Search results for: incomplete response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5467

Search results for: incomplete response

3697 The Use of Random Set Method in Reliability Analysis of Deep Excavations

Authors: Arefeh Arabaninezhad, Ali Fakher

Abstract:

Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.

Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty

Procedia PDF Downloads 266
3696 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges

Authors: V. Reyes, P. Ferreira

Abstract:

In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.

Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model

Procedia PDF Downloads 114
3695 An Experimental Study of Scalar Implicature Processing in Chinese

Authors: Liu Si, Wang Chunmei, Liu Huangmei

Abstract:

A prominent component of the semantic versus pragmatic debate, scalar implicature (SI) has been gaining great attention ever since it was proposed by Horn. The constant debate is between the structural and pragmatic approach. The former claims that generation of SI is costless, automatic, and dependent mostly on the structural properties of sentences, whereas the latter advocates both that such generation is largely dependent upon context, and that the process is costly. Many experiments, among which Katsos’s text comprehension experiments are influential, have been designed and conducted in order to verify their views, but the results are not conclusive. Besides, most of the experiments were conducted in English language materials. Katsos conducted one off-line and three on-line text comprehension experiments, in which the previous shortcomings were addressed on a certain extent and the conclusion was in favor of the pragmatic approach. We intend to test the results of Katsos’s experiment in Chinese scalar implicature. Four experiments in both off-line and on-line conditions to examine the generation and response time of SI in Chinese "yixie" (some) and "quanbu (dou)" (all) will be conducted in order to find out whether the structural or the pragmatic approach could be sustained. The study mainly aims to answer the following questions: (1) Can SI be generated in the upper- and lower-bound contexts as Katsos confirmed when Chinese language materials are used in the experiment? (2) Can SI be first generated, then cancelled as default view claimed or can it not be generated in a neutral context when Chinese language materials are used in the experiment? (3) Is SI generation costless or costly in terms of processing resources? (4) In line with the SI generation process, what conclusion can be made about the cognitive processing model of language meaning? Is it a parallel model or a linear model? Or is it a dynamic and hierarchical model? According to previous theoretical debates and experimental conflicts, presumptions could be made that SI, in Chinese language, might be generated in the upper-bound contexts. Besides, the response time might be faster in upper-bound than that found in lower-bound context. SI generation in neutral context might be the slowest. At last, a conclusion would be made that the processing model of SI could not be verified by either absolute structural or pragmatic approaches. It is, rather, a dynamic and complex processing mechanism, in which the interaction of language forms, ad hoc context, mental context, background knowledge, speakers’ interaction, etc. are involved.

Keywords: cognitive linguistics, pragmatics, scalar implicture, experimental study, Chinese language

Procedia PDF Downloads 355
3694 A Numerical Study on Micromechanical Aspects in Short Fiber Composites

Authors: I. Ioannou, I. M. Gitman

Abstract:

This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.

Keywords: effective properties, homogenization, representative volume element, short fiber reinforced composites

Procedia PDF Downloads 262
3693 Direct Assessment of Cellular Immune Responses to Ovalbumin with a Secreted Luciferase Transgenic Reporter Mouse Strain IFNγ-Lucia

Authors: Martyna Chotomska, Aleksandra Studzinska, Marta Lisowska, Justyna Szubert, Aleksandra Tabis, Jacek Bania, Arkadiusz Miazek

Abstract:

Objectives: Assessing antigen-specific T cell responses is of utmost importance for the pre-clinical testing of prototype vaccines against intracellular pathogens and tumor antigens. Mainly two types of in vitro assays are used for this purpose 1) enzyme-linked immunospot (ELISpot) and 2) intracellular cytokine staining (ICS). Both are time-consuming, relatively expensive, and require manual dexterity. Here, we assess if a straightforward detection of luciferase activity in blood samples of transgenic reporter mice expressing a secreted Lucia luciferase under the transcriptional control of IFN-γ promoter parallels the sensitivity of IFNγ ELISpot assay. Methods: IFN-γ-LUCIA mouse strain carrying multiple copies of Lucia luciferase transgene under the transcriptional control of IFNγ minimal promoter were generated by pronuclear injection of linear DNA. The specificity of transgene expression and mobilization was assessed in vitro using transgenic splenocytes exposed to various mitogens. The IFN-γ-LUCIA mice were immunized with 50mg of ovalbumin (OVA) emulsified in incomplete Freund’s adjuvant three times every two weeks by subcutaneous injections. Blood samples were collected before and five days after each immunization. Luciferase activity was assessed in blood serum. Peripheral blood mononuclear cells were separated and assessed for frequencies of OVA-specific IFNγ-secreting T cells. Results: We show that in vitro cultured splenocytes of IFN-γ-LUCIA mice respond by 2 and 3 fold increase in secreted luciferase activity to T cell mitogens concanavalin A and phorbol myristate acetate, respectively but fail to respond to B cell-stimulating E.coli lipopolysaccharide. Immunization of IFN-γ-LUCIA mice with OVA leads to over 4 fold increase in luciferase activity in blood serum five days post-immunization with a barely detectable increase in OVA-specific, IFNγ-secreting T cells by ELISpot. Second and third immunizations, further increase the luciferase activity and coincidently also increase the frequencies of OVA-specific T cells by ELISpot. Conclusions: We conclude that minimally invasive monitoring of luciferase secretions in blood serum of IFN-γ-LUCIA mice constitutes a sensitive method for evaluating primary and memory Th1 responses to protein antigens. As such, this method may complement existing methods for rapid immunogenicity assessment of prototype vaccines.

Keywords: ELISpot, immunogenicity, interferon-gamma, reporter mice, vaccines

Procedia PDF Downloads 166
3692 Intercultural Competencies as a Means to Rethink the Pedagogies of Diversity in Latin America

Authors: Marcelo Jose Cabarcas Ortega, Lissette Herrera, Juan Carlos Lemus Stave

Abstract:

This work makes a rather theoretical reflection on a pedagogical response against the coloniality of knowledge and power. The purpose here is to reflect on the challenges and opportunities it opens up in the educational field. No doubt, ours derived in a more abstract than concrete reflection. The quest, nevertheless, to stimulate the interest in a non-violent, non-contemptuous education able to balance, improves and if necessary, transforms the relationships that have made it a space of privilege and exclusion. We all know the school has found itself in need of rethinking diversity while developing awareness of its own role in reproducing inequality. Intercultural education may provide an answer to that hurry when fostering critical awareness and dialogue.

Keywords: decoloniality, coloniality of power, diversity, interculturality

Procedia PDF Downloads 227
3691 Gene Expression Meta-Analysis of Potential Shared and Unique Pathways Between Autoimmune Diseases Under anti-TNFα Therapy

Authors: Charalabos Antonatos, Mariza Panoutsopoulou, Georgios K. Georgakilas, Evangelos Evangelou, Yiannis Vasilopoulos

Abstract:

The extended tissue damage and severe clinical outcomes of autoimmune diseases, accompanied by the high annual costs to the overall health care system, highlight the need for an efficient therapy. Increasing knowledge over the pathophysiology of specific chronic inflammatory diseases, namely Psoriasis (PsO), Inflammatory Bowel Diseases (IBD) consisting of Crohn’s disease (CD) and Ulcerative colitis (UC), and Rheumatoid Arthritis (RA), has provided insights into the underlying mechanisms that lead to the maintenance of the inflammation, such as Tumor Necrosis Factor alpha (TNF-α). Hence, the anti-TNFα biological agents pose as an ideal therapeutic approach. Despite the efficacy of anti-TNFα agents, several clinical trials have shown that 20-40% of patients do not respond to treatment. Nowadays, high-throughput technologies have been recruited in order to elucidate the complex interactions in multifactorial phenotypes, with the most ubiquitous ones referring to transcriptome quantification analyses. In this context, a random effects meta-analysis of available gene expression cDNA microarray datasets was performed between responders and non-responders to anti-TNFα therapy in patients with IBD, PsO, and RA. Publicly available datasets were systematically searched from inception to 10th of November 2020 and selected for further analysis if they assessed the response to anti-TNFα therapy with clinical score indexes from inflamed biopsies. Specifically, 4 IBD (79 responders/72 non-responders), 3 PsO (40 responders/11 non-responders) and 2 RA (16 responders/6 non-responders) datasetswere selected. After the separate pre-processing of each dataset, 4 separate meta-analyses were conducted; three disease-specific and a single combined meta-analysis on the disease-specific results. The MetaVolcano R package (v.1.8.0) was utilized for a random-effects meta-analysis through theRestricted Maximum Likelihood (RELM) method. The top 1% of the most consistently perturbed genes in the included datasets was highlighted through the TopConfects approach while maintaining a 5% False Discovery Rate (FDR). Genes were considered as Differentialy Expressed (DEGs) as those with P ≤ 0.05, |log2(FC)| ≥ log2(1.25) and perturbed in at least 75% of the included datasets. Over-representation analysis was performed using Gene Ontology and Reactome Pathways for both up- and down-regulated genes in all 4 performed meta-analyses. Protein-Protein interaction networks were also incorporated in the subsequentanalyses with STRING v11.5 and Cytoscape v3.9. Disease-specific meta-analyses detected multiple distinct pro-inflammatory and immune-related down-regulated genes for each disease, such asNFKBIA, IL36, and IRAK1, respectively. Pathway analyses revealed unique and shared pathways between each disease, such as Neutrophil Degranulation and Signaling by Interleukins. The combined meta-analysis unveiled 436 DEGs, 86 out of which were up- and 350 down-regulated, confirming the aforementioned shared pathways and genes, as well as uncovering genes that participate in anti-inflammatory pathways, namely IL-10 signaling. The identification of key biological pathways and regulatory elements is imperative for the accurate prediction of the patient’s response to biological drugs. Meta-analysis of such gene expression data could aid the challenging approach to unravel the complex interactions implicated in the response to anti-TNFα therapy in patients with PsO, IBD, and RA, as well as distinguish gene clusters and pathways that are altered through this heterogeneous phenotype.

Keywords: anti-TNFα, autoimmune, meta-analysis, microarrays

Procedia PDF Downloads 173
3690 Development of Coir Reinforced Composite for Automotive Parts Application

Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth

Abstract:

The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.

Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test

Procedia PDF Downloads 57
3689 Development of Intellectual Property Information Services in Zimbabwe’s University Libraries: Assessing the Current Status and Mapping the Future Direction

Authors: Jonathan Munyoro, Takawira Machimbidza, Stephen Mutula

Abstract:

The study investigates the current status of Intellectual Property (IP) information services in Zimbabwe's university libraries. Specifically, the study assesses the current IP information services offered in Zimbabwe’s university libraries, identifies challenges to the development of comprehensive IP information services in Zimbabwe’s university libraries, and suggests solutions for the development of IP information services in Zimbabwe’s university libraries. The study is born out of a realisation that research on IP information services in university libraries has received little attention, especially in developing country contexts, despite the fact that there are calls for heightened participation of university libraries in IP information services. In Zimbabwe, the launch of the National Intellectual Property Policy and Implementation Strategy 2018-2022 and the introduction of the Education 5.0 concept are set to significantly change the IP landscape in the country. Education 5.0 places more emphasis on innovation and industrialisation (in addition to teaching, community service, and research), and has the potential to shift the focus and level of IP output produced in higher and tertiary education institutions beyond copyrights and more towards commercially exploited patents, utility models, and industrial designs. The growing importance of IP commercialisation in universities creates a need for appropriate IP information services to assist students, academics, researchers, administrators, start-ups, entrepreneurs, and inventors. The critical challenge for university libraries is to reposition themselves and remain relevant in the new trajectory. Designing specialised information services to support increased IP generation and commercialisation appears to be an opportunity for university libraries to stay relevant in the knowledge economy. However, IP information services in Zimbabwe’s universities appear to be incomplete and focused mostly on assisting with research publications and copyright-related activities. Research on the existing status of IP services in university libraries in Zimbabwe is therefore necessary to help identify gaps and provide solutions in order to stimulate the growth of new forms of such services. The study employed a quantitative approach. An online questionnaire was administered to 57 academic librarians from 15 university libraries. Findings show that the current focus of the surveyed institutions is on providing scientific research support services (15); disseminating/sharing university research output (14); and copyright activities (12). More specialised IP information services such as IP education and training, patent information services, IP consulting services, IP online service platforms, and web-based IP information services are largely unavailable in Zimbabwean university libraries. Results reveal that the underlying challenge in the development of IP information services in Zimbabwe's university libraries is insufficient IP knowledge among academic librarians, which is exacerbated by inadequate IP management frameworks in university institutions. The study proposes a framework for the entrenchment of IP information services in Zimbabwe's university libraries.

Keywords: academic libraries, information services, intellectual property, IP knowledge, university libraries, Zimbabwe

Procedia PDF Downloads 144
3688 Screening for Hit Identification against Mycobacterium abscessus

Authors: Jichan Jang

Abstract:

Mycobacterium abscessus is a rapidly growing life-threatening mycobacterium with multiple drug-resistance mechanisms. In this study, we screened the library to identify active molecules targeting Mycobacterium abscessus using resazurin live/dead assays. In this screening assay, the Z-factor was 0.7, as an indication of the statistical confidence of the assay. A cut-off of 80% growth inhibition in the screening resulted in the identification of four different compounds at a single concentration (20 μM). Dose-response curves identified three different hit candidates, which generated good inhibitory curves. All hit candidates were expected to have different molecular targets. Thus, we found that compound X, identified, may be a promising candidate in the M. abscessus drug discovery pipeline.

Keywords: Mycobacterium abscessus, antibiotics, drug discovery, emerging Pathogen

Procedia PDF Downloads 205
3687 Treatment of Papillary Thyroid Carcinoma Metastasis to the Sternum: A Case Report

Authors: Geliashvili T. M., Tyulyandina A. S., Valiev A. K., Kononets P. V., Kharatishvili T. K., Salkov A. G., Pronin A. I., Gadzhieva E. H., Parnas A. V., Ilyakov V. S.

Abstract:

Aim/Introduction: Metastasis (Mts) to the sternum, while extremely rare in differentiated thyroid cancer (DTC) (1), requires a personalized, multidisciplinary treatment approach. In aggressively growing Mts to the sternum, which rapidly become unresectable, a comprehensive therapeutic and diagnostic approach is particularly important. Materials and methods: We present a clinical case of solitary Mts to the sternum as first manifestation of a papillary thyroid microcarcinoma in a 55-year-old man. Results: 18F-FDG PET/CT after thyroidectomy confirmed the solitary Mts to the sternum with extremely high FDG uptake (SUVmax=71,1), which predicted its radioiodine-refractory (RIR). Due to close attachment to the mediastinum and rapid growth, Mts was considered unresectable. During the next three months, the patient received targeted therapy with the tyrosine kinase inhibitor (TKI) Lenvatinib 24 mg per day. 1st course of radioiodine therapy (RIT) 6 GBq was also performed, the results of which confirmed the RIR of the tumor process. As a result of systemic therapy (targeted therapy combined with RIT and suppressive hormone therapy with L-thyroxine), there was a significant biochemical response (decrease of serum thyroglobulin level from 50,000 ng/ml to 550 ng/ml) and a partial response with decrease of tumor size (from 80x69x123 mm to 65x50x112 mm) and decrease of FDG accumulation (SUVmax from 71.1 to 63). All of this made possible to perform surgical treatment of Mts - sternal extirpation with its replacement by an individual titanium implant. At the control examination, the stimulated thyroglobulin level was only 134 ng/ml, and PET/CT revealed postoperative areas of 18F-FDG metabolism in the removed sternal Mts. Also, 18F-FDG PET/CT in the early (metabolic) stage revealed two new bone Mts (in the area of L3 SUVmax=17,32 and right iliac bone SUVmax=13,73), which, as well as the removed sternal Mts, appeared to be RIRs at the 2nd course of RIT 6 GBq. Subsequently, on 02.2022, external beam radiation therapy (EBRT) was performed on the newly identified oligometastatic bone foci. At present, the patient is under dynamic monitoring and in the process of suppressive hormone therapy with L-thyroxine. Conclusion: Thus, only due to the early prescription of targeted TKI therapy was it possible to perform surgical resection of Mts to the sternum, thereby improve the patient's quality of life and preserve the possibility of radical treatment in case of oligometastatic disease progression.

Keywords: differentiated thyroid cancer, metastasis to the sternum, radioiodine therapy, radioiodine-refractory cancer, targeted therapy, lenvatinib

Procedia PDF Downloads 102
3686 The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells

Authors: Daphne Meza, Louie Abejar, David A. Rubenstein, Wei Yin

Abstract:

Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro.

Keywords: cyclic stretch, endothelial cells, fluid shear stress, vascular biology

Procedia PDF Downloads 374
3685 Correlation Between the Toxicity Grade of the Adverse Effects in the Course of the Immunotherapy of Lung Cancer and Efficiency of the Treatment in Anti-PD-L1 and Anti-PD-1 Drugs - Own Clinical Experience

Authors: Anna Rudzińska, Katarzyna Szklener, Pola Juchaniuk, Anna Rodzajweska, Katarzyna Machulska-Ciuraj, Monika Rychlik- Grabowska, Michał łOziński, Agnieszka Kolak-Bruks, SłAwomir Mańdziuk

Abstract:

Introduction: Immune checkpoint inhibition (ICI) belongs to the modern forms of anti-cancer treatment. Due to the constant development and continuous research in the field of ICI, many aspects of the treatment are yet to be discovered. One of the less researched aspects of ICI treatment is the influence of the adverse effects on the treatment success rate. It is suspected that adverse events in the course of the ICI treatment indicate a better response rate and correlate with longer progression-free- survival. Methodology: The research was conducted with the usage of the documentation of the Department of Clinical Oncology and Chemotherapy. Data of the patients with a lung cancer diagnosis who were treated between 2019-2022 and received ICI treatment were analyzed. Results: Out of over 133 patients whose data was analyzed, the vast majority were diagnosed with non-small cell lung cancer. The majority of the patients did not experience adverse effects. Most adverse effects reported were classified as grade 1 or grade 2 according to CTCAE classification. Most adverse effects involved skin, thyroid and liver toxicity. Statistical significance was found for the adverse effect incidence and overall survival (OS) and progression-free survival (PFS) (p=0,0263) and for the time of toxicity onset and OS and PFS (p<0,001). The number of toxicity sites was statistically significant for prolonged PFS (p=0.0315). The highest OS was noted in the group presenting grade 1 and grade 2 adverse effects. Conclusions: Obtained results confirm the existence of the prolonged OS and PFS in the adverse-effects-charged patients, mostly in the group presenting mild to intermediate (Grade 1 and Grade 2) adverse effects and late toxicity onset. Simultaneously our results suggest a correlation between treatment response rate and the toxicity grade of the adverse effects and the time of the toxicity onset. Similar results were obtained in several similar research conducted - with the proven tendency of better survival in mild and moderate toxicity; meanwhile, other studies in the area suggested an advantage in patients with any toxicity regardless of the grade. The contradictory results strongly suggest the need for further research on this topic, with a focus on additional factors influencing the course of the treatment.

Keywords: adverse effects, immunotherapy, lung cancer, PD-1/PD-L1 inhibitors

Procedia PDF Downloads 83
3684 Effect of Internet Addiction on Dietary Behavior and Lifestyle Characteristics among University Students

Authors: Hafsa Kamran, Asma Afreen, Zaheer Ahmed

Abstract:

Internet addiction, an emerging mental health disorder from last two decades, is manifested by the inability in the controlled use of internet leading to academics, social, physiological and/or psychological difficulties. The present study aimed to assess the levels of internet addiction among university students in Lahore and to explore the effects of internet addiction on their dietary behavior and lifestyle. It was an analytical cross-sectional study. Data was collected from October to December 2016 from students of four universities selected through two-stage sampling method. The numbers of participants were 500 and 13 questionnaires were rejected due to incomplete information. Levels of Internet Addiction (IA) were calculated using Young Internet Addiction Test (YIAT). Data was also collected on students’ demographics, lifestyle factors and dietary behavior using self-reported questionnaire. Data was analyzed using SPSS (version 21). Chi-square test was applied to evaluate the relationship between variables. Results of the study revealed that 10% of the population had severe internet addiction while moderate Internet Addiction was present in 42%. High prevalence was found among males (11% vs. 8%), private sector university students (p = 0.008) and engineering students (p = 0.000). The lifestyle habits of internet addicts were significantly of poorer quality than normal users (p = 0.05). Internet addiction was found associated with lesser physically activity (p = 0.025), had shorter duration of physical activity (p = 0.016), had more disorganized sleep pattern (p = 0.023), had less duration of sleep (p = 0.019), reported being more tired and sleepy in class (p = 0.033) and spending more time on internet as compared to normal users. Severe and moderate internet addicts also found to be more overweight and obese than normal users (p = 0.000). The dietary behavior of internet addicts was significantly poorer than normal users. Internet addicts were found to skip breakfast more than a normal user (p = 0.039). Common reasons for meal skipping were lack of time and snacking between meals (p = 0.000). They also had increased meal size (p = 0.05) and habit of snacking while using the internet (p = 0.027). Fast food (p = 0.016) and fried items (p = 0.05) were most consumed snacks, while carbonated beverages (p = 0.019) were most consumed beverages among internet addicts. Internet Addicts were found to consume less than recommended daily servings of dairy (p = 0.008) and fruits (p = 0.000) and more servings of meat group (p = 0.025) than their no internet addict counterparts. In conclusion, in this study, it was demonstrated that internet addicts have unhealthy dietary behavior and inappropriate lifestyle habits. University students should be educated regarding the importance of balanced diet and healthy lifestyle, which are critical for effectual primary prevention of numerous chronic degenerative diseases. Furthermore, it is necessary to raise awareness concerning adverse effects of internet addiction among youth and their parents.

Keywords: dietary behavior, internet addiction, lifestyle, university students

Procedia PDF Downloads 196
3683 Implementation of a Predictive DTC-SVM of an Induction Motor

Authors: Chebaani Mohamed, Gplea Amar, Benchouia Mohamed Toufik

Abstract:

Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented.

Keywords: induction motor, DTC-SVM, predictive controller, implementation, dSPACE, Matlab, Simulink

Procedia PDF Downloads 510
3682 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 58
3681 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine

Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin

Abstract:

TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).

Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties

Procedia PDF Downloads 496
3680 Application of Zeolite Nanoparticles in Biomedical Optics

Authors: Vladimir Hovhannisyan, Chen Yuan Dong

Abstract:

Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.

Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite

Procedia PDF Downloads 408
3679 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: non-stationary stochastic optimization, oscillating water, temporal variability, wave energy

Procedia PDF Downloads 367
3678 Water Stress Response Profiling of Nigerian Bambara Groundnut (Vigna subterranea L. Verdc.) Germplasm and Genetic Diversity Studies of Some Selected Accessions Using SSR Markers

Authors: Dorcas Ropo Abejide, Olamide Ahmed Falusi, Oladipupo Abdulazeez Yusuf Daudu, Bolaji Zuluqurineen Salihu, Muhammad Liman Muhammad

Abstract:

This study evaluated the morpho-agronomic response of twenty-four (24) Nigerian Bambara groundnut landraces to water stress and genetic diversity of some selected accessions using SSR markers. The studies were carried out in the botanical garden of the Department of Plant Biology, Federal University of Technology, Minna, Niger State, Nigeria in a randomized complete block design using three replicates. Molecular analysis using SSR primers was carried out at the International Institute of Tropical Agriculture (IITA) Ibadan in order to characterize ten selected accessions comprising the seven most drought tolerant and three most susceptible accessions from the 24 accessions evaluated. Results revealed that water stress decreased morpho-agronomic traits such as plant height, leaf area, number of leaves per plant, seed yield, etc. A total of 22 alleles were detected by the SSR markers used with a mean number of 4 allelles. SSR markers MBamCO₃₃, Primer 65, and G358B2-D15 each detected 4 allelles, while Primer 3FR and 4FR detected 5 allelles each. The study revealed significantly high polymorphisms in 10 Loci. The mean value of polymorpic information content was 0.6997, implying the usefulness of the primers used in identifying genetic similarities and differences among the Bambara groundnut genotypes. The SSR analysis revealed a comparable pattern between genetic diversity and drought tolerance of the genotypes. The UPGMA dendrogram showed that at a genetic distance of 0.1, the accessions were grouped into three groups according to their level of tolerance to drought. The two most drought-tolerant accessions were grouped together, and the 5th and 6th most drought-tolerant accessions were also grouped together. This suggests that the genotypes grouped together may be genetically close, may possess similar genes, or have a common origin. The degree of genetic variants obtained from this profiling could be useful in Bambara groundnut breeding for drought tolerance. The identified drought tolerant Bambara groundnut landraces are important genetic resources for drought stress tolerance breeding programme of Bambara groundnut. The genotypes are also useful for germplasm conservation and global implications.

Keywords: Bambara groundnut, genetic diversity, germplasm, SSR markers, water stress

Procedia PDF Downloads 52
3677 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step.

Keywords: base isolation, computational efficiency, mixed explicit-implicit method, partitioned solution approach, stability

Procedia PDF Downloads 273
3676 Comparison of the Response of TLD-100 and TLD-100H Dosimeters in Diagnostic Radiology

Authors: S. Sina, B. Zeinali, M. Karimipourfard, F. Lotfalizadeh, M. Sadeghi, E. Zamani, M. Zehtabian, R. Faghihi

Abstract:

Proper dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg, Cu, P (TLD100H) in obtaining the entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. The results show a close agreement between the dose measured by the two dosimeters. According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e. signal(nc)/dose) than TLD-100. Therefore, it is suggested that the TLD-100H are effective dosimeters for dosimetry in low dose fields.

Keywords: entrance skin dose, TLD, diagnostic radiology, dosimeter

Procedia PDF Downloads 466
3675 Making Meaning, Authenticity, and Redefining a Future in Former Refugees and Asylum Seekers Detained in Australia

Authors: Lynne McCormack, Andrew Digges

Abstract:

Since 2013, the Australian government has enforced mandatory detention of anyone arriving in Australia without a valid visa, including those subsequently identified as a refugee or seeking asylum. While consistent with the increased use of immigration detention internationally, Australia’s use of offshore processing facilities both during and subsequent to refugee status determination processing has until recently remained a unique feature of Australia’s program of deterrence. The commonplace detention of refugees and asylum seekers following displacement is a significant and independent source of trauma and a contributory factor in adverse psychological outcomes. Officially, these individuals have no prospect of resettlement in Australia, are barred from applying for substantive visas, and are frequently and indefinitely detained in closed facilities such as immigration detention centres, or alternative places of detention, including hotels. It is also important to note that the limited access to Australia’s immigration detention population made available to researchers often means that data available for secondary analysis may be incomplete or delayed in its release. Further, studies into the lived experience of refugees and asylum seekers are typically cross-sectional and convenience sampled, employing a variety of designs and research methodologies that limit comparability and focused on the immediacy of the individual’s experience. Consequently, how former detainees make sense of their experience, redefine their future trajectory upon release, and recover a sense of authenticity and purpose, is unknown. As such, the present study sought the positive and negative subjective interpretations of 6 participants in Australia regarding their lived experiences as refugees and asylum seekers within Australia’s immigration detention system and its impact on their future sense of self. It made use of interpretative phenomenological analysis (IPA), a qualitative research methodology that is interested in how individuals make sense of, and ascribe meaning to, their unique lived experiences of phenomena. Underpinned by phenomenology, hermeneutics, and critical realism, this idiographic study aimed to explore both positive and negative subjective interpretations of former refugees and asylum seekers held in detention in Australia. It sought to understand how they make sense of their experiences, how detention has impacted their overall journey as displaced persons, and how they have moved forward in the aftermath of protracted detention in Australia. Examining the unique lived experiences of previously detained refugees and asylum seekers may inform the future development of theoretical models of posttraumatic growth among this vulnerable population, thereby informing the delivery of future mental health and resettlement services.

Keywords: mandatory detention, refugee, asylum seeker, authenticity, Interpretative phenomenological analysis

Procedia PDF Downloads 92
3674 Mapping the Turbulence Intensity and Excess Energy Available to Small Wind Systems over 4 Major UK Cities

Authors: Francis C. Emejeamara, Alison S. Tomlin, James Gooding

Abstract:

Due to the highly turbulent nature of urban air flows, and by virtue of the fact that turbines are likely to be located within the roughness sublayer of the urban boundary layer, proposed urban wind installations are faced with major challenges compared to rural installations. The challenge of operating within turbulent winds can however, be counteracted by the development of suitable gust tracking solutions. In order to assess the cost effectiveness of such controls, a detailed understanding of the urban wind resource, including its turbulent characteristics, is required. Estimating the ambient turbulence and total kinetic energy available at different control response times is essential in evaluating the potential performance of wind systems within the urban environment should effective control solutions be employed. However, high resolution wind measurements within the urban roughness sub-layer are uncommon, and detailed CFD modelling approaches are too computationally expensive to apply routinely on a city wide scale. This paper therefore presents an alternative semi-empirical methodology for estimating the excess energy content (EEC) present in the complex and gusty urban wind. An analytical methodology for predicting the total wind energy available at a potential turbine site is proposed by assessing the relationship between turbulence intensities and EEC, for different control response times. The semi-empirical model is then incorporated with an analytical methodology that was initially developed to predict mean wind speeds at various heights within the built environment based on detailed mapping of its aerodynamic characteristics. Based on the current methodology, additional estimates of turbulence intensities and EEC allow a more complete assessment of the available wind resource. The methodology is applied to 4 UK cities with results showing the potential of mapping turbulence intensities and the total wind energy available at different heights within each city. Considering the effect of ambient turbulence and choice of wind system, the wind resource over neighbourhood regions (of 250 m uniform resolution) and building rooftops within the 4 cities were assessed with results highlighting the promise of mapping potential turbine sites within each city.

Keywords: excess energy content, small-scale wind, turbulence intensity, urban wind energy, wind resource assessment

Procedia PDF Downloads 469
3673 Post COVID-19 Multi-System Inflammatory Syndrome Masquerading as an Acute Abdomen

Authors: Ali Baker, Russel Krawitz

Abstract:

This paper describes a rare occurrence where a potentially fatal complication of COVID-19 infection (MIS-A) was misdiagnosed as an acute abdomen. As most patients with this syndrome present with fever and gastrointestinal symptoms, they may inadvertently fall under the care of the surgical unit. However, unusual imaging findings and a poor response to anti-microbial therapy should prompt clinicians to suspect a non-surgical etiology. More than half of MIS-A patients require ICU admission and vasopressor support. Prompt referral to a physician is key, as the cornerstone of treatment is IVIG and corticosteroid therapy. A 32 year old woman presented with right sided abdominal pain and fevers. She had also contracted COVID-19 two months earlier. Abdominal examination revealed generalised right sided tenderness. The patient had raised inflammatory markers, but other blood tests were unremarkable. CT scan revealed extensive lymphadenopathy along the ileocolic chain. The patient proved to be a diagnostic dilemma. She was reviewed by several surgical consultants and discussed with several inpatient teams. Although IV antibiotics were commenced, the right sided abdominal pain, and fevers persisted. Pan-culture returned negative. A mild cholestatic derangement developed. On day 5, the patient underwent preparation for colonoscopy to assess for a potential intraluminal etiology. The following day, the patient developed sinus tachycardia and hypotension that was refractory to fluid resuscitation. That patient was transferred to ICU and required vasopressor support. Repeat CT showed peri-portal edema and a thickened gallbladder wall. On re-examination, the patient was Murphy’s sign positive. Biliary ultrasound was equivocal for cholecystitis. The patient was planned for diagnostic laparoscopy. The following morning, a marked rise in cardiac troponin was discovered, and a follow-up echocardiogram revealed moderate to severe global systolic dysfunction. The impression was post-COVID MIS with myocardial involvement. IVIG and Methylprednisolone infusions were commenced. The patient had a great response. Vasopressor support was weaned, and the patient was discharged from ICU. The patient continued to improve clinically with oral prednisolone, and was discharged on day 17. Although MIS following COVID-19 infection is well-described syndrome in children, only recently has it come to light that it can occur in adults. The exact incidence is unknown, but it is thought to be rare. A recent systematic review found only 221 cases of MIS-A, which could be included for analysis. Symptoms vary, but the most frequent include fever, gastrointestinal, and mucocutaneous. Many patients progress to multi-organ failure and require vasopressor support. 7% succumb to the illness. The pathophysiology of MIS is only partly understood. It shares similarities with Kawasaki disease, macrophage activation syndrome, and cytokine release syndrome. Importantly, by definition, the patient must have an absence of severe respiratory symptoms. It is thought to be due to a dysregulated immune response to the virus. Potential mechanisms include reduced levels of neutralising antibodies and autoreactive antibodies that promote inflammation. Further research into MIS-A is needed. Although rare, this potentially fatal syndrome should be considered in the unwell surgical patient who has recently contracted COVID-19 and poses a diagnostic dilemma.

Keywords: acute-abdomen, MIS, COVID-19, ICU

Procedia PDF Downloads 118
3672 The Journey to Social Entrepreneurship: Profile Analysis of Social Enterprises in Morocco

Authors: Zeinab Hmama

Abstract:

Much recent discourse has highlighted the supporting role of social entrepreneurs in solving social problems. However, the identification of social enterprise’s characteristics in emerging countries has not yet been thoroughly examined. This research seeks to explores the profile of social enterprises in Morocco. In this perspective, we conduct a quantitative study on a sample of 87 social enterprises. This study was undertaken in Morocco based on a quantitative study lead among sample consists of 82 organizations qualified as social enterprises. Therefore, the response rate was 45.12% (37/82). Participants in the study were described on the basis of the following demographic characteristics: Gender, Age, Education Level and field, Entrepreneurial activity age, Legal forms, Line of business.

Keywords: social entrepreneurship, social enterprise, problem resolution, value creation

Procedia PDF Downloads 147
3671 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss

Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy

Abstract:

One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.

Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.

Procedia PDF Downloads 337
3670 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality

Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh

Abstract:

Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).

Keywords: PAT, wound healing, tissue coagulation, angiogenesis

Procedia PDF Downloads 101
3669 A CMOS Capacitor Array for ESPAR with Fast Switching Time

Authors: Jin-Sup Kim, Se-Hwan Choi, Jae-Young Lee

Abstract:

A 8-bit CMOS capacitor array is designed for using in electrically steerable passive array radiator (ESPAR). The proposed capacitor array shows the fast response time in rising and falling characteristics. Compared to other works in silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technologies, it shows a comparable tuning range and switching time with low power consumption. Using the 0.18um CMOS, the capacitor array features a tuning range of 1.5 to 12.9 pF at 2.4GHz. Including the 2X4 decoder for control interface, the Chip size is 350um X 145um. Current consumption is about 80 nA at 1.8 V operation.

Keywords: CMOS capacitor array, ESPAR, SOI, SOS, switching time

Procedia PDF Downloads 585
3668 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 425