Search results for: microelectronics waste pieces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3020

Search results for: microelectronics waste pieces

1250 Floods Hazards and Emergency Respond in Negara Brunei Darussalam

Authors: Hj Mohd Sidek bin Hj Mohd Yusof

Abstract:

More than 1.5 billion people around the world are adversely affected by floods. Floods account for about a third of all natural catastrophes, cause more than half of all fatalities and are responsible for a third of overall economic loss around the world. Giving advanced warning of impending disasters can reduce or even avoid the number of deaths, social and economic hardships that are so commonly reported after the event. Integrated catchment management recognizes that it is not practical or viable to provide structural measures that will keep floodwater away from the community and their property. Non-structural measures are therefore required to assist the community to cope when flooding occurs which exceeds the capacity of the structural measures. Non-structural measures may need to be used to influence the way land is used or buildings are constructed, or they may be used to improve the community’s preparedness and response to flooding. The development and implementation of non-structural measures may be guided and encouraged by policy and legislation, or through voluntary action by the community based on knowledge gained from public education programs. There is a range of non-structural measures that can be used for flood hazard mitigation which can be the use measures includes policies and rules applied by government to regulate the kinds of activities that are carried out in various flood-prone areas, including minimum floor levels and the type of development approved. Voluntary actions taken by the authorities and by the community living and working on the flood plain to lessen flooding effects on themselves and their properties including monitoring land use changes, monitoring and investigating the effects of bush / forest clearing in the catchment and providing relevant flood related information to the community. Response modification measures may include: flood warning system, flood education, community awareness and readiness, evacuation arrangements and recovery plan. A Civil Defense Emergency Management needs to be established for Brunei Darussalam in order to plan, co-ordinate and undertake flood emergency management. This responsibility may be taken by the Ministry of Home Affairs, Brunei Darussalam who is already responsible for Fire Fighting and Rescue services. Several pieces of legislation and planning instruments are in place to assist flood management, particularly: flood warning system, flood education Community awareness and readiness, evacuation arrangements and recovery plan.

Keywords: RTB, radio television brunei, DDMC, district disaster management center, FIR, flood incidence report, PWD, public works department

Procedia PDF Downloads 258
1249 Exploring the Link between Hoarding Disorder and Trauma: A Scoping Review

Authors: Murray Anderson, Galina Freed, Karli Jahn

Abstract:

Trauma is increasingly recognized as an important construct that has health implications for those who struggle with various mental health issues. For those individuals who meet the criteria for a diagnosis of hoarding disorder (HD), many have experienced some form of trauma. Further, some of the therapeutic interventions for those with HD can further perpetuate or magnify the experience of trauma. Therefore, the aim of this scoping review is to identify and document the nature and extent of research evidence related to trauma as it connects with HD. This review was guided by the questions, ‘How can our understanding of the trauma cycle help us to better appreciate the experiences of individuals who hoard, and how will a trauma informed lens inform the interventions for hoarding disorder? A comprehensive literature search was performed to identify original studies that contained the words “hoarding” and “trauma.” PsychINFO”,''EBSCO host,” “CINAHL” and “PubMed” were searched between January 2005 and April 2021. Articles were screened by three reviewers. Data extracted included publication date, demographics, study design, type of analysis, and noted connections between hoarding and trauma. Of the 329 articles, all duplicates, articles on hoardings of animals, articles not in English, and those without full-text availability were removed. Five categories were found in the remaining 45 articles, including (a) traumatic and stressful life events; (b) the link between posttraumatic stress disorder, trauma, and hoarding; (c) the relationships between different comorbidities, trauma, and hoarding; (d) the lack of early emotional expression and other forms of parental deprivation; and (e) the role of attachment. Lastly, the literature explains how the links between hoarding and trauma are difficult to study due to the highly stigmatized identities with this population. The review provided strong support for the connections between the experience of trauma and HD. What is missing from the literature is the use of a trauma-informed lens to better account for the ways in which hoarding disorder is understood. Other missing pieces in the literature are the potential uses of a trauma-informed lens to enhance the therapeutic process, to understand and reduce treatment attrition, and to improve treatment outcomes. The application of a trauma informed lens could improve our understanding of effective interactions among clients, families, and communities and improve the education around hoarding-related matters. Exploring the connections between trauma and HD can improve therapeutic delivery and destigmatize the experience of dealing with clutter and hoarding concerns. This awareness can also provide health care professionals with both the language and skills to liberate them from a reductionist view on HD.

Keywords: hoarding, attachment, parental deprivation, trauma

Procedia PDF Downloads 125
1248 Low-Temperature Catalytic Incineration of Acetone over MnCeOx Catalysts Supported on Mesoporous Aluminosilicate: The Mn-Ce Bimetallic Effect

Authors: Liang-Yi Lin, Hsunling Bai

Abstract:

In this work, transition metal (metal= Co, Fe, Ni, Cu, and Mn) modified cerium oxide catalysts supported on mesoporous aluminosilicate particles (Ce/Al-MSPs) were prepared using waste silicate as the precursors through aerosol-assisted flow process, and their catalytic performances were investigated for acetone incineration. Tests on the bimetallic Ce/Al-MSPs and Mn/Al-MSPs and trimetallic Mn-Ce, Fe-Ce, Co-Ce, Ni-Ce, and Cu-Ce/Al-MSPs in the temperature range of 100-300 oC demonstrated that Ce was the main active metal while Mn acted as a suitable promoter in acetone incineration reactions. Among tested catalysts, Mn-Ce/Al-MSPs with a Mn/Ce molar ratio of 2/1 exhibited the highest acetone catalytic activity. Moreover, the synergetic effect was observed for trimetallic Mn-Ce/Al-MSPs on the acetone removal as compared to the bimetallic Ce/Al-MSPs or Mn/Al-MSPs catalysts.

Keywords: acetone, catalytic oxidation, cerium oxide, mesoporous silica

Procedia PDF Downloads 433
1247 Passing-On Cultural Heritage Knowledge: Entrepreneurial Approaches for a Higher Educational Sustainability

Authors: Ioana Simina Frincu

Abstract:

As institutional initiatives often fail to provide good practices when it comes to heritage management or to adapt to the changing environment in which they function and to the audiences they address, private actions represent viable strategies for sustainable knowledge acquisition. Information dissemination to future generations is one of the key aspects in preserving cultural heritage and is successfully feasible even in the absence of original artifacts. Combined with the (re)discovery of natural landscape, open-air exploratory approaches (archeoparks) versus an enclosed monodisciplinary rigid framework (traditional museums) are more likely to 'speak the language' of a larger number of people, belonging to a variety of categories, ages, and professions. Interactive sites are efficient ways of stimulating heritage awareness and increasing the number of visitors of non-interactive/static cultural institutions owning original pieces of history, delivering specialized information, and making continuous efforts to preserve historical evidence (relics, manuscripts, etc.). It is high time entrepreneurs took over the role of promoting cultural heritage, bet it under a more commercial yet more attractive form (business). Inclusive, participatory type of activities conceived by experts from different domains/fields (history, anthropology, tourism, sociology, business management, integrative sustainability, etc.) have better chances to ensure long term cultural benefits for both adults and children, especially when and where the educational discourse fails. These unique self-experience leisure activities, which offer everyone the opportunity to recreate history by him-/her-self, to relive the ancestors’ way of living, surviving and exploring should be regarded not as pseudo-scientific approaches but as important pre-steps to museum experiences. In order to support this theory, focus will be laid on two different examples: one dynamic, in the outdoors (the Boario Terme Archeopark from Italy) and one experimental, held indoor (the reconstruction of the Neolithic sanctuary of Parta, Romania as part of a transdisciplinary academic course) and their impact on young generations. The conclusion of this study shows that the increasingly lower engagement of youth (students) in discovering and understanding history, archaeology, and heritage can be revived by entrepreneurial projects.

Keywords: archeopark, educational tourism, open air museum, Parta sanctuary, prehistory

Procedia PDF Downloads 140
1246 21st Century Business Dynamics: Acting Local and Thinking Global through Extensive Business Reporting Language (XBRL)

Authors: Samuel Faboyede, Obiamaka Nwobu, Samuel Fakile, Dickson Mukoro

Abstract:

In the present dynamic business environment of corporate governance and regulations, financial reporting is an inevitable and extremely significant process for every business enterprise. Several financial elements such as Annual Reports, Quarterly Reports, ad-hoc filing, and other statutory/regulatory reports provide vital information to the investors and regulators, and establish trust and rapport between the internal and external stakeholders of an organization. Investors today are very demanding, and emphasize greatly on authenticity, accuracy, and reliability of financial data. For many companies, the Internet plays a key role in communicating business information, internally to management and externally to stakeholders. Despite high prominence being attached to external reporting, it is disconnected in most companies, who generate their external financial documents manually, resulting in high degree of errors and prolonged cycle times. Chief Executive Officers and Chief Financial Officers are increasingly susceptible to endorsing error-laden reports, late filing of reports, and non-compliance with regulatory acts. There is a lack of common platform to manage the sensitive information – internally and externally – in financial reports. The Internet financial reporting language known as eXtensible Business Reporting Language (XBRL) continues to develop in the face of challenges and has now reached the point where much of its promised benefits are available. This paper looks at the emergence of this revolutionary twenty-first century language of digital reporting. It posits that today, the world is on the brink of an Internet revolution that will redefine the ‘business reporting’ paradigm. The new Internet technology, eXtensible Business Reporting Language (XBRL), is already being deployed and used across the world. It finds that XBRL is an eXtensible Markup Language (XML) based information format that places self-describing tags around discrete pieces of business information. Once tags are assigned, it is possible to extract only desired information, rather than having to download or print an entire document. XBRL is platform-independent and it will work on any current or recent-year operating system, or any computer and interface with virtually any software. The paper concludes that corporate stakeholders and the government cannot afford to ignore the XBRL. It therefore recommends that all must act locally and think globally now via the adoption of XBRL that is changing the face of worldwide business reporting.

Keywords: XBRL, financial reporting, internet, internal and external reports

Procedia PDF Downloads 288
1245 A Study on Bonding Strength, Waterproofing and Flexibility of Environment Friendly, and Cost Effective Cementitious Grout Mixture for Tile Joints

Authors: Gowthamraj Vungarala

Abstract:

This paper presents the experimental investigation on the bond strength, waterproofing abilities and flexibility of tile joint when Ordinary Portland Cement (OPC) or White Portland Cement (WPC) CEM II A-LL 42.5N and porcelain powder graded between 200 microns and 75 microns is mixed with vinyl acetate monomer (VAM), hydroxypropyl methyl cellulose ether, ethylene co-polymer rubber powder and Styrene butyl rubber (SBR). Use of porcelain powder which is tough to decompose as a form of industrial refuse which helps environmental safety and waste usage.

Keywords: styrene butane rubber, hydroxypropyl methyl cellulose ether, vinyl acetate monomer, polymer modified cement, polyethylene, porcelain powder

Procedia PDF Downloads 97
1244 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
1243 Bacteria Removal from Wastewater by Electrocoagulation Process

Authors: Boudjema Nouara, Mameri Nabil

Abstract:

Bacteria have played an important role in water contamination as a consequence of organic pollution. In this study, an electrocoagulation process was adopted to remove fecal contamination and pathogenic bacteria from waste water. The effect of anode/cathodes materials as well as operating conditions for bacteria removal from water, such as current intensity and initial pH and temperature. The results indicated that the complete removal was achevied when using aluminium anode as anode at current intensity of 3A, initial pH of 7-8 and electrolysis time of 30 minutes. This process showed a bactericidal effect of 95 to 99% for the total and fecal coliforms and 99% to 100% for Eschercichia coli and fecal Streptococci. A decrease of 72% was recorded for sulphite-reducing Clostridia. Thus, this process has the potential to be one the options for treatment where high amount of bacteria in wastewater river.

Keywords: bacteria, el Harrach river, electrocoagulation, wastewater, treatment

Procedia PDF Downloads 497
1242 Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization

Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia

Abstract:

Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm.

Keywords: low-cost adsorbents, fig leaves, full factorial design, phenol, biosorption

Procedia PDF Downloads 99
1241 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 279
1240 Dynamic Simulation of Disintegration of Wood Chips Caused by Impact and Collisions during the Steam Explosion Pre-Treatment

Authors: Muhammad Muzamal, Anders Rasmuson

Abstract:

Wood material is extensively considered as a raw material for the production of bio-polymers, bio-fuels and value-added chemicals. However, the shortcoming in using wood as raw material is that the enzymatic hydrolysis of wood material is difficult because the accessibility of enzymes to hemicelluloses and cellulose is hindered by complex chemical and physical structure of the wood. The steam explosion (SE) pre-treatment improves the digestion of wood material by creating both chemical and physical modifications in wood. In this process, first, wood chips are treated with steam at high pressure and temperature for a certain time in a steam treatment vessel. During this time, the chemical linkages between lignin and polysaccharides are cleaved and stiffness of material decreases. Then the steam discharge valve is rapidly opened and the steam and wood chips exit the vessel at very high speed. These fast moving wood chips collide with each other and with walls of the equipment and disintegrate to small pieces. More damaged and disintegrated wood have larger surface area and increased accessibility to hemicelluloses and cellulose. The energy required for an increase in specific surface area by same value is 70 % more in conventional mechanical technique, i.e. attrition mill as compared to steam explosion process. The mechanism of wood disintegration during the SE pre-treatment is very little studied. In this study, we have simulated collision and impact of wood chips (dimension 20 mm x 20 mm x 4 mm) with each other and with walls of the vessel. The wood chips are simulated as a 3D orthotropic material. Damage and fracture in the wood material have been modelled using 3D Hashin’s damage model. This has been accomplished by developing a user-defined subroutine and implementing it in the FE software ABAQUS. The elastic and strength properties used for simulation are of spruce wood at 12% and 30 % moisture content and at 20 and 160 OC because the impacted wood chips are pre-treated with steam at high temperature and pressure. We have simulated several cases to study the effects of elastic and strength properties of wood, velocity of moving chip and orientation of wood chip at the time of impact on the damage in the wood chips. The disintegration patterns captured by simulations are very similar to those observed in experimentally obtained steam exploded wood. Simulation results show that the wood chips moving with higher velocity disintegrate more. Moisture contents and temperature decreases elastic properties and increases damage. Impact and collision in specific directions cause easy disintegration. This model can be used to efficiently design the steam explosion equipment.

Keywords: dynamic simulation, disintegration of wood, impact, steam explosion pretreatment

Procedia PDF Downloads 401
1239 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore

Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska

Abstract:

— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.

Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis

Procedia PDF Downloads 30
1238 National Project 'Environment' of Russian Federation as a Management Tool in Achieving SDGs

Authors: Ekaterina Posokhova, Boris Gavrilov

Abstract:

Priority national projects have become an essential phenomenon in the Russian Federation. Both regional and local government institutions and a significant part of the society have been involved in their implementation. The scale and multispectricity of the national projects give a reason to believe that their concept is beyond the scope of the individual state programs. The national project “environment” contains federal projects on waste management, water, and air quality, ecotourism development, and biodiversity conservation highlights the importance of the preservation and restoration of Volga River and Lake Baikal ecosystems. This study assesses the national projects according to their relativeness with the current SDGs (i.e., SGD 14 and 15), evaluates the methodology of the projects. The paper considers the peculiarities of the national projects as strategic management tools as well as the possibility of amending the project objective indicators. Conclusion on the effectiveness of NP in terms of achieving SDGs is provided.

Keywords: management, SDP, russia, conservation, law

Procedia PDF Downloads 144
1237 A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward

Authors: Kyungeun Sung

Abstract:

Upcycling is a process in which used materials are converted into something of higher value and/or quality in their second life. It has been increasingly recognised as one promising means to reduce material and energy use and also to engender sustainable production and consumption. For this reason and other foreseeable benefits, the concept of upcycling has received more attention from numerous researchers and business practitioners in recent years. This has been seen in the growing number of publications on this topic since the 1990s. However, the overall volume of literature dealing with upcycling is still low and no major review has been presented. Therefore, in order to further establish this field, this paper analyses and summarises the current body of literature on upcycling, focusing on different definitions, trends in practices, benefits, drawbacks and barriers in a number of subject areas and gives suggestions for future research by illuminating knowledge gaps in the area of upcycling.

Keywords: circular economy, cradle to cradle, sustainable production and consumption, upcycling, waste management

Procedia PDF Downloads 421
1236 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 63
1235 Small Scale Batch Anaerobic Digestion of Rice Straw

Authors: V. H. Nguyen, A. Castalone, C. Jamieson, M. Gummert

Abstract:

Rice straw is an abundant biomass resource in Asian countries that can be used for bioenergy. In continuously flooded rice fields, it can be removed without reducing the levels of soil organic matter. One suitable bioenergy technology is anaerobic digestion (AD), but it needs to be further verified using rice straw as a feedstock. For this study, a batch AD system was developed using rice straw and cow dung. It is low cost, farm scale, with the batch capacity ranging from 5 kg to 200 kg of straw mixed with 10% of cow dung. The net energy balance obtained was from 3000 to 4000 MJ per ton of straw input at 15-18% moisture content. Net output energy obtained from biogas and digestate ranged from 4000 to 5000 MJ per ton of straw. This indicates AD as a potential solution for converting rice straw from a waste to a clean fuel, reducing the environmental footprint caused by current disposal practices.

Keywords: rice straw, anaerobic digestion, biogas, bioenergy

Procedia PDF Downloads 353
1234 Improvement Perturb and Observe for a Fast Response MPPT Applied to Photovoltaic Panel

Authors: Labar Hocine, Kelaiaia Mounia Samira, Mesbah Tarek, Kelaiaia Samia

Abstract:

Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point(MPP) which depends on panels temperature and on irradiance conditions. The main drawback of P&O is that, the operating point oscillates around the MPP giving rise to the waste of some amount of available energy; moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper, it is shown that in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such initial set parameters is also carried out. The fast convergence of the proposal is proven.

Keywords: P&O, Taylor’s series, MPPT, photovoltaic panel

Procedia PDF Downloads 587
1233 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 239
1232 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes

Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng

Abstract:

The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.

Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium

Procedia PDF Downloads 352
1231 Production of Biodiesel Using Brine Waste as a Heterogeneous Catalyst

Authors: Hilary Rutto, Linda Sibali

Abstract:

In these modern times, we constantly search for new and innovative technologies to lift the burden of our extreme energy demand. The overall purpose of biofuel production research is to source an alternative energy source to replace the normal use of fossil fuel as liquid petroleum products. This experiment looks at the basis of biodiesel production with regards to alternative catalysts that can be used to produce biodiesel. The key factors that will be addressed during the experiments will focus on temperature variation, catalyst additions to the overall reaction, methanol to oil ratio, and the impact of agitation on the reaction. Brine samples sources from nearby plants will be evaluated and tested thoroughly and the key characteristics of these brine samples analysed for the verification of its use as a possible catalyst in biodiesel production. The one factor at a time experimental approach was used in this experiment, and the recycle and reuse characteristics of the heterogeneous catalyst was evaluated.

Keywords: brine sludge, heterogenous catalyst, biodiesel, one factor

Procedia PDF Downloads 172
1230 An Integrated Framework for Engaging Stakeholders in the Circular Economy Processes Using Building Information Modeling and Virtual Reality

Authors: Erisasadat Sahebzamani, Núria Forcada, Francisco Lendinez

Abstract:

Global climate change has become increasingly problematic over the past few decades. The construction industry has contributed to greenhouse gas emissions in recent decades. Considering these issues and the high demand for materials in the construction industry, Circular Economy (CE) is considered necessary to keep materials in the loop and extend their useful lives. By providing tangible benefits, Construction 4.0 facilitates the adoption of CE by reducing waste, updating standard work, sharing knowledge, and increasing transparency and stability. This study aims to present a framework for integrating CE and digital tools like Building Information Modeling (BIM) and Virtual Reality (VR) to examine the impact on the construction industry based on stakeholders' perspectives.

Keywords: circular economy, building information modeling, virtual reality, stakeholder engagement

Procedia PDF Downloads 111
1229 Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues

Authors: Sánchez Acuña, Juan Camilo, Granados Gómez, Mildred Magaly, Navarrete Rodríguez, Luisa Fernanda

Abstract:

Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.

Keywords: bioethanol, biofuels, banana waste, hydrolysis

Procedia PDF Downloads 428
1228 Application of Industrial Ecology to the INSPIRA Zone: Territory Planification and New Activities

Authors: Mary Hanhoun, Jilla Bamarni, Anne-Sophie Bougard

Abstract:

INSPIR’ECO is a 18-month research and innovation project that aims to specify and develop a tool to offer new services for industrials and territorial planners/managers based on Industrial Ecology Principles. This project is carried out on the territory of Salaise Sablons and the services are designed to be deployed on other territories. Salaise-Sablons area is located in the limit of 5 departments on a major European economic axis multimodal traffic (river, rail and road). The perimeter of 330 ha includes 90 hectares occupied by 20 companies, with a total of 900 jobs, and represents a significant potential basin of development. The project involves five multi-disciplinary partners (Syndicat Mixte INSPIRA, ENGIE, IDEEL, IDEAs Laboratory and TREDI). INSPIR’ECO project is based on the principles that local stakeholders need services to pool, share their activities/equipment/purchases/materials. These services aims to : 1. initiate and promote exchanges between existing companies and 2. identify synergies between pre-existing industries and future companies that could be implemented in INSPIRA. These eco-industrial synergies can be related to: the recovery / exchange of industrial flows (industrial wastewater, waste, by-products, etc.); the pooling of business services (collective waste management, stormwater collection and reuse, transport, etc.); the sharing of equipments (boiler, steam production, wastewater treatment unit, etc.) or resources (splitting jobs cost, etc.); and the creation of new activities (interface activities necessary for by-product recovery, development of products or services from a newly identified resource, etc.). These services are based on IT tool used by the interested local stakeholders that intends to allow local stakeholders to take decisions. Thus, this IT tool: - include an economic and environmental assessment of each implantation or pooling/sharing scenarios for existing or further industries; - is meant for industrial and territorial manager/planners - is designed to be used for each new industrial project. - The specification of the IT tool is made through an agile process all along INSPIR’ECO project fed with: - Users expectations thanks to workshop sessions where mock-up interfaces are displayed; - Data availability based on local and industrial data inventory. These input allow to specify the tool not only with technical and methodological constraints (notably the ones from economic and environmental assessments) but also with data availability and users expectations. A feedback on innovative resource management initiatives in port areas has been realized in the beginning of the project to feed the designing services step.

Keywords: development opportunities, INSPIR’ECO, INSPIRA, industrial ecology, planification, synergy identification

Procedia PDF Downloads 165
1227 Biodegradable Elastic Polymers Are Used to Create Stretchable Piezoresistive Strain Sensors

Authors: Mostafa Vahdani, Mohsen Asadnia, Shuying Wu

Abstract:

Huge amounts of e-waste are being produced by the rapidly expanding use of electronics; the majority of this material is either burned or dumped directly in landfills since recycling would either be impracticable or too expensive. Degradable and environmentally friendly materials are therefore seen as the answer to this urgent problem. Here, we create strain sensors that are biodegradable, robust, and incredibly flexible using thin films of sodium carboxymethyl cellulose (NaCMC), glycerol, and polyvinyl alcohol (PVA). Due to the creation of many inter- or intramolecular hydrogen bonds, the polymer blends (NaCMC/PVA/glycerol) exhibit a failure strain of up to 330% and negligible hysteresis when exposed to cyclic stretching-releasing. What's more intriguing is that the sensors can degrade completely in deionized water at a temperature of 95 °C in about 25 minutes. This project illustrates a novel method for developing wearable electronics that are environmentally beneficial.

Keywords: degradable, stretchable, strain sensors, wearable electronics.

Procedia PDF Downloads 116
1226 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: ceramic membrane, edible oil, microfiltration, wastewater

Procedia PDF Downloads 300
1225 Towards an Environmental Knowledge System in Water Management

Authors: Mareike Dornhoefer, Madjid Fathi

Abstract:

Water supply and water quality are key problems of mankind at the moment and - due to increasing population - in the future. Management disciplines like water, environment and quality management therefore need to closely interact, to establish a high level of water quality and to guarantee water supply in all parts of the world. Groundwater remediation is one aspect in this process. From a knowledge management perspective it is only possible to solve complex ecological or environmental problems if different factors, expert knowledge of various stakeholders and formal regulations regarding water, waste or chemical management are interconnected in form of a knowledge base. In general knowledge management focuses the processes of gathering and representing existing and new knowledge in a way, which allows for inference or deduction of knowledge for e.g. a situation where a problem solution or decision support are required. A knowledge base is no sole data repository, but a key element in a knowledge based system, thus providing or allowing for inference mechanisms to deduct further knowledge from existing facts. In consequence this knowledge provides decision support. The given paper introduces an environmental knowledge system in water management. The proposed environmental knowledge system is part of a research concept called Green Knowledge Management. It applies semantic technologies or concepts such as ontology or linked open data to interconnect different data and information sources about environmental aspects, in this case, water quality, as well as background material enriching an established knowledge base. Examples for the aforementioned ecological or environmental factors threatening water quality are among others industrial pollution (e.g. leakage of chemicals), environmental changes (e.g. rise in temperature) or floods, where all kinds of waste are merged and transferred into natural water environments. Water quality is usually determined with the help of measuring different indicators (e.g. chemical or biological), which are gathered with the help of laboratory testing, continuous monitoring equipment or other measuring processes. During all of these processes data are gathered and stored in different databases. Meanwhile the knowledge base needs to be established through interconnecting data of these different data sources and enriching its semantics. Experts may add their knowledge or experiences of previous incidents or influencing factors. In consequence querying or inference mechanisms are applied for the deduction of coherence between indicators, predictive developments or environmental threats. Relevant processes or steps of action may be modeled in form of a rule based approach. Overall the environmental knowledge system supports the interconnection of information and adding semantics to create environmental knowledge about water environment, supply chain as well as quality. The proposed concept itself is a holistic approach, which links to associated disciplines like environmental and quality management. Quality indicators and quality management steps need to be considered e.g. for the process and inference layers of the environmental knowledge system, thus integrating the aforementioned management disciplines in one water management application.

Keywords: water quality, environmental knowledge system, green knowledge management, semantic technologies, quality management

Procedia PDF Downloads 221
1224 Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell

Authors: Pratthana Ammaraphitak, Piyachon Ketsuwan, Rattapoom Prommana

Abstract:

Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste.

Keywords: vermicompost liquid, microbial fuel cell, nutrient, electricity production

Procedia PDF Downloads 180
1223 Development of Model for Effective Sub- District Municipality Wastewater Management

Authors: Vitool Suksankavanich

Abstract:

This preliminary research aimed to explore the development of wastewater management of Bang Pu Sub- District Municipality, Samutprakan Province, in order to establish appropriate model for effective wastewater management that fit to the context of the area. The research posed three questions: [i] to what extent the promotion of social responsibility awareness built among the local community resulted in effectiveness of the local wastewater management; [ii] did the waste disposal management of Bang Pu Industrial Estate contribute to the overall environmental quality of Bang Pu Sub- District Municipality; and [iii] did the relationship between the community and the industrial factories have any effect on the wastewater management. The in- depth interview revealed main obstacles occurred in the process of wastewater management in the area. The fieldwork also contributed to a product of an appropriate model of effective wastewater management.

Keywords: legitimacy theory, stakeholder theory, social responsibility, wastewater management

Procedia PDF Downloads 415
1222 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 163
1221 Exploring the Viability of Biogas Energy Potential in South Africa

Authors: Solomon Eghosa Uhunamure, Karabo Shale

Abstract:

Biogas technology has emerged as a promising solution for sustainable development, enhancing energy security while mitigating environmental hazards. Interest in biogas for household energy is growing due to its potential to address both energy and waste management challenges. To ensure biogas production contributes meaningfully to South Africa's future energy landscape, understanding public perceptions is essential for shaping effective policy measures. A household survey revealed that lower awareness of biogas correlates with reduced social and cultural acceptance, however, after providing basic information—such as a definition, a diagram, or one of two simple messages—support for biogas increased by 10% to 15% compared to the baseline. These findings highlight the critical role of awareness in building support for biogas as a key component of South Africa's decarbonization strategy.

Keywords: awareness, barriers, biogas, environmental benefits, South Africa

Procedia PDF Downloads 35