Search results for: supercritical extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2061

Search results for: supercritical extraction

291 Desulphurization of Waste Tire Pyrolytic Oil (TPO) Using Photodegradation and Adsorption Techniques

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The nature of tires makes them extremely challenging to recycle due to the available chemically cross-linked polymer and, therefore, they are neither fusible nor soluble and, consequently, cannot be remolded into other shapes without serious degradation. Open dumping of tires pollutes the soil, contaminates underground water and provides ideal breeding grounds for disease carrying vermins. The thermal decomposition of tires by pyrolysis produce char, gases and oil. The composition of oils derived from waste tires has common properties to commercial diesel fuel. The problem associated with the light oil derived from pyrolysis of waste tires is that it has a high sulfur content (> 1.0 wt.%) and therefore emits harmful sulfur oxide (SOx) gases to the atmosphere when combusted in diesel engines. Desulphurization of TPO is necessary due to the increasing stringent environmental regulations worldwide. Hydrodesulphurization (HDS) is the commonly practiced technique for the removal of sulfur species in liquid hydrocarbons. However, the HDS technique fails in the presence of complex sulfur species such as Dibenzothiopene (DBT) present in TPO. This study aims to investigate the viability of photodegradation (Photocatalytic oxidative desulphurization) and adsorptive desulphurization technologies for efficient removal of complex and non-complex sulfur species in TPO. This study focuses on optimizing the cleaning (removal of impurities and asphaltenes) process by varying process parameters; temperature, stirring speed, acid/oil ratio and time. The treated TPO will then be sent for vacuum distillation to attain the desired diesel like fuel. The effect of temperature, pressure and time will be determined for vacuum distillation of both raw TPO and the acid treated oil for comparison purposes. Polycyclic sulfides present in the distilled (diesel like) light oil will be oxidized dominantly to the corresponding sulfoxides and sulfone via a photo-catalyzed system using TiO2 as a catalyst and hydrogen peroxide as an oxidizing agent and finally acetonitrile will be used as an extraction solvent. Adsorptive desulphurization will be used to adsorb traces of sulfurous compounds which remained during photocatalytic desulphurization step. This desulphurization convoy is expected to give high desulphurization efficiency with reasonable oil recovery.

Keywords: adsorption, asphaltenes, photocatalytic oxidation, pyrolysis

Procedia PDF Downloads 272
290 Antibacterial Effects of Some Medicinal and Aromatic Plant Extracts on Pathogenic Bacteria Isolated from Pear Orchards

Authors: Kubilay Kurtulus Bastas

Abstract:

Bacterial diseases are very destructive and cause economic losses on pears. Promising plant extracts for the management of plant diseases are environmentally safe, long-lasting and extracts of certain plants contain alkaloids, tannins, quinones, coumarins, phenolic compounds, and phytoalexins. In this study, bacteria were isolated from different parts of pear exhibiting characteristic symptoms of bacterial diseases from the Central Anatolia, Turkey. Pathogenic bacteria were identified by morphological, physiological, biochemical and molecular methods as fire blight (Erwinia amylovora (39%)), bacterial blossom blast and blister bark (Pseudomonas syringae pv. syringae (22%)), crown gall (Rhizobium radiobacter (1%)) from different pear cultivars, and determined virulence levels of the pathogens with pathogenicity tests. The air-dried 25 plant material was ground into fine powder and extraction was performed at room temperature by maceration with 80% (v/v) methanol/distilled water. The minimum inhibitory concentration (MIC) values were determined by using modified disc diffusion method at five different concentrations and streptomycin sulphate was used as control chemical. Bacterial suspensions were prepared as 108 CFU ml⁻¹ densities and 100 µl bacterial suspensions were spread to TSA medium. Antimicrobial activity was evaluated by measuring the inhibition zones in reference to the test organisms. Among the tested plants, Origanum vulgare, Hedera helix, Satureja hortensis, Rhus coriaria, Eucalyptus globulus, Rosmarinus officinalis, Ocimum basilicum, Salvia officinalis, Cuminum cyminum and Thymus vulgaris showed a good antibacterial activity and they inhibited the growth of the pathogens with inhibition zone diameter ranging from 7 to 27 mm at 20% (w/v) in absolute methanol in vitro conditions. In vivo, the highest efficacy was determined as 27% on reducing tumor formation of R. radiobacter, and 48% and 41% on reducing shoot blight of E. amylovora and P. s. pv. syringae on pear seedlings, respectively. Obtaining data indicated that some plant extracts may be used against the bacterial diseases on pome fruits within sustainable and organic management programs.

Keywords: bacteria, eco-friendly management, organic, pear, plant extract

Procedia PDF Downloads 338
289 Facilitated Massive Open Online Course (MOOC) Based Teacher Professional Development in Kazakhstan: Connectivism-Oriented Practices

Authors: A. Kalizhanova, T. Shelestova

Abstract:

Teacher professional development (TPD) in Kazakhstan has followed a fairly standard format for centuries, with teachers learning new information from a lecturer and being tested using multiple-choice questions. In the online world, self-access courses have become increasingly popular. Due to their extensive multimedia content, peer-reviewed assignments, adaptable class times, and instruction from top university faculty from across the world, massive open online courses (MOOCs) have found a home in Kazakhstan's system for lifelong learning. Recent studies indicate the limited use of connectivism-based tools such as discussion forums by Kazakhstani pre-service and in-service English teachers, whose professional interests are limited to obtaining certificates rather than enhancing their teaching abilities and exchanging knowledge with colleagues. This paper highlights the significance of connectivism-based tools and instruments, such as MOOCs, for the continuous professional development of pre- and in-service English teachers, facilitators' roles, and their strategies for enhancing trainees' conceptual knowledge within the MOOCs' curriculum and online learning skills. Reviewing the most pertinent papers on Connectivism Theory, facilitators' function in TPD, and connectivism-based tools, such as MOOCs, a code extraction method was utilized. Three experts, former active participants in a series of projects initiated across Kazakhstan to improve the efficacy of MOOCs, evaluated the excerpts and selected the most appropriate ones to propose the matrix of teacher professional competencies that can be acquired through MOOCs. In this paper, we'll look at some of the strategies employed by course instructors to boost their students' English skills and knowledge of course material, both inside and outside of the MOOC platform. Participants' interactive learning contributed to their language and subject conceptual knowledge and prepared them for peer-reviewed assignments in the MOOCs, and this approach of small group interaction was given to highlight the outcomes of participants' interactive learning. Both formal and informal continuing education institutions can use the findings of this study to support teachers in gaining experience with MOOCs and creating their own online courses.

Keywords: connectivism-based tools, teacher professional development, massive open online courses, facilitators, Kazakhstani context

Procedia PDF Downloads 81
288 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.

Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization

Procedia PDF Downloads 70
287 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 260
286 Multi-Residue Analysis (GC-ECD) of Some Organochlorine Pesticides in Commercial Broiler Meat Marketed in Shivamogga City, Karnataka State, India

Authors: L. V. Lokesha, Jagadeesh S. Sanganal, Yogesh S. Gowda, Shekhar, N. B. Shridhar, N. Prakash, Prashantkumar Waghe, H. D. Narayanaswamy, Girish V. Kumar

Abstract:

Organochlorine (OC) insecticides are among the most important organotoxins and make a large group of pesticides. Physicochemical properties of these toxins, especially their lipophilicity, facilitate the absorption and storage of these toxins in the meat thus possess public health threat to humans. The presence of these toxins in broiler meat can be a quantitative and qualitative index for the presence of these toxins in animal bodies, which is attributed to Waste water of irrigation after spraying the crops, contaminated animal feeds with pesticides, polluted air are the potential sources of residues in animal products. Fifty broiler meat samples were collected from different retail outlets of Bengaluru city, Karnataka state, in ice cold conditions and later stored under -20°C until analysis. All the samples were subjected to Gas Chromatograph attached to Electron Capture Detector(GC-ECD, VARIAN make) screening and quantification of OC pesticides viz; Alachlor, Aldrin, Alpha-BHC, Beta-BHC, Dieldrin, Delta-BHC, o,p-DDE, p,p-DDE, o,p-DDD, p,p-DDD, o,p-DDT, p,p-DDT, Endosulfan-I, Endosulfan-II, Endosulfan Sulphate and Lindane(all the standards were procured from Merck). Extraction was undertaken by blending fifty grams (g) of meat sample with 50g Sodium Sulphate anahydrous, 120 ml of n-hexane, 120 ml acetone for 15 mins, extract is washed with distilled water and sample moisture is dried by sodium sulphate anahydrous, partitioning is done with 25 ml petroleum ether, 10 ml acetonitrile and 15 ml n-hexane shake vigorously for two minutes, sample clean up was done with florosil column. The reconstituted samples (using n-hexane) (Merck chem) were injected to Gas Chromatograph–Electron Capture Detector(GC-ECD). The present study reveals that, among the fifty chicken samples subjected for analysis, 60% (15/50), 32% (8/50), 28% (7/50), 20% (5/50) and 16% (4/50) of samples contaminated with DDTs, Delta-BHC, Dieldrin, Aldrin and Alachlor respectively. DDT metabolites, Delta-BHC were the most frequently detected OC pesticides. The detected levels of the pesticides were below the levels of MRL(according to Export Council of India notification for fresh poultry meat).

Keywords: accuracy, gas chromatography, meat, pesticide, petroleum ether

Procedia PDF Downloads 328
285 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 362
284 Isolation, Identification and Measurement of Cottonseed Oil Gossypol in the Treatment of Drug-Resistant Cutaneous Leishmaniasis

Authors: Sara Taghdisi, Mehrosadat Mirmohammadi, Mostafa Mokhtarian, Mohammad Hossein Pazandeh

Abstract:

Leishmaniasis is one of the 10 most important diseases of the World Health Organization with health problems in more than 90 countries. Over one billion people are at risk of these diseases on almost every continent. The present human study was performed to evaluate the therapeutic effect of cotton plant on cutaneous leishmaniasis leision. firstly, the cotton seeds were cleaned and grinded to smaller particles. In the second step, the seeds were oiled by cold press method. In order to separate bioactive compound, after saponification of the oil, its gossypol was hydrolyzed and crystalized. finally, the therapeutic effect of Cottonseed Oil on cutaneous leishmaniasis was investigated. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 1.28±0.12. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. This double-blind randomized controlled clinical trial was performed on 88 cases of leishmaniasis wounds. Patients were randomly divided into two groups of 44 cases. two groups received conventional treatment. In addition to the usual treatment (glucantime), the first group received cottonseed oil and the control group received placebo. The results of the present study showed that the surface of lesion before the intervention and in the first to fourth weeks after the intervention was not significantly different between the two groups (P-value> 0.05). But the surface of lesion in the Intervention group in the eighth and twelfth weeks was lower than the control group (P-value <0.05). This study showed that the improvement of leishmaniasis lesion using topical cotton plant mark in the eighth and twelfth weeks after the intervention was significantly more than the control group. Considering the most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them. Therefore, a plant base bioactive compound such as cottonseed oil can be useful whit fewer side effects.

Keywords: cottonseed oil, crystallization, gossypol, leishmaniasis

Procedia PDF Downloads 63
283 Saco Sweet Cherry from Fundão Region, Portugal: Chemical Profile and Health-Promoting Properties

Authors: Luís R. Silva, Ana C. Gonçalves, Catarina Bento, Fábio Jesus, Branca M. Silva

Abstract:

Prunus avium Linnaeus, more known as sweet cherry, is one of the most appreciated fruit worldwide. Most of these quantities are produced in Fundão region, being Saco the cultivar most produced. Saco is very rich in bioactive compounds, especially phenolics, and presents great antioxidant capacity. The purpose of the present study was to investigate the chemical profile and biological potential, concerning antioxidant, anti-diabetic activity and protective effects towards erythrocytes by Saco sweet cherry collected from Fundão region (Portugal). The hydroethanolic extracts were prepared and passed through a C18 solid-phase extraction column. The phenolic profile analyzed by LC-DAD method allowed to the identification of 22 phenolic compounds, being 16 non-phenolics and 6 anthocyanins. In respect to non-coloured phenolics, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones. Concerning to anthocyanins, cyanidin-3-O-rutinoside was found in higher amounts. Relatively to biological potential, Saco showed great antioxidant potential, through DPPH and NO radical assays, with IC50 =16.24 ± 0.46 µg/mL and IC50 = 176.69 ± 3.35 µg/mL for DPPH and NO, respectively. These results were similar to those obtained for ascorbic acid control (IC50 = 16.92 ± 0.69 and IC50 = 162.66 ± 1.31 μg/mL for DPPH and NO, respectively). In respect to antidiabetic potential, Saco revealed capacity to inhibit α-glucosidase in a dose-dependent manner (IC50 = 10.79 ± 0.40 µg/mL), being much active than positive control acarbose (IC50 = 306.66 ± 0.84 μg/mL). Additionally, Saco extracts revealed protective effects against ROO•-mediated toxicity generated by AAPH in human blood erythrocytes, inhibiting hemoglobin oxidation (IC50 = 38.57 ± 0.96 μg/mL) and hemolysis (IC50 = 73.03 ± 1.48 μg/mL), in a concentration-dependent manner. However, Saco extracts were less effective than quercetin control (IC50 = 3.10 μg/mL and IC50 = 0.7 μg/mL for inhibition of hemoglobin oxidation and hemolysis, respectively). The results obtained showed that Saco is an excellent source of phenolic compounds. These ones are natural antioxidant substances, which easily capture reactive species. This work presents new insights regarding sweet cherry antioxidant properties which may be useful for the future development of new therapeutic strategies for preventing or attenuating oxidative-related disorders.

Keywords: antioxidant capacity, health benefits, phenolic compounds, saco

Procedia PDF Downloads 317
282 Prevalence of Hepatitis B Virus Infection and Its Determinants among Pregnant Women in East Africa: Systematic Review and Meta-Analysis

Authors: Bantie Getnet Yirsaw, Muluken Chanie Agimas, Gebrie Getu Alemu, Tigabu Kidie Tesfie, Nebiyu Mekonnen Derseh, Habtamu Wagnew Abuhay, Meron Asmamaw Alemayehu, Getaneh Awoke Yismaw

Abstract:

Introduction: Hepatitis B virus (HBV) is one of the major public health problems globally and needs an urgent response. It is one of the most responsible causes of mortality among the five hepatitis viruses, and it affects almost every class of individuals. Thus, the main objective of this study was to determine the pooled prevalence and its determinants among pregnant women in East Africa. Methods: We searched studies using PubMed, Scopus, Embase, ScienceDirect, Google Scholar, and grey literature that were published between January 01/2020 to January 30/2024. The studies were assessed using the Newcastle Ottawa Scale (NOS) quality assessment scale. The random-effect (DerSimonian) model was used to determine the pooled prevalence and associated factors of HBV among pregnant women. Heterogeneity was assessed by I² statistic, sub-group analysis, and sensitivity analysis. Publication bias was assessed by the Egger test, and the analysis was done using STATA version 17. Result: A total of 45 studies with 35639 pregnant women were included in this systematic review and meta-analysis. The overall pooled prevalence of HBV among pregnant women in East Africa was 6.0% (95% CI: 6.0%−7.0%, I² = 89.7%). The highest prevalence of 8% ((95% CI: 6%, 10%), I² = 91.08%) was seen in 2021, and the lowest prevalence of 5% ((95% CI: 4%, 6%) I² = 52.52%) was observed in 2022. A pooled meta-analysis showed that history of surgical procedure (OR = 2.14 (95% CI: 1.27, 3.61)), having multiple sexual partners (OR = 3.87 (95% CI: 2.52, 5.95), history of body tattooing (OR = 2.55 (95% CI: 1.62, 4.01)), history of tooth extraction (OR = 2.09 (95% CI: 1.29, 3.39)), abortion history(OR = 2.20(95% CI: 1.38, 3.50)), history of sharing sharp material (OR = 1.88 (95% CI: 1.07, 3.31)), blood transfusion (OR = 2.41 (95% CI: 1.62, 3.57)), family history of HBV (OR = 4.87 (95% CI: 2.95, 8.05)) and history needle injury (OR = 2.62 (95% CI: 1.20, 5.72)) were significant risk factors associated with HBV infection among pregnant women. Conclusions: The pooled prevalence of HBV infection among pregnant women in East Africa was at an intermediate level and different across countries, ranging from 1.5% to 22.2%. The result of this pooled prevalence was an indication of the need for screening, prevention, and control of HBV infection among pregnant women in the region. Therefore, early identification of risk factors, awareness creation of the mode of transmission of HBV, and implementation of preventive measures are essential in reducing the burden of HBV infection among pregnant women.

Keywords: hepatitis B virus, prevalence, determinants, pregnant women, meta-analysis, East Africa

Procedia PDF Downloads 44
281 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region

Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar

Abstract:

Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.

Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification

Procedia PDF Downloads 186
280 Investigation of the Association of Vitamin D Receptor Gene Polymorphism in Female Genital: Tuberculosis Cases

Authors: Swati Gautam, Amita Jain, Shyampyari Jaiswar

Abstract:

Objective: To elucidate the role of (ApaI&TaqI) VDR gene polymorphism in the pathogenesis of female genital tuberculosis (FGTB) cases. Background: Female genital TB represents about 15-20% of total extra-pulmonary TB (EPTB). Female subjects with vitamin D deficiency have been shown to be at higher risk of pulmonary TB as well as FGTB. In same context few functional polymorphism in vitamin D receptor (VDR) gene has been considered as an important genetic risk factor that modulate the development of FGTB. Therefore we aimed, to elucidate the role of (ApaI&TaqI) VDR gene polymorphism in the pathogenesis of FGTB. Study design: Case-Control study. Sample size: Cases (60) and Controls (60). Study site: Department of Obstetrics & Gynecology & Department of Microbiology, K.G.M.U. Lucknow, (UP). Inclusion criteria: Cases: Women with age group 20-35 years, premenstrual endometrial aspiration collected and included in the study, those were positive with acid-fast bacilli (AFB)/ TB-PCR/ LJ culture/ liquid culture. Controls: Women with age group 20-35 years having no history of ATT and all test negative for TB recruited as control. Exclusion criteria: -Women with endometriosis, polycystic ovaries (PCOD), positive on Chlamydia & gonorrhea, already on anti-tubercular therapy (ATT) excluded. Materials and Methods: Blood samples were collected in EDTA tubes from cases and controls stored at -20ºC. Genomic DNA extraction was carried out by salting-out method. Genotyping of VDR gene (ApaI&TaqI) polymorphism was performed by using single amplification refractory mutation system (ARMS) PCR technique. PCR products were analyzed by electrophoresis on 2% agarose gel. Statistical analysis was done by SPSS16.3 software & computing odds ratio (OR) with 95% CI. Results: Increased risk of female genital tuberculosis was observed in AA genotype (OR =1.1419-6.212 95% CI, P*<0.036) and A allele (OR =1.255-3.518, 95% CI, P* < 0.006) in FGTB as compared to controls. Moreover A allele was found more frequent in FGTB patients. No significant difference was observed in TaqI gene polymorphism of VDR gene. Conclusion: The ApaI polymorphism is significantly associated with etiology of FGTB and plays an important role as a genetic risk factor in FGTB women.

Keywords: ARMS, ATT, EPTB, FGTB, VDR

Procedia PDF Downloads 287
279 Assessment of Incidence and Predictors of Mortality Among HIV Positive Children on Art in Public Hospitals of Harer Town Who Were Enrolled From 2011 to 2021

Authors: Getahun Nigusie Demise

Abstract:

Background; antiretroviral treatment reduce HIV-related morbidity, and prolonged survival of patients however, there is lack of up-to-date information concerning the treatment long term effect on the survival of HIV positive children especially in the study area. Objective: The aim of this study is to assess the incidence and predictors of mortality among HIV positive children on antiretroviral therapy (ART) in public hospitals of Harer town who were enrolled from 2011 to 2021. Methodology: Institution based retrospective cohort study was conducted among 429 HIV positive children enrolled in ART clinic from January 1st 2011 to December30th 2021. Data were collected from medical cards by using a data extraction form, Descriptive analyses were used to Summarized the results, and life table was used to estimate survival probability at specific point of time after introduction of ART. Kaplan Meier survival curve together with log rank test was used to compare survival between different categories of covariates, and Multivariate Cox-proportional hazard regression model was used to estimate adjusted Hazard rate. Variables with p-values ≤0.25 in bivariable analysis were candidates to the multivariable analysis. Finally, variables with p-values < 0.05 were considered as significant variables. Results: The study participants had followed for a total of 2549.6 child-years (30596 child months) with an overall mortality rate of 1.5 (95% CI: 1.1, 2.04) per 100 child-years. Their median survival time was 112 months (95% CI: 101–117). There were 38 children with unknown outcome, 39 deaths, and 55 children transfer out to different facility. The overall survival at 6, 12, 24, 48 months were 98%, 96%, 95%, 94% respectively. being in WHO clinical Stage four (AHR=4.55, 95% CI:1.36, 15.24), having anemia(AHR=2.56, 95% CI:1.11, 5.93), baseline low absolute CD4 count (AHR=2.95, 95% CI: 1.22, 7.12), stunting (AHR=4.1, 95% CI: 1.11, 15.42), wasting (AHR=4.93, 95% CI: 1.31, 18.76), poor adherence to treatment (AHR=3.37, 95% CI: 1.25, 9.11), having TB infection at enrollment (AHR=3.26, 95% CI: 1.25, 8.49),and no history of change their regimen(AHR=7.1, 95% CI: 2.74, 18.24), were independent predictors of death. Conclusion: more than half of death occurs within 2 years. Prevalent tuberculosis, anemia, wasting, and stunting nutritional status, socioeconomic factors, and baseline opportunistic infection were independent predictors of death. Increasing early screening and managing those predictors are required.

Keywords: human immunodeficiency virus-positive children, anti-retroviral therapy, survival, treatment, Ethiopia

Procedia PDF Downloads 50
278 Flowback Fluids Treatment Technology with Water Recycling and Valuable Metals Recovery

Authors: Monika Konieczyńska, Joanna Fajfer, Olga Lipińska

Abstract:

In Poland works related to the exploration and prospection of unconventional hydrocarbons (natural gas accumulated in the Silurian shale formations) started in 2007, based on the experience of the other countries that have created new possibilities for the use of existing hydrocarbons resources. The highly water-consuming process of hydraulic fracturing is required for the exploitation of shale gas which implies a need to ensure large volume of water available. As a result considerable amount of mining waste is generated, particularly liquid waste, i.e. flowback fluid with variable chemical composition. The chemical composition of the flowback fluid depends on the composition of the fracturing fluid and the chemistry of the fractured geological formations. Typically, flowback fluid is highly salinated, can be enriched in heavy metals, including rare earth elements, naturally occurring radioactive materials and organic compounds. The generated fluids considered as the extractive waste should be properly managed in the recovery or disposal facility. Problematic issue is both high hydration of waste as well as their variable chemical composition. Also the limited capacity of currently operating facilities is a growing problem. Based on the estimates, currently operating facilities will not be sufficient for the need of waste disposal when extraction of unconventional hydrocarbons starts. Further more, the content of metals in flowback fluids including rare earth elements is a considerable incentive to develop technology of metals recovery. Also recycling is a key factor in terms of selection of treatment process, which should provide that the thresholds required for reuse are met. The paper will present the study of the flowback fluids chemical composition, based on samples from hydraulic fracturing processes performed in Poland. The scheme of flowback fluid cleaning and recovering technology will be reviewed along with a discussion of the results and an assessment of environmental impact, including all generated by-products. The presented technology is innovative due to the metal recovery, as well as purified water supply for hydraulic fracturing process, which is significant contribution to reducing water consumption.

Keywords: environmental impact, flowback fluid, management of special waste streams, metals recovery, shale gas

Procedia PDF Downloads 262
277 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos

Authors: Nassima Noufail, Sara Bouhali

Abstract:

In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.

Keywords: video segmentation, action detection, classification, Kmeans, C3D

Procedia PDF Downloads 78
276 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 80
275 Aquatic Therapy Improving Balance Function of Individuals with Stroke: A Systematic Review with Meta-Analysis

Authors: Wei-Po Wu, Wen-Yu Liu, Wei−Ting Lin, Hen-Yu Lien

Abstract:

Introduction: Improving balance function for individuals after stroke is a crucial target in physiotherapy. Aquatic therapy which challenges individual’s postural control in an unstable fluid environment may be beneficial in enhancing balance functions. The purposes of the systematic review with meta-analyses were to validate the effects of aquatic therapy in improving balance functions for individuals with strokes in contrast to conventional physiotherapy. Method: Available studies were explored from three electronic databases: PubMed, Scopus, and Web of Science. During literature search, the published date of studies was not limited. The study design of the included studies should be randomized controlled trials (RCTs) and the studies should contain at least one outcome measurement of balance function. The PEDro scale was adopted to assess the quality of included studies, while the 'Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence' was used to evaluate the level of evidence. After the data extraction, studies with same outcome measures were pooled together for meta-analysis. Result: Ten studies with 282 participants were included in analyses. The research qualities of the studies were ranged from fair to good (4 to 8 points). Levels of evidence of the included studies were graded as level 2 and 3. Finally, scores of Berg Balance Scale (BBS), Eye closed force plate center of pressure velocity (anterior-posterior, medial-lateral axis) and Timed up and Go test were pooled and analyzed separately. The pooled results shown improvement in balance function (BBS mean difference (MD): 1.39 points; 95% confidence interval (CI): 0.05-2.29; p=0.002) (Eye closed force plate center of pressure velocity (anterior-posterior axis) MD: 1.39 mm/s; 95% confidence interval (CI): 0.93-1.86; p<0.001) (Eye closed force plate center of pressure velocity (medial-lateral) MD: 1.48 mm/s; 95% confidence interval (CI): 0.15-2.82; p=0.03) and mobility (MD: 0.9 seconds; 95% CI: 0.07-1.73; p=0.03) of stroke individuals after aquatic therapy compared to conventional therapy. Although there were significant differences between two treatment groups, the differences in improvement were relatively small. Conclusion: The aquatic therapy improved general balance function and mobility in the individuals with stroke better than conventional physiotherapy.

Keywords: aquatic therapy, balance function, meta-analysis, stroke, systematic review

Procedia PDF Downloads 202
274 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber

Procedia PDF Downloads 238
273 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites

Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar

Abstract:

In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.

Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption

Procedia PDF Downloads 180
272 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 84
271 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 297
270 In vitro Evaluation of Capsaicin Patches for Transdermal Drug Delivery

Authors: Alija Uzunovic, Sasa Pilipovic, Aida Sapcanin, Zahida Ademovic, Berina Pilipović

Abstract:

Capsaicin is a naturally occurring alkaloid extracted from capsicum fruit extracts of different of Capsicum species. It has been employed topically to treat many diseases such as rheumatoid arthritis, osteoarthritis, cancer pain and nerve pain in diabetes. The high degree of pre-systemic metabolism of intragastrical capsaicin and the short half-life of capsaicin by intravenous administration made topical application of capsaicin advantageous. In this study, we have evaluated differences in the dissolution characteristics of capsaicin patch 11 mg (purchased from market) at different dissolution rotation speed. The proposed patch area is 308 cm2 (22 cm x 14 cm; it contains 36 µg of capsaicin per square centimeter of adhesive). USP Apparatus 5 (Paddle Over Disc) is used for transdermal patch testing. The dissolution study was conducted using USP apparatus 5 (n=6), ERWEKA DT800 dissolution tester (paddle-type) with addition of a disc. The fabricated patch of 308 cm2 is to be cut into 9 cm2 was placed against a disc (delivery side up) retained with the stainless-steel screen and exposed to 500 mL of phosphate buffer solution pH 7.4. All dissolution studies were carried out at 32 ± 0.5 °C and different rotation speed (50± 5; 100± 5 and 150± 5 rpm). 5 ml aliquots of samples were withdrawn at various time intervals (1, 4, 8 and 12 hours) and replaced with 5 ml of dissolution medium. Withdrawn were appropriately diluted and analyzed by reversed-phase liquid chromatography (RP-LC). A Reversed Phase Liquid Chromatography (RP-LC) method has been developed, optimized and validated for the separation and quantitation of capsaicin in a transdermal patch. The method uses a ProntoSIL 120-3-C18 AQ 125 x 4,0 mm (3 μm) column maintained at 600C. The mobile phase consisted of acetonitrile: water (50:50 v/v), the flow rate of 0.9 mL/min, the injection volume 10 μL and the detection wavelength 222 nm. The used RP-LC method is simple, sensitive and accurate and can be applied for fast (total chromatographic run time was 4.0 minutes) and simultaneous analysis of capsaicin and dihydrocapsaicin in a transdermal patch. According to the results obtained in this study, we can conclude that the relative difference of dissolution rate of capsaicin after 12 hours was elevated by increase of dissolution rotation speed (100 rpm vs 50 rpm: 84.9± 11.3% and 150 rpm vs 100 rpm: 39.8± 8.3%). Although several apparatus and procedures (USP apparatus 5, 6, 7 and a paddle over extraction cell method) have been used to study in vitro release characteristics of transdermal patches, USP Apparatus 5 (Paddle Over Disc) could be considered as a discriminatory test. would be able to point out the differences in the dissolution rate of capsaicin at different rotation speed.

Keywords: capsaicin, in vitro, patch, RP-LC, transdermal

Procedia PDF Downloads 228
269 Human Identification Using Local Roughness Patterns in Heartbeat Signal

Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori

Abstract:

Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.

Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification

Procedia PDF Downloads 405
268 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
267 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving

Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco

Abstract:

Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.

Keywords: augmented reality, driving, physiological signals, test platform

Procedia PDF Downloads 142
266 BLS-2/BSL-3 Laboratory for Diagnosis of Pathogens on the Colombia-Ecuador Border Region: A Post-COVID Commitment to Public Health

Authors: Anderson Rocha-Buelvas, Jaqueline Mena Huertas, Edith Burbano Rosero, Arsenio Hidalgo Troya, Mauricio Casas Cruz

Abstract:

COVID-19 is a disruptive pandemic for the public health and economic system of whole countries, including Colombia. Nariño Department is the southwest of the country and draws attention to being on the border with Ecuador, constantly facing demographic transition affecting infections between countries. In Nariño, the early routine diagnosis of SARS-CoV-2, which can be handled at BSL-2, has affected the transmission dynamics of COVID-19. However, new emerging and re-emerging viruses with biological flexibility classified as a Risk Group 3 agent can take advantage of epidemiological opportunities, generating the need to increase clinical diagnosis, mainly in border regions between countries. The overall objective of this project was to assure the quality of the analytical process in the diagnosis of high biological risk pathogens in Nariño by building a laboratory that includes biosafety level (BSL)-2 and (BSL)-3 containment zones. The delimitation of zones was carried out according to the Verification Tool of the National Health Institute of Colombia and following the standard requirements for the competence of testing and calibration laboratories of the International Organization for Standardization. This is achieved by harmonization of methods and equipment for effective and durable diagnostics of the large-scale spread of highly pathogenic microorganisms, employing negative-pressure containment systems and UV Systems in accordance with a finely controlled electrical system and PCR systems as new diagnostic tools. That increases laboratory capacity. Protection in BSL-3 zones will separate the handling of potentially infectious aerosols within the laboratory from the community and the environment. It will also allow the handling and inactivation of samples with suspected pathogens and the extraction of molecular material from them, allowing research with pathogens with high risks, such as SARS-CoV-2, Influenza, and syncytial virus, and malaria, among others. The diagnosis of these pathogens will be articulated across the spectrum of basic, applied, and translational research that could receive about 60 daily samples. It is expected that this project will be articulated with the health policies of neighboring countries to increase research capacity.

Keywords: medical laboratory science, SARS-CoV-2, public health surveillance, Colombia

Procedia PDF Downloads 92
265 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective

Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada

Abstract:

The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.

Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond

Procedia PDF Downloads 288
264 Characterization of Volatiles Botrytis cinerea in Blueberry Using Solid Phase Micro Extraction, Gas Chromatography Mass Spectrometry

Authors: Ahmed Auda, Manjree Agarwala, Giles Hardya, Yonglin Rena

Abstract:

Botrytis cinerea is a major pest for many plants. It can attack a wide range of plant parts. It can attack buds, flowers, and leaves, stems, and fruit. However, B. cinerea can be mixed with other diseases that cause the same damage. There are many species of botrytis and more than one different strains of each. Botrytis might infect the foliage of nursery stock stored through winter in damp conditions. There are no known resistant plants. Botrytis must have nutrients or food source before it infests the plant. Nutrients leaking from wounded plant parts or dying tissue like old flower petals give the required nutrients. From this food, the fungus becomes more attackers and invades healthy tissue. Dark to light brown rot forms in the ill tissue. High humidity conditions support the growth of this fungus. However, we suppose that selection pressure can act on the morphological and neurophysiologic filter properties of the receiver and on both the biochemical and the physiological regulation of the signal. Communication is implied when signal and receiver evolves toward more and more specific matching, culminating. In other hand, receivers respond to portions of a body odor bouquet which is released to the environment not as an (intentional) signal but as an unavoidable consequence of metabolic activity or tissue damage. Each year Botrytis species can cause considerable economic losses to plant crops. Even with the application of strict quarantine and control measures, these fungi can still find their way into crops and cause the imposition of onerous restrictions on exports. Blueberry fruit mould caused by a fungal infection usually results in major losses during post-harvest storage. Therefore, the management of infection in early stages of disease development is necessary to minimize losses. The overall purpose of this study will develop sensitive, cheap, quick and robust diagnostic techniques for the detection of B. cinerea in blueberry. The specific aim was designed to investigate the performance of volatile organic compounds (VOCs) in the detection and discrimination of blueberry fruits infected by fungal pathogens with an emphasis on Botrytis in the early storage stage of post-harvest.

Keywords: botrytis cinerea, blueberry, GC/MS, VOCs

Procedia PDF Downloads 244
263 Sustainability Assessment Tool for the Selection of Optimal Site Remediation Technologies for Contaminated Gasoline Sites

Authors: Connor Dunlop, Bassim Abbassi, Richard G. Zytner

Abstract:

Life cycle assessment (LCA) is a powerful tool established by the International Organization for Standardization (ISO) that can be used to assess the environmental impacts of a product or process from cradle to grave. Many studies utilize the LCA methodology within the site remediation field to compare various decontamination methods, including bioremediation, soil vapor extraction or excavation, and off-site disposal. However, with the authors' best knowledge, limited information is available in the literature on a sustainability tool that could be used to help with the selection of the optimal remediation technology. This tool, based on the LCA methodology, would consider site conditions like environmental, economic, and social impacts. Accordingly, this project was undertaken to develop a tool to assist with the selection of optimal sustainable technology. Developing a proper tool requires a large amount of data. As such, data was collected from previous LCA studies looking at site remediation technologies. This step identified knowledge gaps or limitations within project data. Next, utilizing the data obtained from the literature review and other organizations, an extensive LCA study is being completed following the ISO 14040 requirements. Initial technologies being compared include bioremediation, excavation with off-site disposal, and a no-remediation option for a generic gasoline-contaminated site. To complete the LCA study, the modelling software SimaPro is being utilized. A sensitivity analysis of the LCA results will also be incorporated to evaluate the impact on the overall results. Finally, the economic and social impacts associated with each option will then be reviewed to understand how they fluctuate at different sites. All the results will then be summarized, and an interactive tool using Excel will be developed to help select the best sustainable site remediation technology. Preliminary LCA results show improved sustainability for the decontamination of a gasoline-contaminated site for each technology compared to the no-remediation option. Sensitivity analyses are now being completed on on-site parameters to determine how the environmental impacts fluctuate at other contaminated gasoline locations as the parameters vary, including soil type and transportation distances. Additionally, the social improvements and overall economic costs associated with each technology are being reviewed. Utilizing these results, the sustainability tool created to assist in the selection of the overall best option will be refined.

Keywords: life cycle assessment, site remediation, sustainability tool, contaminated sites

Procedia PDF Downloads 59
262 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 69