Search results for: carbon nanotubes (CNT)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3139

Search results for: carbon nanotubes (CNT)

1369 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 139
1368 IoT Based Smart Car Parking System Using Node Red

Authors: Armel Asongu Nkembi, Ahmad Fawad

Abstract:

In this paper, we design a smart car parking system using the Node-Red interface, which enables the user to find the nearest parking area from his current location and gives the availability of parking slots in that respective parking area. The closest parking area is determined by sending an HTTP request to an API, and the shortest distance is computed using some mathematical formulations based on the coordinates retrieved. There is also the use of IR sensors to signal the availability or lack of available parking lots within any parking area. The aim is to reduce the time and effort needed to find empty parking lots and also avoid unnecessary traveling through filled parking lots in a parking area. Thus, it reduces fuel consumption, which in turn reduces carbon footprints in the atmosphere and, overall, makes the city much smarter.

Keywords: node-red, smart parking system, API, http request, IR sensors, Internet of Things, smart city, parking lots.

Procedia PDF Downloads 42
1367 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events

Authors: Shawn G. Gallaher, Lilli E. Hirth

Abstract:

As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.

Keywords: Alaska North Slope, arctic rivers, material flux, precipitation

Procedia PDF Downloads 75
1366 Analysis of the Strip Shape and Microstructure with Consideration of Roll Crossing and Shifting

Authors: Z. Y. Jiang, H. B. Tibar, A. Aljabri

Abstract:

Optimisation of the physical and mechanical properties of cold rolled thin strips is achieved by controlling the rolling parameters. In this paper, the factors affecting the asymmetrical cold rolling of thin low carbon steel strip have been studied at a speed ratio of 1.1 without lubricant applied. The effect of rolling parameters on the resulting microstructure was also investigated. It was found that under dry condition, work roll shifting and work roll cross angle can improve the strip profile, and the result is more significant with an increase of work roll cross angle rather than that of work roll shifting. However, there was no obvious change in microstructure. In addition, effects of rolling parameters on strip profile and microstructure have also been discussed.

Keywords: rolling speed ratio, microstructure, work roll cross angle, work roll shifting

Procedia PDF Downloads 426
1365 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

This work presents a study of carbon dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72), En Naga Sub Basin, Sirte Basin, Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens, and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin, and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface). Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distributed over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly, and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite, minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells that makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72), where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad’s Igneous Complex, carbon dioxide generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone

Procedia PDF Downloads 106
1364 Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida

Authors: Kunwar D. Yadav, Dayanand Sharma

Abstract:

Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and Eisenia foetida as earthworm spices. The vermicompost reactor of 0.3 m3 capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg).

Keywords: cow dung, Eisenia foetida, textile sludge, vermicompost

Procedia PDF Downloads 214
1363 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method

Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev

Abstract:

The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.

Keywords: activation energy, aluminum, low temperature diffusion, SiC

Procedia PDF Downloads 279
1362 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production

Procedia PDF Downloads 240
1361 Modelling the Anaerobic Digestion of Esparto Paper Industry Wastewater Effluent in a Batch Digester Using IWA Anaerobic Digestion Model No. 1 (ADM1)

Authors: Boubaker Fezzani, Ridha Ben Cheikh, Tarek Rouissi

Abstract:

In this work the original ADM1, implemented in the simulation software package MATLAB/Simulink, was modified and adapted and applied to reproduce the experimental results of the mesophilic anaerobic digestion of Esperto paper industry wastewater in a batch digester. The data set from lab-scale experiment runs were used to calibrate and validate the model. The simulations’ results indicated that the modified ADM1 was able to predict reasonably well the steady state results of gas flows, methane and carbon dioxide contents, pH and total volatile fatty acids (TVFA) observed with all influents concentrations.

Keywords: anaerobic digestion, mathematical modelling, Simulation, ADM1, batch digester, esparto paper industry effluent, mesophilic temperature

Procedia PDF Downloads 405
1360 ‘Green Gait’ – The Growing Relevance of Podiatric Medicine amid Climate Change

Authors: Angela Evans, Gabriel Gijon-Nogueron, Alfonso Martinez-Nova

Abstract:

Background The health sector, whose mission is protecting health, also contributes to the climate crisis, the greatest health threat of the 21st century. The carbon footprint from healthcare exceeds 5% of emissions globally, surpassing 7% in the USA and Australia. Global recognition has led to the Paris Agreement, the United Nations Sustainable Development Goals, and the World Health Organization's Climate Change Action Plan. It is agreed that the majority of health impacts stem from energy and resource consumption, as well as the production of greenhouse gases in the environment and deforestation. Many professional medical associations and healthcare providers advocate for their members to take the lead in environmental sustainability. Objectives To avail and expand ‘Green Podiatry’ via the three pillars of: Exercise ; Evidence ; Everyday changes; to highlight the benefits of physical activity and exercise for both human health and planet health. Walking and running are beneficial for health, provide low carbon transport, and have evidence-based health benefits. Podiatrists are key healthcare professionals in the physical activity space and can influence and guide their patients to increase physical activity and avert the many non-communicable diseases that are decimating public health, eg diabetes, arthritis, depression, cancer, obesity. Methods Publications, conference presentations, and pilot projects pertinent to ‘Green Podiatry’ have been activated since 2021, and a survey of podiatrist’s knowledge and awareness has been undertaken.The survey assessed attitudes towards environmental sustainability in work environment. The questions addressed commuting habits, hours of physical exercise per week, and attitudes in the clinic, such as prescribing unnecessary treatments or emphasizing sports as primary treatment. Results Teaching and Learning modules have been developed for podiatric medicine students and graduates globally. These will be availed. A pilot foot orthoses recycling project has been undertaken and will be reported, in addition to established footwear recycling. The preliminary survey found almost 90% of respondents had no knowledge of green podiatry or footwear recycling. Only 30% prescribe sports/exercise as the primary treatment for patients, and 45% do not to prescribe unnecessary treatments. Conclusions Podiatrists are in a good position to lead in the crucial area of healthcare and climate change implications. Sufficient education of podiatrists is essential for the profession to beneficially promote health and physical activity, which is beneficial for the health of all peoples and all communities.

Keywords: climate change, gait, green, healthcare, sustainability

Procedia PDF Downloads 91
1359 Enhancement of Building Sustainability by Using Environment-Friendly Material

Authors: Rina Yadav, Meng-Ting Tsai

Abstract:

In the present scenario, sustainable buildings are in high demand. The essential decision for building sustainability is made during the design and preconstruction stages. Main objective of this study is reduction of unfavorable environmental impacts, which is a major cause of global warming. Based on this problem, to diminish the environmental hazards, present research study is applied to provide a guideline to designer that will be useful for material selection stage of designing. This can be achieved by using local available materials such as wood, mud, bamboos instead of cement, steel, concrete by reducing carbon dioxide emission. Energy simulation will be analyzed by software to get the comparable result. It will be encouraging and motivational for designer while using ecofriendly material to achieve points in Leadership in energy and environmental design (LEED) in green rating system.

Keywords: sustainability design, lead rating, LEED, building performance analyses

Procedia PDF Downloads 490
1358 Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium

Authors: Dharmana Pradeep, Chandan Kumar Patnaikuni, N. V. S. Venugopal

Abstract:

Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages.

Keywords: rice husk ash, compressive strength, sodium phosphate, curing

Procedia PDF Downloads 345
1357 Blockchain for the Monitoring and Reporting of Carbon Emission Trading: A Case Study on Its Possible Implementation in the Danish Energy Industry

Authors: Nkechi V. Osuji

Abstract:

The use of blockchain to address the issue of climate change is increasingly a discourse among countries, industries, and stakeholders. For a long time, the European Union (EU) has been combating the issue of climate action in industries through sustainability programs. One of such programs is the EU monitoring reporting and verification (MRV) program of the EU ETS. However, the system has some key challenges and areas for improvement, which makes it inefficient. The main objective of the research is to look at how blockchain can be used to improve the inefficiency of the EU ETS program for the Danish energy industry with a focus on its monitoring and reporting framework. Applying empirical data from 13 semi-structured expert interviews, three case studies, and literature reviews, three outcomes are presented in the study. The first is on the current conditions and challenges of monitoring and reporting CO₂ emission trading. The second is putting into consideration if blockchain is the right fit to solve these challenges and how. The third stage looks at the factors that might affect the implementation of such a system and provides recommendations to mitigate these challenges. The first stage of the findings reveals that the monitoring and reporting of CO₂ emissions is a mandatory requirement by law for all energy operators under the EU ETS program. However, most energy operators are non-compliant with the program in reality, which creates a gap and causes challenges in the monitoring and reporting of CO₂ emission trading. Other challenges the study found out are the lack of transparency, lack of standardization in CO₂ accounting, and the issue of double-counting in the current system. The second stage of the research was guided by three case studies and requirement engineering (RE) to explore these identified challenges and if blockchain is the right fit to address them. This stage of the research addressed the main research question: how can blockchain be used for monitoring and reporting CO₂ emission trading in the energy industry. Through analysis of the study data, the researcher developed a conceptual private permissioned Hyperledger blockchain and elucidated on how it can address the identified challenges. Particularly, the smart contract of blockchain was highlighted as a key feature. This is because of its ability to automate, be immutable, and digitally enforce negotiations without a middleman. These characteristics are unique in solving the issue of compliance, transparency, standardization, and double counting identified. The third stage of the research presents technological constraints and a high level of stakeholder collaboration as major factors that might affect the implementation of the proposed system. The proposed conceptual model requires high-level integration with other technologies such as the Internet of Things (IoT) and machine learning. Therefore, the study encourages future research in these areas. This is because blockchain is continually evolving its technology capabilities. As such, it remains a topic of interest in research and development for addressing climate change. Such a study is a good contribution to creating sustainable practices to solve the global climate issue.

Keywords: blockchain, carbon emission trading, European Union emission trading system, monitoring and reporting

Procedia PDF Downloads 129
1356 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing

Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park

Abstract:

Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.

Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete

Procedia PDF Downloads 331
1355 Modelling the Effects of External Factors Affecting Concrete Carbonation

Authors: Abhishek Mangal, Kunal Tongaria, S. Mandal, Devendra Mohan

Abstract:

Carbonation of reinforced concrete structures has emerged as one of the major challenges for Civil engineers across the world. With increasing emissions from various activities, carbon dioxide concentration in the atmosphere has been eve rising, enhancing its penetration in porous concrete, reaching steel bars and ultimately leading to premature failure. Several literatures have been published dealing with the various interdependent variables related to carbonation. However, with innumerable variability a generalization of these data proves to be a troublesome task. This paper looks into this carbonation anomaly in concrete structures caused by various external variables such as relative humidity, concentration of CO2, curing period and ambient temperature. Significant discussions and comparisons have been presented on the basis of various studies conducted with an aim to predict the depth of carbonation as a function of these multidimensional parameters using various numerical and statistical modelling techniques.

Keywords: carbonation, curing, exposure conditions, relative humidity

Procedia PDF Downloads 253
1354 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm

Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder

Abstract:

Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA Data Envelopment Analysis is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.

Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding

Procedia PDF Downloads 639
1353 Recycling Service Strategy by Considering Demand-Supply Interaction

Authors: Hui-Chieh Li

Abstract:

Circular economy promotes greater resource productivity and avoids pollution through greater recycling and re-use which bring benefits for both the environment and the economy. The concept is contrast to a linear economy which is ‘take, make, dispose’ model of production. A well-design reverse logistics service strategy could enhance the willingness of recycling of the users and reduce the related logistics cost as well as carbon emissions. Moreover, the recycle brings the manufacturers most advantages as it targets components for closed-loop reuse, essentially converting materials and components from worn-out product into inputs for new ones at right time and right place. This study considers demand-supply interaction, time-dependent recycle demand, time-dependent surplus value of recycled product and constructs models on recycle service strategy for the recyclable waste collector. A crucial factor in optimizing a recycle service strategy is consumer demand. The study considers the relationships between consumer demand towards recycle and product characteristics, surplus value and user behavior. The study proposes a recycle service strategy which differs significantly from the conventional and typical uniform service strategy. Periods with considerable demand and large surplus product value suggest frequent and short service cycle. The study explores how to determine a recycle service strategy for recyclable waste collector in terms of service cycle frequency and duration and vehicle type for all service cycles by considering surplus value of recycled product, time-dependent demand, transportation economies and demand-supply interaction. The recyclable waste collector is responsible for the collection of waste product for the manufacturer. The study also examines the impacts of utilization rate on the cost and profit in the context of different sizes of vehicles. The model applies mathematical programming methods and attempts to maximize the total profit of the distributor during the study period. This study applies the binary logit model, analytical model and mathematical programming methods to the problem. The model specifically explores how to determine a recycle service strategy for the recycler by considering product surplus value, time-dependent recycle demand, transportation economies and demand-supply interaction. The model applies mathematical programming methods and attempts to minimize the total logistics cost of the recycler and maximize the recycle benefits of the manufacturer during the study period. The study relaxes the constant demand assumption and examines how service strategy affects consumer demand towards waste recycling. Results of the study not only help understanding how the user demand for recycle service and product surplus value affects the logistics cost and manufacturer’s benefits, but also provide guidance such as award bonus and carbon emission regulations for the government.

Keywords: circular economy, consumer demand, product surplus value, recycle service strategy

Procedia PDF Downloads 392
1352 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry

Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati

Abstract:

One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.

Keywords: nanofabrication, cement replacement materials, activation, concrete

Procedia PDF Downloads 613
1351 Relationship between Extrusion Ratio and Mechanical Properties of Magnesium Alloy

Authors: C. H. Jeon, Y. H. Kim, G. A. Lee

Abstract:

Reducing resource consumption and carbon dioxide emission are recognized as urgent issues. One way of resolving these issues is to reduce product weight. Magnesium alloys are considered promising candidates because of their lightness. Various studies have been conducted on using magnesium alloy instead of conventional iron or aluminum in mechanical parts, due to the light weight and superior specific strength of magnesium alloy. However, even stronger magnesium alloys are needed for mechanical parts. One common way to enhance the strength of magnesium alloy is by extruding the ingot. In order to enhance the mechanical properties, magnesium alloy ingot were extruded at various extrusion ratios. Relationship between extrusion ratio and mechanical properties was examined on extruded material of magnesium alloy. And Textures and microstructures of the extruded materials were investigated.

Keywords: extrusion, extrusion ratio, magnesium, mechanical property, lightweight material

Procedia PDF Downloads 500
1350 Effect of Selenite and Selenate Uptake by Maize Plants on Specific Leaf Area

Authors: F. Garousi, Sz. Veres, É. Bódi, Sz. Várallyay, B. Kovács

Abstract:

Specific leaf area (SLA; cm2leaf g-1leaf) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain and also can be used as a rapid and diagnostic tool. In this study, two species of soluble inorganic selenium forms, selenite (SeIV) and selenate (SeVI) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of SLA for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of SeIV and SeVI were not effective on maize plants’ SLA significantly although high level of 3 mg.kg-1 SeIV had negative affect on growth of the samples that had been treated by it but about SeVI samples we did not observe this state and our different considered SeVI concentrations were not toxic for maize plants.

Keywords: maize, sodium selenate, sodium selenite, specific leaf area

Procedia PDF Downloads 400
1349 Development of Zero-Cement Binder Activated by Carbonation

Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang

Abstract:

Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.

Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag

Procedia PDF Downloads 464
1348 Assessment Environmental and Economic of Yerba Mate as a Feed Additive on Feedlot Lamb

Authors: Danny Alexander R. Moreno, Gustavo L. Sartorello, Yuli Andrea P. Bermudez, Richard R. Lobo, Ives Claudio S. Bueno, Augusto H. Gameiro

Abstract:

Meat production is a significant sector for Brazil's economy; however, the agricultural segment has suffered censure regarding the negative impacts on the environment, which consequently results in climate change. Therefore, it is essential the implementation of nutritional strategies that can improve the environmental performance of livestock. This research aimed to estimate the environmental impact and profitability of the use of yerba mate extract (Ilex paraguariensis) as an additive in the feeding of feedlot lamb. Thirty-six castrated male lambs (average weight of 23.90 ± 3.67 kg and average age of 75 days) were randomly assigned to four experimental diets with different levels of inclusion of yerba mate extract (0, 1, 2, and 4 %) based on dry matter. The animals were confined for fifty-three days and fed with 60:40 corn silage to concentrate ratio. As an indicator of environmental impact, the carbon footprint (CF) was measured as kg of CO₂ equivalent (CO₂-eq) per kg of body weight produced (BWP). The greenhouse gas (GHG) emissions such as methane (CH₄) generated from enteric fermentation, were calculated using the sulfur hexafluoride gas tracer (SF₆) technique; while the CH₄, nitrous oxide (N₂O - emissions generated by feces and urine), and carbon dioxide (CO₂ - emissions generated by concentrate and silage processing) were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology. To estimate profitability, the gross margin was used, which is the total revenue minus the total cost; the latter is composed of the purchase of animals and food. The boundaries of this study considered only the lamb fattening system. The enteric CH₄ emission from the lamb was the largest source of on-farm GHG emissions (47%-50%), followed by CH₄ and N₂O emissions from manure (10%-20%) and CO₂ emission from the concentrate, silage, and fossil energy (17%-5%). The treatment that generated the least environmental impact was the group with 4% of yerba mate extract (YME), which showed a 3% reduction in total GHG emissions in relation to the control (1462.5 and 1505.5 kg CO₂-eq, respectively). However, the scenario with 1% YME showed an increase in emissions of 7% compared to the control group. In relation to CF, the treatment with 4% YME had the lowest value (4.1 kg CO₂-eq/kg LW) compared with the other groups. Nevertheless, although the 4% YME inclusion scenario showed the lowest CF, the gross margin decreased by 36% compared to the control group (0% YME), due to the cost of YME as a food additive. The results showed that the extract has the potential for use in reducing GHG. However, the cost of implementing this input as a mitigation strategy increased the production cost. Therefore, it is important to develop political strategies that help reduce the acquisition costs of input that contribute to the search for the environmental and economic benefit of the livestock sector.

Keywords: meat production, natural additives, profitability, sheep

Procedia PDF Downloads 139
1347 Transforming Automotive Performance: The Role of Additive Manufacturing

Authors: Joaquin Ticzon, Christian Demition, Jaime Honra

Abstract:

Additive manufacturing (AM) or 3D printing has been one of the emerging trends present in various industries, particularly in prototyping. This review focuses on the impact of additive manufacturing on a motor vehicle's performance aiming to investigate potential advancements to further revolutionize the way parts are manufactured. One of the most common problems faced in the automotive industry is carbon footprint emissions from motor vehicles, which was stated to be remedied by lightweight; additively manufactured parts helped reduce these emissions due to weight reduction provided by additively manufactured parts. Composed of various techniques for AM as well as materials utilized during the manufacturing process, which differ in terms of the quality and performance it provides during its application on the final product. Given this, the generative design will not be discussed in such a detailed manner because the focus will revolve around the effects on the performance of a vehicle due to additively manufactured parts.

Keywords: additive manufacturing (AM), automotive, computer aided design (CAD), generative design

Procedia PDF Downloads 35
1346 Characterization of Bacteria by a Nondestructive Sample Preparation Method in a TEM System

Authors: J. Shiue, I. H. Chen, S. W. Y. Chiu, Y. L. Wang

Abstract:

In this work, we present a nondestructive method to characterize bacteria in a TEM system. Unlike the conventional TEM specimen preparation method, which needs to thin the specimen in a destructive way, or spread the samples on a tiny millimeter sized carbon grid, our method is easy to operate without the need of sample pretreatment. With a specially designed transparent chip that allows the electron beam to pass through, and a custom made chip holder to fit into a standard TEM sample holder, the bacteria specimen can be easily prepared on the chip without any pretreatment, and then be observed under TEM. The centimeter-sized chip is covered with Au nanoparticles in the surface as the markers which allow the bacteria to be observed easily on the chip. We demonstrate the success of our method by using E. coli as an example, and show that high-resolution TEM images of E. coli can be obtained with the method presented. Some E. coli morphology characteristics imaged using this method are also presented.

Keywords: bacteria, chip, nanoparticles, TEM

Procedia PDF Downloads 314
1345 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.

Keywords: forest soil, mineralization rate, heterotroph, soil respiration rate

Procedia PDF Downloads 336
1344 Impact of Herbicides on Soil Biology in Rapeseed

Authors: M. Eickermann, M. K. Class, J. Junk

Abstract:

Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.

Keywords: cropping system, dehydrogenase activity, herbicides, mechanical weed control, oilseed rape

Procedia PDF Downloads 247
1343 Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration

Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu

Abstract:

Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.

Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery

Procedia PDF Downloads 131
1342 Traditional Ecological Knowledge System as Climate Change Adaptation Strategies for Mountain Community of Tangkhul Tribe in Northeast India

Authors: Tuisem Shimrah

Abstract:

One general agreement on climate change is that its causes may be local but the effects are global. Indigenous people are subscribed to “low-carbon” traditional ways of life and as such they have contributed little to causes of climate change. On the contrary they are the most adversely affected by climate change due to their dependence on surrounding rich biological wealth as a source of their livelihood, health care, entertainment and cultural activities This paper deals with the results of the investigation of various adaptation strategies adopted to combat climate change by traditional community. The result shows effective ways of application of traditional knowledge and wisdom applied by Tangkhul traditional community at local and community level in remote areas in Northeast India. Four adaptation measures are being presented in this paper.

Keywords: adaptation, climate change, Northeast India, Tangkhul, traditional community

Procedia PDF Downloads 278
1341 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 379
1340 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties

Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar

Abstract:

Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.

Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature

Procedia PDF Downloads 396