with hippocampal head. There were also associations of genetic risk with decreased cognitive performance including fluid intelligence (standardised beta = -0.08, P<0.01) and reaction time (standardised beta = 2.04, P<0.01). No genetic interactions were found between APOE e4 dose and PGR score for MRI or cognitive measures. The generalisability of these results is limited by selection bias within the UK Biobank as participants are less likely to be obese, smoke, be socioeconomically deprived and have fewer self-reported health conditions when compared to the general population. Lack of a unified approach or standardised method for calculating genetic risk scores may also be a limitation of these analyses. Further discussion and results are pending.

Keywords: Alzheimer's dementia, cognition, polygenic risk, MRI

Procedia PDF Downloads 109
509 Polish Adversarial Trial: Analysing the Fairness of New Model of Appeal Proceedings in the Context of Delivered Research

Authors: Cezary Kulesza, Katarzyna Lapinska

Abstract:

Regarding the nature of the notion of fair trial, one must see the source of the fair trial principle in the following acts of international law: art. 6 of the ECHR of 1950 and art.14 the International Covenant on Civil and Political Rights of 1966, as well as in art. 45 of the Polish Constitution. However, the problem is that the above-mentioned acts essentially apply the principle of a fair trial to the main hearing and not to appeal proceedings. Therefore, the main thesis of the work is to answer the question whether the Polish model of appeal proceedings is fair. The paper presents the problem of fair appeal proceedings in Poland in comparative perspective. Thus, the authors discuss the basic features of English, German and Russian appeal systems. The matter is also analysed in the context of the last reforms of Polish criminal procedure, because since 2013 Polish parliament has significantly changed criminal procedure almost three times: by the Act of 27th September, 2013, the Act of 20th February, 2015 which came into effect on 1st July, 2015 and the Act of 11th March, 2016. The most astonishing is that these three amendments have been varying from each other – changing Polish criminal procedure to more adversarial one and then rejecting all measures just involved in previous acts. Additional intent of the Polish legislator was amending the forms of plea bargaining: conviction of the defendant without trial or voluntary submission to a penalty, which were supposed to become tools allowing accelerating the criminal process and, at the same time, implementing the principle of speedy procedure. The next part of the paper will discuss the matter, how the changes of plea bargaining and the main trial influenced the appellate procedure in Poland. The authors deal with the right to appeal against judgments issued in negotiated case-ending settlements in the light of Art. 2 of Protocol No. 7 to the ECHR and the Polish Constitution. The last part of the presentation will focus on the basic changes in the appeals against judgments issued after the main trial. This part of the paper also presents the results of examination of court files held in the Polish Appeal Courts in Białystok, Łódź and Warsaw. From these considerations it is concluded that the Polish CCP of 1997 in ordinary proceedings basically meets both standards: the standard adopted in Protocol No. 7 of the Convention and the Polish constitutional standard. But the examination of case files shows in particular the following phenomena: low effectiveness of appeals and growing stability of the challenged judgments of district courts, extensive duration of appeal proceedings and narrow scope of evidence proceedings before the appellate courts. On the other hand, limitations of the right to appeal against the judgments issued in consensual modes of criminal proceedings justify the fear that such final judgments may violate the principle of criminal accurate response or the principle of material truth.

Keywords: adversarial trial, appeal, ECHR, England, evidence, fair trial, Germany, Polish criminal procedure, reform, Russia

Procedia PDF Downloads 141
508 A Comparative Study of Efficacy and Safety of Salicylic Acid, Trichloroacetic Acid and Glycolic Acid in Various Facial Melanosis

Authors: Shivani Dhande, Sanjiv Choudhary, Adarshlata Singh

Abstract:

Introduction: Chemical peeling is a popular, relatively inexpensive day procedure and generally safe method for treatment of pigmentary skin disorders and for skin rejuvenation. Chemical peels are classified by the depth of action into superficial, medium, and deep peels.Various facial pigmentary conditions have significant impact on quality of life causing psychological stress, necessitating its safe and effective treatment.Aim & Objectives:To compare the efficacy of Salicylic acid, Trichloroaceticacid & Glycolic Acid in facial melanosis(melasma,photomelanosis& post acne pigmentation).To study the side effects of above mentioned peeling agents. Method and Materials:It was a randomized parallel control single blind study consisting of total of 36 cases, 12 cases each of melasma, photo melanosis and post acne pigmentation within age group 20-50 years having fitzpatrick’s skin type4. Woods lamp examination was done to confirm the type of melasma.Patients with keloidal tendency, active herpes infection or past history of hypersensitivity to salicylic acid, trichloroaceticand glycolic acid as well aspatients on systemic isotretinoin were excluded.Clinical photographs at the beginning of therapy and then serially, were taken to assess the clinical response. Prior to application a written informed consent was obtained. A post auricular test peel was performed. Patients were divided into 3 groups, containing 12 patients each of melasma, photomelanosis and post acnepigmentation.All the three peels SA peel 20% (done once in 2 weeks), GA peel 50% (done once in 3 weeks) and TCA 15% (done once in 3 weeks) were used with total six settings for each patient. Before application of peel patients were counseled to wash the face with soap and water. Then face was dried and cleaned with spirit and acetone to remove all cutaneous oils. GA, TCA, SA were applied with cotton buds/gauze withmild strokes. After a contact period off 5-10mins neutralization was done with cold water. Post peel topical sunscreen application was mandatory. MASI was used pre and post treatment to assess melasma. Investigator’s global improvement scale- overall hyperpigmentation (4-significant, 3-moderate, 2-mild, 1-minimal, 0-no change ) and Patient’s satisfaction grading scale (>70%- excellent response, 50-70%- good response, <50%- average response) was used to assess improvement in all the three facial melanosis.Results:In our study of 12 patients of melasma, 4 (33.33%)patients showed excellent results;3 (25%) with GAand 1(8.33%) of TCA.Good response was seen in 4 (33.33%) patients;1(8.33%) each for GA & SA and 2(16.66%) for TCA.Poor response was seen in 4(33.33%) patients;1(8.33%) for TCA and 3 (25%) for SA.Of 12 patients of photomelanosis, excellent resultswas seen in 3(25%)patients of TCA. Good response was seen in 4 (33.33%) patients, 1(8.33%) each of TCA &SA and 2(16.66%) of GA.Poor responsewas seen in 5(41.66%) patients;3 (25%) for SA and 2(16.66%) of GA.Of 12 patients of post acne pigmentation, excellent responsein 3 (25%) patients;2(16.66%) of SA and 1(8.33%) of TCA.Good responsewas seen in 5(41.66%) patients;2(16.66%) of SA and GA and1(8.33%) of TCA.Poor response was seen in 4 (33.33%) patients; 2 (16.66%) for SA and TCA both. No major side effects in the form of scarring or persistant pigmentation was seen. Transient blackening of skin with burning sensation was seen in cases treated with TCA and SA. Post procedural itching and redness was noted with GA peel. Conclusion- In our study GA(50%),TCA(15%) & SA(20%) peels showed excellent response in melasma, photomelanosis and post-acne pigmentation respectively.All the 3 peeling agents were well tolerated without any significant side-effects in the above specified concentrations.

Keywords: facial melanosis, gycolic acid, salicylic acid, trichloroacetic acid

Procedia PDF Downloads 252
507 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 183
506 The Role of Structural Poverty in the Know-How and Moral Economy of Doctors in Africa: An Anthropological Perspective

Authors: Isabelle Gobatto

Abstract:

Based on an anthropological approach, this paper explores the medical profession and the construction of medical practices by considering the multiform articulations between structural poverty and the production of care from a low-resource francophone West African country, Burkina Faso. This country is considered in its exemplary dimension of culturally differentiated countries of the African continent that share the same situation of structural poverty. The objective is to expose the effects of structural poverty on the ways of constructing professional knowledge and thinking about the sense of the medical profession. If doctors are trained to have the same capacities in South and West countries, which are to treat and save lives whatever the cultural contexts of the practice of medicine, the ways of investing their role and of dealing with this context of action fracture the homogenization of the medical profession. In the line of anthropology of biomedicine, this paper outlines the complex effects of structural poverty on health care, care relations, and the moral economy of doctors. The materials analyzed are based on an ethnography including two temporalities located thirty years apart (1990-1994 and 2020-2021), based on long-term observations of care practices conducted in healthcare institutions, interviews coupled with the life histories of physicians. The findings reveal that disabilities faced by doctors to deliver care are interpreted as policy gaps, but they are also considered by physicians as constitutive of the social and cultural characteristics of patients, making their capacities and incapacities in terms of accompanying caregivers in the production of care. These perceptions have effects on know-how, structured around the need to act even when diagnoses are not made so as not to see patients desert health structures if the costs of care are too high for them. But these interpretations of highly individualizing dimensions of these difficulties place part of the blame on patients for the difficulties in using learned knowledge and delivering effective care. These situations challenge the ethics of caregivers but also of ethnologists. Firstly because the interpretations of disabilities prevent caregivers from considering vulnerabilities of care as constituting a common condition shared with their patients in these health systems, affecting them in an identical way although in different places in the production of care. Correlatively, these results underline that these professional conceptions prevent the emergence of a figure of victim, which could be shared between patients and caregivers who, together, undergo working and care conditions at the limit of the acceptable. This dimension directly involves politics. Secondly, structural poverty and its effects on care challenge the ethics of the anthropologist who observes caregivers producing, without intent to arm, experiences of care marked by an ordinary violence, by not giving them the care they need. It is worth asking how anthropologists could get doctors to think in this light in west-African societies.

Keywords: Africa, care, ethics, poverty

Procedia PDF Downloads 63
505 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures

Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov

Abstract:

At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.

Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells

Procedia PDF Downloads 205
504 Embodied Neoliberalism and the Mind as Tool to Manage the Body: A Descriptive Study Applied to Young Australian Amateur Athletes

Authors: Alicia Ettlin

Abstract:

Amid the rise of neoliberalism to the leading economic policy model in Western societies in the 1980s, people have started to internalise a neoliberal way of thinking, whereby the human body has become an entity that can and needs to be precisely managed through free yet rational decision-making processes. The neoliberal citizen has consequently become an entrepreneur of the self who is free, independent, rational, productive and responsible for themselves, their health and wellbeing as well as their appearance. The focus on individuals as entrepreneurs who manage their bodies through the rationally thinking mind has, however, become increasingly criticised for viewing the social actor as ‘disembodied’, as a detached, social actor whose powerful mind governs over the passive body. On the other hand, the discourse around embodiment seeks to connect rational decision-making processes to the dominant neoliberal discourse which creates an embodied understanding that the body, just as other areas of people’s lives, can and should be shaped, monitored and managed through cognitive and rational thinking. This perspective offers an understanding of the body regarding its connections with the social environment that reaches beyond the debates around mind-body binary thinking. Hence, following this argument, body management should not be thought of as either solely guided by embodied discourses nor as merely falling into a mind-body dualism, but rather, simultaneously and inseparably as both at once. The descriptive, qualitative analysis of semi-structured in-depth interviews conducted with young Australian amateur athletes between the age of 18 and 24 has shown that most participants are interested in measuring and managing their body to create self-knowledge and self-improvement. The participants thereby connected self-improvement to weight loss, muscle gain or simply staying fit and healthy. Self-knowledge refers to body measurements including weight, BMI or body fat percentage. Self-management and self-knowledge that are reliant on one another to take rational and well-thought-out decisions, are both characteristic values of the neoliberal doctrine. A neoliberal way of thinking and looking after the body has also by many been connected to rewarding themselves for their discipline, hard work or achievement of specific body management goals (e.g. eating chocolate for reaching the daily step count goal). A few participants, however, have shown resistance against these neoliberal values, and in particular, against the precise monitoring and management of the body with the help of self-tracking devices. Ultimately, however, it seems that most participants have internalised the dominant discourses around self-responsibility, and by association, a sense of duty to discipline their body in normative ways. Even those who have indicated their resistance against body work and body management practices that follow neoliberal thinking and measurement systems, are aware and have internalised the concept of the rational operating mind that needs or should decide how to look after the body in terms of health but also appearance ideals. The discussion around the collected data thereby shows that embodiment and the mind/body dualism constitute two connected, rather than two separate or opposing concepts.

Keywords: dualism, embodiment, mind, neoliberalism

Procedia PDF Downloads 160
503 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, infill wall, infilled frame, masonry wall

Procedia PDF Downloads 172
502 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus

Authors: Sweta Rout-Hoolash

Abstract:

Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).

Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad

Procedia PDF Downloads 325
501 Socio-Cultural Economic and Demographic Profile of Return Migration: A Case Study of Mahaboobnagar District in ‘Andhra Pradesh’

Authors: Ramanamurthi Botlagunta

Abstract:

Return migrate on is a process; it’s not a new phenomenal. People are migrating since civilization started. In the case of Indian Diaspora, peoples migrated before the Independence of India. Even after the independence. There are various reasons for the migration. According to the characteristics of the migrants, geographical, political, and economic factors there are many changes occur in the mode of migration. In India currently almost 25 million peoples are outside of the country. But all of them not able to get the immigrants status in their respective host society due to the nature of individual perception and the immigration policies of the host countries. They came back to homeland after spending days/months/years. They are known as the return migrants. Returning migrants are 'persons returning to their country of citizenship after having been international migrants, whether short term or long-term'. Increasingly, migration is seen very differently from what was once believed to be a one-way phenomenon. The renewed interest of return migration can be seen through two aspects one is that growing importance of temporary migration programmers in other countries and other one is that potential role of migrants in developing their home countries. Conceptualized return migration in several ways: occasional return, seasonal return, temporary return, permanent return, and circular return. The reasons for the return migration are retirement, failure to assimilate in the host country, problems with acculturation in the destination country, being unsuccessful in the emigrating country, acquiring the desired wealth, innovate and to serve as change agents in the birth country. With the advent of globalization and the rapid development of transportation systems and communication technologies, this is a process by which immigrants forge and sustain simultaneous multi-stranded social relations that link together their societies of origin and settlement. We can find that Current theories of transnational migration are greatly focused on the economic impacts on the home countries, while social, cultural and political impacts have recently started gaining momentum. This, however, has been changing as globalization is radically transforming the way people move around the world. One of the reasons for the return migration is that lack of proportionate representation of Asian immigrants in positions of authority and decision-making can be a result of challenges confronted in cultural and structural assimilation. The present study mainly focuses socioeconomic and demographic profile of return migration of Indians from other countries in general and particularly on Andhra Pradesh the people who are returning from other countries. Migration is that lack of proportionate representation of Asian immigrants in positions of authority and decision-making can be a result of challenges confronted in cultural and structural assimilation. The present study mainly focuses socioeconomic and demographic profile of return migration of Indians from other countries in general and particularly on Andhra Pradesh the people who are returning from other countries.

Keywords: migration, return migration, globalization, development, socio- economic, Asian immigrants, UN, Andhra Pradesh

Procedia PDF Downloads 366
500 Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana

Authors: Natalia Politaeva, Iuliia Smiatskaia, Iuliia Bazarnova, Iryna Atamaniuk, Kerstin Kuchta

Abstract:

Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.

Keywords: biomass, fluorescent lamp, infrared radiation, microalgae

Procedia PDF Downloads 185
499 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.

Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning

Procedia PDF Downloads 179
498 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage

Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan

Abstract:

The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.

Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water

Procedia PDF Downloads 192
497 Graphene-Graphene Oxide Dopping Effect on the Mechanical Properties of Polyamide Composites

Authors: Daniel Sava, Dragos Gudovan, Iulia Alexandra Gudovan, Ioana Ardelean, Maria Sonmez, Denisa Ficai, Laurentia Alexandrescu, Ecaterina Andronescu

Abstract:

Graphene and graphene oxide have been intensively studied due to the very good properties, which are intrinsic to the material or come from the easy doping of those with other functional groups. Graphene and graphene oxide have known a broad band of useful applications, in electronic devices, drug delivery systems, medical devices, sensors and opto-electronics, coating materials, sorbents of different agents for environmental applications, etc. The board range of applications does not come only from the use of graphene or graphene oxide alone, or by its prior functionalization with different moieties, but also it is a building block and an important component in many composite devices, its addition coming with new functionalities on the final composite or strengthening the ones that are already existent on the parent product. An attempt to improve the mechanical properties of polyamide elastomers by compounding with graphene oxide in the parent polymer composition was attempted. The addition of the graphene oxide contributes to the properties of the final product, improving the hardness and aging resistance. Graphene oxide has a lower hardness and textile strength, and if the amount of graphene oxide in the final product is not correctly estimated, it can lead to mechanical properties which are comparable to the starting material or even worse, the graphene oxide agglomerates becoming a tearing point in the final material if the amount added is too high (in a value greater than 3% towards the parent material measured in mass percentages). Two different types of tests were done on the obtained materials, the hardness standard test and the tensile strength standard test, and they were made on the obtained materials before and after the aging process. For the aging process, an accelerated aging was used in order to simulate the effect of natural aging over a long period of time. The accelerated aging was made in extreme heat. For all materials, FT-IR spectra were recorded using FT-IR spectroscopy. From the FT-IR spectra only the bands corresponding to the polyamide were intense, while the characteristic bands for graphene oxide were very small in comparison due to the very small amounts introduced in the final composite along with the low absorptivity of the graphene backbone and limited number of functional groups. In conclusion, some compositions showed very promising results, both in tensile strength test and in hardness tests. The best ratio of graphene to elastomer was between 0.6 and 0.8%, this addition extending the life of the product. Acknowledgements: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project ‘New nanostructured polymeric composites for centre pivot liners, centre plate and other components for the railway industry (RONERANANOSTRUCT)’, No: 18 PTE (PN-III-P2-2.1-PTE-2016-0146) is also acknowledged.

Keywords: graphene, graphene oxide, mechanical properties, dopping effect

Procedia PDF Downloads 310
496 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 96
495 Methodological Deficiencies in Knowledge Representation Conceptual Theories of Artificial Intelligence

Authors: Nasser Salah Eldin Mohammed Salih Shebka

Abstract:

Current problematic issues in AI fields are mainly due to those of knowledge representation conceptual theories, which in turn reflected on the entire scope of cognitive sciences. Knowledge representation methods and tools are driven from theoretical concepts regarding human scientific perception of the conception, nature, and process of knowledge acquisition, knowledge engineering and knowledge generation. And although, these theoretical conceptions were themselves driven from the study of the human knowledge representation process and related theories; some essential factors were overlooked or underestimated, thus causing critical methodological deficiencies in the conceptual theories of human knowledge and knowledge representation conceptions. The evaluation criteria of human cumulative knowledge from the perspectives of nature and theoretical aspects of knowledge representation conceptions are affected greatly by the very materialistic nature of cognitive sciences. This nature caused what we define as methodological deficiencies in the nature of theoretical aspects of knowledge representation concepts in AI. These methodological deficiencies are not confined to applications of knowledge representation theories throughout AI fields, but also exceeds to cover the scientific nature of cognitive sciences. The methodological deficiencies we investigated in our work are: - The Segregation between cognitive abilities in knowledge driven models.- Insufficiency of the two-value logic used to represent knowledge particularly on machine language level in relation to the problematic issues of semantics and meaning theories. - Deficient consideration of the parameters of (existence) and (time) in the structure of knowledge. The latter requires that we present a more detailed introduction of the manner in which the meanings of Existence and Time are to be considered in the structure of knowledge. This doesn’t imply that it’s easy to apply in structures of knowledge representation systems, but outlining a deficiency caused by the absence of such essential parameters, can be considered as an attempt to redefine knowledge representation conceptual approaches, or if proven impossible; constructs a perspective on the possibility of simulating human cognition on machines. Furthermore, a redirection of the aforementioned expressions is required in order to formulate the exact meaning under discussion. This redirection of meaning alters the role of Existence and time factors to the Frame Work Environment of knowledge structure; and therefore; knowledge representation conceptual theories. Findings of our work indicate the necessity to differentiate between two comparative concepts when addressing the relation between existence and time parameters, and between that of the structure of human knowledge. The topics presented throughout the paper can also be viewed as an evaluation criterion to determine AI’s capability to achieve its ultimate objectives. Ultimately, we argue some of the implications of our findings that suggests that; although scientific progress may have not reached its peak, or that human scientific evolution has reached a point where it’s not possible to discover evolutionary facts about the human Brain and detailed descriptions of how it represents knowledge, but it simply implies that; unless these methodological deficiencies are properly addressed; the future of AI’s qualitative progress remains questionable.

Keywords: cognitive sciences, knowledge representation, ontological reasoning, temporal logic

Procedia PDF Downloads 107
494 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment

Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues

Abstract:

Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.

Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.

Procedia PDF Downloads 207
493 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 55
492 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 385
491 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 135
490 Polymer Dispersed Liquid Crystals Based on Poly Vinyl Alcohol Boric Acid Matrix

Authors: Daniela Ailincai, Bogdan C. Simionescu, Luminita Marin

Abstract:

Polymer dispersed liquid crystals (PDLC) represent an interesting class of materials which combine the ability of polymers to form films and their mechanical strength with the opto-electronic properties of liquid crystals. The proper choice of the two components - the liquid crystal and the polymeric matrix - leads to materials suitable for a large area of applications, from electronics to biomedical devices. The objective of our work was to obtain PDLC films with potential applications in the biomedical field, using poly vinyl alcohol boric acid (PVAB) as a polymeric matrix for the first time. Presenting all the tremendous properties of poly vinyl alcohol (such as: biocompatibility, biodegradability, water solubility, good chemical stability and film forming ability), PVAB brings the advantage of containing the electron deficient boron atom, and due to this, it should promote the liquid crystal anchoring and a narrow liquid crystal droplets polydispersity. Two different PDLC systems have been obtained, by the use of two liquid crystals, a nematic commercial one: 4-cyano-4’-penthylbiphenyl (5CB) and a new smectic liquid crystal, synthesized by us: buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate (BBO). The PDLC composites have been obtained by the encapsulation method, working with four different ratios between the polymeric matrix and the liquid crystal, from 60:40 to 90:10. In all cases, the composites were able to form free standing, flexible films. Polarized light microscopy, scanning electron microscopy, differential scanning calorimetry, RAMAN- spectroscopy and the contact angle measurements have been performed, in order to characterize the new composites. The new smectic liquid crystal has been characterized using 1H-NMR and single crystal X-ray diffraction and its thermotropic behavior has been established using differential scanning calorimetry and polarized light microscopy. The polarized light microscopy evidenced the formation of round birefringent droplets, anchored homeotropic in the first case and planar in the second, with a narrow dimensional polydispersity, especially for the PDLC containing the largest amount of liquid crystal, fact evidenced by SEM, also. The obtained values for the water to air contact angle showed that the composites have a proper hydrophilic-hydrophobic balance, making them potential candidates for bioapplications. More than this, our studies demonstrated that the water to air contact angle varies as a function of PVAB matrix crystalinity degree, which can be controled as a function of time. This fact allowed us to conclude that the use of PVAB as matrix for PDLCs obtaining offers the possibility to modulate their properties for specific applications.

Keywords: 4-cyano-4’-penthylbiphenyl, buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate, contact angle, polymer dispersed liquid crystals, poly vinyl alcohol boric acid

Procedia PDF Downloads 445