Search results for: metal free fluorinated phthalocyanine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5787

Search results for: metal free fluorinated phthalocyanine

4017 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability

Procedia PDF Downloads 238
4016 Infrared Spectroscopy Fingerprinting of Herbal Products- Application of the Hypericum perforatum L. Supplements

Authors: Elena Iacob, Marie-Louise Ionescu, Elena Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Infrared spectroscopy (FT-IR) is an advanced technique frequently used to authenticate both raw materials and final products using their specific fingerprints and to determine plant extracts biomarkers based on their functional groups. In recent years the market for Hypericum has grown rapidly and also has grown the cases of adultery/replacement, especially for Hypericum perforatum L.specie. Presence/absence of same biomarkers provides preliminary identification of Hypericum species in safe use in the manufacture of food supplements. The main objective of the work was to characterize the main biomarkers of Hypericum perforatum L. (St. John's wort) and identify this species in herbal food supplements after specific FT-IR fingerprint. An experimental program has been designed in order to test: (1) raw material (St. John's wort); (2)intermediate raw materials (St. John's wort dry extract ); (3) the finished products: tablets based on powders, on extracts, on powder and extract, hydroalcoholic solution from herbal mixture based on St. John's wort. The analyze using FTIR infrared spectroscopy were obtained raw materials, intermediates and finished products spectra, respectively absorption bands corresponding and similar with aliphatic and aromatic structures; examination was done individually and through comparison between Hypericum perforatum L. plant species and finished product The tests were done in correlation with phytochemical markers for authenticating the specie Hypericum perforatum L.: hyperoside, rutin, quercetin, isoquercetin, luteolin, apigenin, hypericin, hyperforin, chlorogenic acid. Samples were analyzed using a Shimatzu FTIR spectrometer and the infrared spectrum of each sample was recorded in the MIR region, from 4000 to 1000 cm-1 and then the fingerprint region was selected for data analysis. The following functional groups were identified -stretching vibrations suggests existing groups in the compounds of interest (flavones–rutin, hyperoside, polyphenolcarboxilic acids - chlorogenic acid, naphtodianthrones- hypericin): oxidril groups (OH) free alcohol type: rutin, hyperoside, chlorogenic acid; C = O bond from structures with free carbonyl groups of aldehyde, ketone, carboxylic, ester: hypericin; C = O structure with the free carbonyl of the aldehyde groups, ketone, carboxylic acid, esteric/C = O free bonds present in chlorogenic acid; C = C bonds of the aromatic ring (condensed aromatic hydrocarbons, heterocyclic compounds) present in all compounds of interest; OH phenolic groups: present in all compounds of interest, C-O-C groups from glycoside structures: rutin, hyperoside, chlorogenic acid. The experimental results show that: (I)The six fingerprint region analysis indicated the presence of specific functional groups: (1) 1000 - 1130 cm-1 (C-O–C of glycoside structures); (2) 1200-1380 cm-1 (carbonyl C-O or O-H phenolic); (3) 1400-1450 cm-1 (C=C aromatic); (4) 1600- 1730 cm-1 (C=O carbonyl); (5) 2850 - 2930 cm-1 (–CH3, -CH2-, =CH-); (6) 338-3920 cm-1 (OH free alcohol type); (II)Comparative FT-IR spectral analysis indicate the authenticity of the finished products ( tablets) in terms of Hypericum perforatum L. content; (III)The infrared spectroscopy is an adequate technique for identification and authentication of the medicinal herbs , intermediate raw material and in the food supplements less in the form of solutions where the results are not conclusive.

Keywords: Authentication, FT-IR fingerprint, Herbal supplements, Hypericum perforatum L.

Procedia PDF Downloads 376
4015 Experimental Study on Friction Factor of Oscillating Flow Through a Regenerator

Authors: Mohamed Saïd Kahaleras, François Lanzetta, Mohamed Khan, Guillaume Layes, Philippe Nika

Abstract:

This paper presents an experimental work to characterize the dynamic operation of a metal regenerator crossed by dry compressible air alternating flow. Unsteady dynamic measurements concern the pressure, velocity and temperature of the gas at the ends and inside the channels of the regenerator. The regenerators are tested under isothermal conditions and thermal axial temperature gradient.

Keywords: friction factor, oscillating flow, regenerator, stirling machine

Procedia PDF Downloads 509
4014 Formulation and in Vitro Evaluation of Cubosomes Containing CeO₂ Nanoparticles Loaded with Glatiramer Acetate Drug

Authors: Akbar Esmaeili, Zahra Salarieh

Abstract:

Cerium oxide nanoparticles (nano-series) are used as catalysts in industrial applications due to their free radical scavenging properties. Given that free radicals play an essential role in the pathology of many neurological diseases, we investigated the use of nanocrystals as a potential therapeutic agent for oxidative damage. This project synthesized nano-series from a new and environmentally friendly bio-pathway. Investigation of cerium nitrate in culture medium containing inoculated Lactobacillus acidophilus strain before incubation produces nano-series. Loaded with glatiramer acetate (GA) was formed by coating carboxymethylcellulose (CMC) and CeO2. FE-SEM analysis showed nano-series in the 9-11 nm range, spherical shape, and uniform particle size distribution. Cubic nanoparticles containing anti-multiple sclerosis (anti-Ms) treatment called GA were used. Glycerol monostearate (GMS) was used as a fat base, and evening primrose extract was used as an anti-inflammatory in cubosomes. Design-Expert® software was used to study the effects of different formulation factors on the properties of GAloaded cubic dispersions. Thirty GA-labeled cubic dispersions were prepared with GA-labeled carboxymethylcellulose and evaluated in vitro. The results showed an average nano-series size of 89.02 and a zeta potential of -49.9. Cubosomes containing GA-CMC/CeO2 showed a stable release profile for 180 min. The results showed that cubosomes containing GA-CMC/CeO2 could be a promising drug carrier with normal release behavior.

Keywords: ciochemistry, biotechnology, molecular, biology

Procedia PDF Downloads 52
4013 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index

Procedia PDF Downloads 618
4012 Multifunctional Plasmonic Ag-TiO2 Nano-biocompoistes: Surface Enhanced Raman Scattering and Anti-microbial Properties

Authors: Jai Prakash, Promod Kumar, Chantel Swart, J. H. Neethling, A. Janse van Vuuren, H. C. Swart

Abstract:

Ag nanoparticles (NPs) have been used as functional nanomaterials due to their optical and antibacterial properties. Similarly, TiO2 photocatalysts have also been used as suitable nanomaterials for killing cancer cells, viruses and bacteria. Here, we report on multifunctional plasmonic Ag-TiO2 nano-biocomposite synthesized by the sol-gel technique and their optical, surface enhanced Raman scattering (SERS) and antibacterial activities. The as-prepared composites of Ag–TiO2 with different silver content and TiO2 nanopowder were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersed X-ray analysis (EDX), UV-vis and Raman spectroscopy. The Ag NPs were found to be uniformly distributed and strongly attached to the TiO2 matrix. The novel optical response of the Ag-TiO2 nanocomposites is due to the strong electric field from the surface plasmon excitation of the Ag NPs. The Raman spectrum of Ag-TiO2 nanocomposite was found to be enhanced as compared to TiO2. The enhancement of the low frequency band is evident. This indicates the SERS effect of the TiO2 NPs in close vicinity of Ag NPs. In addition, nanocomposites showed enhancement in the SERS signals of methyl orange (MO) dye molecules with increasing Ag content. The localized electromagnetic field from the surface plasmon excitation of the Ag NPs was responsible for the SERS signals of the TiO2 NPs and MO molecules. The antimicrobial effect of the Ag–TiO2 nanocomposites with different silver content and TiO2 nanopowder were carried out against the bacterium Staphylococcus aureus. The Ag–TiO2 composites showed antibacterial activity towards S. aureus with increasing Ag content as compared to the TiO2 nanopowder. These results foresee promising applications of the functional plasmonic metal−semiconductor based nanobiocomposites for both chemical and biological samples.

Keywords: metal-Semiconductor, nano-Biocomposites, anti-microbial activity, surface enhanced Raman scattering

Procedia PDF Downloads 230
4011 Replica-Exchange Metadynamics Simulations of G-Quadruplex DNA Structures Under Substitution of K+ by Na+ Ions

Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria

Abstract:

The DNA G-quadruplex is a four-stranded DNA structure conformed by stacked planes of four base paired guanines (G-quartet). The guanine rich DNA sequences are present in many sites of genomic DNA and can potentially lead to the formation of G-quadruplexes, especially at the 3'-terminus of the human telomeric DNA with many TTAGGG repeats. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to regulate oncogene expression making the G-quadruplex an attractive target for anticancer therapy. Clearly, the G-quadruplex structured in the telomeric DNA is of fundamental importance for rational drug design. In this context, we investigate two G-quadruplex structures, the first follows from the sequence TTAGGG(TTAGGG)3TT (HUT1), and the second from AAAGGG(TTAGGG)3AA (HUT2), both in a K+ solution. We determine the free energy surfaces of the HUT1 and HUT2 structures and investigate their conformations using replica-exchange metadynamics simulations. The carbonyl-carbonyl distances belonging to different guanines residues are selected as the main collective variables to determine the free energy surfaces. The surfaces exhibit two main local minima, compatible with experiments on the conformational transformations of HUT1 and HUT2 under substitution of the K+ ions by the Na+ ions. The conformational transitions are not observed in short MD simulations without the use of the metadynamics approach. The results of this work should be of help to understand the formation and stability of human telomeric G-quadruplex in environments including the presence of K+ and Na+ ions.

Keywords: g-quadruplex, metadynamics, molecular dynamics, replica-exchange

Procedia PDF Downloads 346
4010 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation

Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad

Abstract:

Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.

Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization

Procedia PDF Downloads 249
4009 Is It Important to Measure the Volumetric Mass Density of Nanofluids?

Authors: Z. Haddad, C. Abid, O. Rahli, O. Margeat, W. Dachraoui, A. Mataoui

Abstract:

The present study aims to measure the volumetric mass density of NiPd-heptane nanofluids synthesized using a one-step method known as thermal decomposition of metal-surfactant complexes. The particle concentration is up to 7.55 g/l and the temperature range of the experiment is from 20°C to 50°C. The measured values were compared with the mixture theory and good agreement between the theoretical equation and measurement were obtained. Moreover, the available nanofluids volumetric mass density data in the literature is reviewed.

Keywords: NiPd nanoparticles, nanofluids, volumetric mass density, stability

Procedia PDF Downloads 401
4008 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 155
4007 Changes in Serum Neopterin in Workers Exposed to Different Mineral Dust

Authors: Gospodinka Prakova, Pavlina Gidikova, Gergana Sandeva, Kamelia Haracherova, Emil Slavov

Abstract:

Neopterin was demonstrated to be a sensitive marker of cell-mediated immune reactions which plays a key role in the interaction of monocyte / macrophage activation. The purpose of this work was to investigate changes in serum neopterin in workers exposed to different composition of mineral dust. Material and Methods: Serum neopterin was studied in 193 exposed workers, divided into three groups, depending on the mineral dust and content of the quartz in the respirable fraction. The I-st group-coal dust containing less than 2% free crystalline silica (n=44), II-nd group-coal dust containing over 2% free crystalline silica (n=94) and the III-rd group-mixed dust with corundum and carborundum (n=55). The control group was composed of 21 individuals without exposure to dust. Serum neopterin was investigated by Elisa method in ng/ml according to the instructions of the manufacturer. Results and Discussion: It was found significantly higher level of serum neopterin in exposed workers of mineral dust (2,10 ± 0,62 ng / ml), compared with that of the control group (1,10 ± 0,85 ng/ml; p < 0,05). Neopterin levels in workers exposed to coal dust (1,87 ± 0,42 ng / ml-I-st and 3,32 ± 0,77 ng / ml-II-nd group) were significantly higher compared with those exposed to a mixed dust (1,31±0,68 mg / ml-third) and control group (p < 0,05). No significant difference in serum neopterin when exposed to a mixed dust composed of corundum and carborundum (III-rd) and a control group. Conclusion: The results of this study indicate activates a cell-mediated immune response when exposed to a mineral dust. The level of that activation depends mainly on the composition of the dust and is significantly highest in workers exposed to coal dust.

Keywords: mineral dust, neopterin, occupational exposure, respirable crystalline silica

Procedia PDF Downloads 266
4006 Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer

Authors: You-Lin Wu, Yi-Hsing Sung, Shih-Hung Lin, Jing-Jenn Lin

Abstract:

Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure.

Keywords: ferroelectricity, hysteresis, polystyrene, resistance switching, ZnO nanorods

Procedia PDF Downloads 312
4005 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters

Authors: Jyoti Sahu, Vinay A. Juvekar

Abstract:

Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.

Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature

Procedia PDF Downloads 392
4004 The Improvement of Disease-Modifying Osteoarthritis Drugs Model Uptake and Retention within Two Cartilage Models

Authors: Polina Prokopovich

Abstract:

Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for OA, preventing or inhibiting OA development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic effects in clinical trials. The joint environment has played a role in the poor clinical performance of these drugs by limiting the amount of drug effectively delivered as well as the time that the drug spends within the joint space. The current study aims to enhance the cartilage uptake and retention time of the DMOADs-model (licofelone), which showed a significant therapeutic effect against OA progression and is currently in phase III. Licofelone will be covalently conjugated to the hydrolysable, cytocompatible, and cationic poly beta-amino ester polymers (PBAE). The cationic polymers (A16 and A87) can be electrostatically attached to the negatively charged cartilage component (glycosaminoglycan), which will increase the drug penetration through the cartilage and extend the drug time within the cartilage. In the cartilage uptake and retention time studies, an increase of 18 to 37 times of the total conjugated licofelone to A87 and A16 was observed when compared to the free licofelone. Furthermore, the conjugated licofelone to A87 was detectable within the cartilage at 120 minutes, while the free licofelone was not detectable after 60 minutes. Additionally, the A87-licofelone conjugate showed no effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 polymers increased the percentage of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of licofelone or other DMOADs clinically.

Keywords: PBAE, cartilage., osteoarthritis, injectable biomaterials, drug delivery

Procedia PDF Downloads 74
4003 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads

Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo

Abstract:

Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.

Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads

Procedia PDF Downloads 245
4002 Investigation of Electrochemical, Morphological, Rheological and Mechanical Properties of Nano-Layered Graphene/Zinc Nanoparticles Incorporated Cold Galvanizing Compound at Reduced Pigment Volume Concentration

Authors: Muhammad Abid

Abstract:

The ultimate goal of this research was to produce a cold galvanizing compound (CGC) at reduced pigment volume concentration (PVC) to protect metallic structures from corrosion. The influence of the partial replacement of Zn dust by nano-layered graphene (NGr) and Zn metal nanoparticles on the electrochemical, morphological, rheological, and mechanical properties of CGC was investigated. EIS was used to explore the electrochemical nature of coatings. The EIS results revealed that the partial replacement of Zn by NGr and Zn nanoparticles enhanced the cathodic protection at reduced PVC (4:1) by improving the electrical contact between the Zn particles and the metal substrate. The Tafel scan was conducted to support the cathodic behaviour of the coatings. The sample formulated solely with Zn at PVC 4:1 was found to be dominated in physical barrier characteristics over cathodic protection. By increasing the concentration of NGr in the formulation, the corrosion potential shifted towards a more negative side. The coating with 1.5% NGr showed the highest galvanic action at reduced PVC. FE-SEM confirmed the interconnected network of conducting particles. The coating without NGr and Zn nanoparticles at PVC 4:1 showed significant gaps between the Zn dust particles. The novelty was evidenced when micrographs showed the consistent distribution of NGr and Zn nanoparticles all over the surface, which acted as a bridge between spherical Zn particles and provided cathodic protection at a reduced PVC. The layered structure of graphene also improved the physical shielding effect of the coatings, which limited the diffusion of electrolytes and corrosion products (oxides/hydroxides) into the coatings, which was reflected by the salt spray test. The rheological properties of coatings showed good liquid/fluid properties. All the coatings showed excellent adhesion but had different strength values. A real-time scratch resistance assessment showed all the coatings had good scratch resistance.

Keywords: protective coatings, anti-corrosion, galvanization, graphene, nanomaterials, polymers

Procedia PDF Downloads 97
4001 Modification of the Risk for Incident Cancer with Changes in the Metabolic Syndrome Status: A Prospective Cohort Study in Taiwan

Authors: Yung-Feng Yen, Yun-Ju Lai

Abstract:

Background: Metabolic syndrome (MetS) is reversible; however, the effect of changes in MetS status on the risk of incident cancer has not been extensively studied. We aimed to investigate the effects of changes in MetS status on incident cancer risk. Methods: This prospective, longitudinal study used data from Taiwan’s MJ cohort of 157,915 adults recruited from 2002–2016 who had repeated MetS measurements 5.2 (±3.5) years apart and were followed up for the new onset of cancer over 8.2 (±4.5) years. A new diagnosis of incident cancer in study individuals was confirmed by their pathohistological reports. The participants’ MetS status included MetS-free (n=119,331), MetS-developed (n=14,272), MetS-recovered (n=7,914), and MetS-persistent (n=16,398). We used the Fine-Gray sub-distribution method, with death as the competing risk, to determine the association between MetS changes and the risk of incident cancer. Results: During the follow-up period, 7,486 individuals had new development of cancer. Compared with the MetS-free group, MetS-persistent individuals had a significantly higher risk of incident cancer (adjusted hazard ratio [aHR], 1.10; 95% confidence interval [CI], 1.03-1.18). Considering the effect of dynamic changes in MetS status on the risk of specific cancer types, MetS persistence was significantly associated with a higher risk of incident colon and rectum, kidney, pancreas, uterus, and thyroid cancer. The risk of kidney, uterus, and thyroid cancer in MetS-recovered individuals was higher than in those who remained MetS but lower than MetS-persistent individuals. Conclusions: Persistent MetS is associated with a higher risk of incident cancer, and recovery from MetS may reduce the risk. The findings of our study suggest that it is imperative for individuals with pre-existing MetS to seek treatment for this condition to reduce the cancer risk.

Keywords: metabolic syndrome change, cancer, risk factor, cohort study

Procedia PDF Downloads 78
4000 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates

Authors: Babak Safaei, A. M. Fattahi

Abstract:

Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method

Procedia PDF Downloads 329
3999 Screening Ecological Risk Assessment at an Old Abandoned Mine in Northern Taiwan

Authors: Hui-Chen Tsai, Chien-Jen Ho, Bo-Wei Power Liang, Ying Shen, Yi-Hsin Lai

Abstract:

Former Taiwan Metal Mining Corporation and its associated 3 wasted flue gas tunnels, hereinafter referred to as 'TMMC', was contaminated with heavy metals, Polychlorinated biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPHs) in soil. Since the contamination had been exposed and unmanaged in the environment for more than 40 years, the extent of the contamination area is estimated to be more than 25 acres. Additionally, TMMC is located in a remote, mountainous area where almost no residents are residing in the 1-km radius area. Thus, it was deemed necessary to conduct an ecological risk assessment in order to evaluate the details of future contaminated site management plan. According to the winter and summer, ecological investigation results, one type of endangered, multiple vulnerable and near threaten plant was discovered, as well as numerous other protected species, such as Crested Serpent Eagle, Crested Goshawk, Black Kite, Brown Shrike, Taiwan Blue Magpie were observed. Ecological soil screening level (Eco-SSLs) developed by USEPA was adopted as a reference to conduct screening assessment. Since all the protected species observed surrounding TMMC site were birds, screening ecological risk assessment was conducted on birds only. The assessment was assessed mainly based on the chemical evaluation, which the contamination in different environmental media was compared directly with the ecological impact levels (EIL) of each evaluation endpoints and the respective hazard quotient (HQ) and hazard index (HI) could be obtained. The preliminary ecological risk assessment results indicated HI is greater than 1. In other words, the biological stressors (birds) were exposed to the contamination, which was already exceeded the dosage that could cause unacceptable impacts to the ecological system. This result was mainly due to the high concentration of arsenic, metal and lead; thus it was suggested the above mention contaminants should be remediated as soon as possible or proper risk management measures should be taken.

Keywords: screening, ecological risk assessment, ecological impact levels, risk management

Procedia PDF Downloads 134
3998 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 349
3997 Antioxidant and Anti-Lipid Peroxidation Activities of Some Thai Medicinal Plants Traditionally Used for the Treatment of Benign Prostatic Hyperplasia

Authors: Wararut Buncharoen, Kanokporn Saenphet, Supap Saenphet

Abstract:

Benign prostatic hyperplasia (BPH) is a reproductive problem, affecting elderly men worldwide. Several factors particularly free radical reaction and oxidative damage have been contributed to be key factors leading to the development of BPH. A number of medicinal plants with high antioxidant properties are extensively constituted in Thai herbal pharmacopoeia for treating BPH. These plants may prevent or delay the progression of BPH through an antioxidant mechanism. Thus, this study was to prove the antioxidant and anti-lipid peroxidation potential of medicinal plants traditionally used for the treatment of BPH such as Artabotrys harmandii Finet & Gagnep. Miq., Uvaria rufa Blume, Anomianthus dulcis (Dunal) J. Sinclair and Caesalpinia sappan Linn. Antioxidant parameters including free radical (2, 2-azino-bis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS•+), 2, 2-diphenyl-1-picrylhydrazyl (DPPH•) and superoxide) scavenging, ferric reducing power and anti-lipid peroxidation activity were determined in different crude extracts from the stem of these four plants. Total phenolic and ascorbic contents were also investigated. The highest total phenolic content was shown in ethyl acetate crude extract of A. dulcis (510 ± 26.927 µg GAE/g extract) while the highest ascorbic content was found in ethanolic extract of U. rufa (234.727 ± 30.356 µg AAE/g extract). The strongest scavenging activity of ABTS•+ and DPPH• was found in ethyl acetate extract of C. sappan with the IC50 values of 0.469 and 0.255 mg/ml, respectively. The petroleum ether extracts of C. sappan and U. rufa at concentration of 1 mg/ml exhibited high scavenging activity toward superoxide radicals with the inhibition of 37.264 ± 8.672 and 34.434 ± 6.377 %, respectively. Ethyl acetate crude extract of C. sappan displayed the greatest reducing power. The IC50 value of water extract of A. dulcis was 1.326 mg/ml which indicated the strongest activity in the inhibition of lipid-peroxidation among all plant extracts whereas the IC50 value of the standard, butyl hydroxyl toluene was 1.472 µg/ml. Regarding all the obtained results, it can be concluded that the stem of A. dulcis, U. rufa and C. sappan are the potential natural antioxidants and could have an importance as therapeutic agents in the preventing free radicals and oxidative damage related diseases including BPH.

Keywords: anti-lipid peroxidation, antioxidant, benign prostatic hyperplasia, Thai medicinal plants

Procedia PDF Downloads 481
3996 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 87
3995 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 87
3994 Bulk/Hull Cavitation Induced by Underwater Explosion: Effect of Material Elasticity and Surface Curvature

Authors: Wenfeng Xie

Abstract:

Bulk/hull cavitation evolution induced by an underwater explosion (UNDEX) near a free surface (bulk) or a deformable structure (hull) is numerically investigated using a multiphase compressible fluid solver coupled with a one-fluid cavitation model. A series of two-dimensional computations is conducted with varying material elasticity and surface curvature. Results suggest that material elasticity and surface curvature influence the peak pressures generated from UNDEX shock and cavitation collapse, as well as the bulk/hull cavitation regions near the surface. Results also show that such effects can be different for bulk cavitation generated from UNDEX-free surface interaction and for hull cavitation generated from UNDEX-structure interaction. More importantly, results demonstrate that shock wave focusing caused by a concave solid surface can lead to a larger cavitation region and thus intensify the cavitation reload. The findings can be linked to the strength and the direction of reflected waves from the structural surface and reflected waves from the expanding bubble surface, which are functions of material elasticity and surface curvature. Shockwave focusing effects are also observed for axisymmetric simulations, but the strength of the pressure contours for the axisymmetric simulations is less than those for the 2D simulations due to the difference between the initial shock energy. The current method is limited to two-dimensional or axisymmetric applications. Moreover, the thermal effects are neglected and the liquid is not allowed to sustain tension in the cavitation model.

Keywords: cavitation, UNDEX, fluid-structure interaction, multiphase

Procedia PDF Downloads 186
3993 Production and Quality Assessment of Antioxidant-Rich Biscuit Produced from Pearl Millet and Orange Peel Flour Blends

Authors: Oloniyo Rebecca Olajumoke

Abstract:

The unstable free radicals molecules oxidize cells throughout the body to cause oxidative stress, which has been implicated in the pathogenesis of many chronic diseases. Thus, the consumption of antioxidant-rich snacks could help to reduce the production of these free radicals in the body. This study aimed at producing antioxidant–rich biscuits from an underutilized pearl millet and agricultural waste from orange peel flour (PMF and OPF, respectively) blends. Biscuits were produced from PMF, and OPF blends using various proportions (95:05; 90:10; 85:15; 80:20 with 100% PMF as control. The functional properties of the flours, as well as the antioxidant properties, physical evaluation, and consumer acceptability of the biscuits, were evaluated. The functional properties of the composite flour showed an increase in oil absorption capacity (7.73-8.80 g/ml), water absorption capacity (6.82-7.21 g/ml), foaming (3.91-5.88 g/ml), and emulsification (52.85-58.82 g/ml) properties. The increased addition of OPF significantly (p<0.05) increased the antioxidant properties of the biscuits produced from the composite flour. For instance, the ferric reducing properties (0.10-0.4 mgAAE/g), total flavonoid (1.20-8.12 mg QE/g), and ABTS radical scavenging (1.17-2.19 mmol/TEAC/g) of the composite flours were increasingly comparable to those of 100% PMF. The physical parameters of the biscuit were significantly different (p<0.05) from one another. The addition of OPF into PMF reduced the weight, diameter, and spread ratio of biscuits produced while contrarily increasing the height of the biscuit. The incorporation of OPF at 5% (95:05) substitution yielded a consumedly acceptable biscuit product. The significant increase in antioxidant properties with an increase in OPF during the production of biscuits would therefore increase the nutritional value and potential health benefits.

Keywords: orange peel, biscuit, antioxidant, pearl millet

Procedia PDF Downloads 95
3992 Proximate Composition, Minerals and Sensory Attributes of Cake, Cookies, Cracker, and Chin-Chin Prepared from Cassava-Gari Residue Flour

Authors: Alice Nwanyioma Ohuoba, Rose Erdoo Kukwa, Ukpabi Joseph Ukpabi

Abstract:

Cassava root (Manihot esculenta) is one of the important carbohydrates containing crops in Nigeria. It is a staple food, mostly in the southern part of the country, and a source of income to farmers and processors. Cassava gari processing methods result to residue fiber (solid waste) from the sieving operation, these residue fibers ( solid wastes) can be dried and milled into flour and used to prepare cakes, cookies, crackers and chin-chin instead of being thrown away mostly on farmland or near the residential area. Flour for baking or frying may contain carbohydrates and protein (wheat flour) or rich in only carbohydrates (cassava flour). Cake, cookies, crackers, and chin-chin were prepared using the residue flour obtained from the residue fiber of cassava variety NR87184 roots, processed into gari. This study is aimed at evaluating the proximate composition, mineral content and sensory attributes of these selected snacks produced. The proximate composition results obtained showed that crackers had the lowest value in moisture (2.3390%) and fat (1.7130%), but highest in carbohydrates (85.2310%). Amongst the food products, cakes recorded the highest value in protein (8.0910%). Crude fibre values ranges from 2.5265% (cookies) to 3.4165% (crackers). The result of the mineral contents showed cookies ranking the highest in Phosphorus (65.8535 ppm) and Iron (0.1150 mg/L), Calcium (1.3800mg/L) and Potassium (7.2850 mg/L) contents, while chin-chin and crackers were lowest in Sodium ( 2.7000 mg/L). The food products were also subjected to sensory attributes evaluation by thirty member panelists using 9-hedonic scale which ranged from 1 ( dislike extremely) to 9 (like extremely). The means score obtained shows all the food products having above 7.00 (above “like moderately”). This study has shown that food products that may be functional or nutraceuticals could be prepared from the residue flour. There is a call for the use of gluten-free flour in baking due to ciliac disease and other allergic causes by gluten. Therefore local carbohydrates food crops like cassava residue flour that are gluten-free, could be the solution. In addition, this could aid cassava gari processing waste management thereby reducing post-harvest losses of cassava root.

Keywords: allergy, flour, food-products, gluten-free

Procedia PDF Downloads 155
3991 Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method

Authors: Hamidreza Mansouri

Abstract:

In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant.

Keywords: GTAW welding, stress corrosion cracking(SCC), thermal method, ultrasonic peening.

Procedia PDF Downloads 50
3990 De Novo Design of Functional Metalloproteins for Biocatalytic Reactions

Authors: Ketaki D. Belsare, Nicholas F. Polizzi, Lior Shtayer, William F. DeGrado

Abstract:

Nature utilizes metalloproteins to perform chemical transformations with activities and selectivities that have long been the inspiration for design principles in synthetic and biological systems. The chemical reactivities of metalloproteins are directly linked to local environment effects produced by the protein matrix around the metal cofactor. A complete understanding of how the protein matrix provides these interactions would allow for the design of functional metalloproteins. The de novo computational design of proteins have been successfully used in design of active sites that bind metals like di-iron, zinc, copper containing cofactors; however, precisely designing active sites that can bind small molecule ligands (e.g., substrates) along with metal cofactors is still a challenge in the field. The de novo computational design of a functional metalloprotein that contains a purposefully designed substrate binding site would allow for precise control of chemical function and reactivity. Our research strategy seeks to elucidate the design features necessary to bind the cofactor protoporphyrin IX (hemin) in close proximity to a substrate binding pocket in a four helix bundle. First- and second-shell interactions are computationally designed to control orientation, electronic structure, and reaction pathway of the cofactor and substrate. The design began with a parameterized helical backbone that positioned a single histidine residue (as an axial ligand) to receive a second-shell H-bond from a Threonine on the neighboring helix. The metallo-cofactor, hemin was then manually placed in the binding site. A structural feature, pi-bulge was introduced to give substrate access to the protoporphyrin IX. These de novo metalloproteins are currently being tested for their activity towards hydroxylation and epoxidation. The de novo designed protein shows hydroxylation of aniline to 4-aminophenol. This study will help provide structural information of utmost importance in understanding de novo computational design variables impacting the functional activities of a protein.

Keywords: metalloproteins, protein design, de novo protein, biocatalysis

Procedia PDF Downloads 151
3989 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment

Authors: K. Sushma Varma, Rajesh Singh

Abstract:

Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.

Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria

Procedia PDF Downloads 102
3988 Evidence of Half-Metallicity in Cubic PrMnO3 Perovskite

Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad

Abstract:

The electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3 were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, where U is on-site Coulomb interaction correction. The results show a half-metallic ferromagnetic ground state for PrMnO3 in GGA+U approached, while semi-metallic ferromagnetic character is observed in GGA. The results obtained, make the cubic PrMnO3 a promising candidate for application in spintronics.

Keywords: first-principles, electronic properties, transition metal, materials science

Procedia PDF Downloads 466