Search results for: RLS identification algorithm
4563 Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn
Authors: H. M. El-Rafie, A. H. Abou Zeid, R. S. Mohammed, A. A. Sleem
Abstract:
Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species.Keywords: Acrocarpus fraxinofolius, antidiabetic, cytotoxic, hepatoprotective
Procedia PDF Downloads 1964562 Investigating 'Criticality' in Written Assignments of Postgraduate Students in TESOL and Applied Linguistics
Authors: Josephine Mirador
Abstract:
Too often, one hears teachers complaining about how uncritical students can be, yet the notion of ‘criticality’ may be subject to variable understandings or interpretations. One challenge facing postgraduate students is the writing of essays responding to a specific reading assignment. Such an essay requires students not only to summarise, but to engage in a discussion of the significant points of the article, pointing out its strengths as well as its weaknesses. This paper presents the results of an investigation on criticality in written assignments of postgraduate students in applied linguistics and TESOL. The guiding questions for this investigation were: -How ‘critical’ are postgraduate students when writing their assignments? -What kind of ‘critical’ comments are they able to offer? A total of 70 essays were analysed, using two sets of corpora in the initial and follow-through phases of the research from three different universities in Asia. The essays were written by MA applied linguistics and TESOL students. Students were told that the response essay should definitely not just summarise, but should offer a reflection or critique on the ideas presented in the subject article. The initial findings from the investigation include: the identification of at least 10 general ‘moves’ each of which has a number of possible specific categories; presence of critique ‘nodes’ as distinguished from ‘support’ comments; and the identification of at least 4 moves as the most recurrent and possibly obligatory categories. This investigation has unearthed a few more questions or issues that are definitely worth investigating as extensions of this research, and will be of interest (most especially) to genre analysts and teachers of writing.Keywords: criticality, discourse and genre analysis, postgraduate students, applied linguistics
Procedia PDF Downloads 3894561 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm
Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei
Abstract:
In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes
Procedia PDF Downloads 754560 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost
Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke
Abstract:
The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures
Procedia PDF Downloads 2534559 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency
Authors: Fayssal Amrane, Azeddine Chaiba
Abstract:
In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.Keywords: doubly fed induction generator (DFIG), direct power control (DPC), neuro-fuzzy control (NFC), maximum power point tracking (MPPT), space vector modulation (SVM), type 2 fuzzy logic control (T2FLC)
Procedia PDF Downloads 4204558 Identification and Antibiotic Susceptibility of Bacteria Isolated from the Intestines of Slaughtered Goat and Cattle
Authors: Latifat Afolake Ogunfolabo, Hakeem Babafemi Ogunfolabo
Abstract:
The gastrointestinal tract is densely populated with micro-organism which closely and intensively interacts with the host and ingested feed. Food borne infections are some of the major international challenges that lead to high mortality and also, antimicrobial resistance, which has been classified as a serious threat by World Health Organization. Samples of slaughtered cattle and goats intestines were collected and standard culture methods were used for bacteria isolation and identification. Minimum inhibitory concentration of commonly used antibiotic using modification of the disk diffusion method was carried out on isolates. The samples cultured were all positive to Pseudomonas aeruginosa (95% and 90%), Escherichia coli (85%), Salmonella typhi (70% and 60%), Staphylococcus aureus (75%and 100%), Micrococcus luteus (55% and35%), Bacillus macerans (60% and 5%), Bacillus cereus (25% and 20%), Clostridium perfringens (20% and 5%), Micrococcus varians (20% and 5%), Bacillus subtilis (25% and 5%), Streptococcus faecalis (40% and 25%) and Streptococcus faecium (15% and 10%) in goat and cattle respectively. Also, Proteus mirabilis (40%), Micrococcus luteus (35%), Proteus vulgaris (30%), Klebsiella aerogenes(15%) were isolated from cattle. The total coliform (13.55 x10⁵cfu/gm ± 1.77) and (20.30 x10⁵cfu/gm ± 1.27) counts were significantly higher than the total bacteria count (8.3 x10⁵cfu/gm ± 1.41) and (16.60 x10⁵cfu/gm ±0.49) for goat and cattle respectively. Selected Bacteria count of isolates showed that Staphylococcus aureus had the highest significant value (6.9 x10⁵cfu/gm ± 0.57) and (16.80 x10⁵cfu/gm ± 0.57) Escherichia coli (4.60 x10⁵cfu/gm ± 0.42) and (7.05 x10⁵cfu/gm ± 0.64) while the lowest significant value was obtained in Salmonella/Shigella (1.7 x10⁵cfu/gm ± 0.00) and (1.5 x10⁵cfu/gm ± 0.00) for goat and cattle respectively. Susceptibility of bacteria isolated from slaughtered goat and cattle intestine to commonly used antibiotics showed that the highest statistical significant value for zone of inhibition for goat was obtained for Ciprofloxacin (30.00 ± 2.25, 23.75 ± 2.49, 17.17 ± 1.40) followed by Augmentin (28.33 ± 1.22, 21. 83 ± 2.44, 16.67 ± 1.49), Erythromycin (27.75 ±1.48, 20.25 ± 1.29, 16.67 ± 1.26) while the lowest values were obtained for Ofloxacin (27.17 ± 1.89, 21.42 ± 2.19, 16.83 ± 1.26) respectively and values obtained for cattle are Ciprofloxacin (30.64 ± 1.6, 25.79 ± 1.76, 8.07 ± 11.49) followed by Augmentin (28.29 ± 1.33, 22.64 ± 1.82, 17.43 ± 1.55) Ofloxacin (26.57 ± 2.02, 20.79 ± 2.75, 16.21 ± 1.19) while the lowest values were obtained for Erythromycin (26.64 ± 1.49, 20.29 ± 1.49, 16.29 ± 1.33) at different dilution factor (10⁻¹, 10⁻², 10⁻³) respectively. The isolates from goat and cattle were all susceptible to Augmentin at the three different dilution factors. Some goat isolates are intermediate to Ciprofloxacin and Erythromycin at 10⁻² and 10⁻³, while resistance to Ciprofloxacin at 10⁻³ dilution factor. Ciprofloxacin and Ofloxacin at the dilution factors of 10⁻³ and 10⁻¹ for some cattle isolate and resistance were observed for Ofloxacin and Erythromycin at dilution of 10⁻³. These results indicate the susceptibilities and the antimicrobial resistance to commonly used antibiotic.Keywords: antibiotic susceptibility, bacteria, cattle, goat, identification
Procedia PDF Downloads 1244557 An Evolutionary Multi-Objective Optimization for Airport Gate Assignment Problem
Authors: Seyedmirsajad Mokhtarimousavi, Danial Talebi, Hamidreza Asgari
Abstract:
Gate Assignment Problem (GAP) is one of the most substantial issues in airport operation. In principle, GAP intends to maintain the maximum capacity of the airport through the best possible allocation of the resources (gates) in order to reach the optimum outcome. The problem involves a wide range of dependent and independent resources and their limitations, which add to the complexity of GAP from both theoretical and practical perspective. In this study, GAP was mathematically formulated as a three-objective problem. The preliminary goal of multi-objective formulation was to address a higher number of objectives that can be simultaneously optimized and therefore increase the practical efficiency of the final solution. The problem is solved by applying the second version of Non-dominated Sorting Genetic Algorithm (NSGA-II). Results showed that the proposed mathematical model could address most of major criteria in the decision-making process in airport management in terms of minimizing both airport/airline cost and passenger walking distance time. Moreover, the proposed approach could properly find acceptable possible answers.Keywords: airport management, gate assignment problem, mathematical modeling, genetic algorithm, NSGA-II
Procedia PDF Downloads 2994556 Anomaly Detection in Financial Markets Using Tucker Decomposition
Authors: Salma Krafessi
Abstract:
The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models
Procedia PDF Downloads 694555 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1634554 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 2654553 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 1424552 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment
Authors: R. Niranchana, K. Meena Alias Jeyanthi
Abstract:
As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm
Procedia PDF Downloads 954551 Stature Prediction from Anthropometry of Extremities among Jordanians
Authors: Amal A. Mashali, Omar Eltaweel, Elerian Ekladious
Abstract:
Stature of an individual has an important role in identification, which is often required in medico-legal practice. The estimation of stature is an important step in the identification of dismembered remains or when only a part of a skeleton is only available as in major disasters or with mutilation. There is no published data on anthropological data among Jordanian population. The present study was designed in order to find out relationship of stature to some anthropometric measures among a sample of Jordanian population and to determine the most accurate and reliable one in predicting the stature of an individual. A cross sectional study was conducted on 336 adult healthy volunteers , free of bone diseases, nutritional diseases and abnormalities in the extremities after taking their consent. Students of Faculty of Medicine, Mutah University helped in collecting the data. The anthropometric measurements (anatomically defined) were stature, humerus length, hand length and breadth, foot length and breadth, foot index and knee height on both right and left sides of the body. The measurements were typical on both sides of the bodies of the studied samples. All the anthropologic data showed significant relation with age except the knee height. There was a significant difference between male and female measurements except for the foot index where F= 0.269. There was a significant positive correlation between the different measures and the stature of the individuals. Three equations were developed for estimation of stature. The most sensitive measure for prediction of a stature was found to be the humerus length.Keywords: foot index, foot length, hand length, humerus length, stature
Procedia PDF Downloads 3064550 A Constrained Model Predictive Control Scheme for Simultaneous Control of Temperature and Hygrometry in Greenhouses
Authors: Ayoub Moufid, Najib Bennis, Soumia El Hani
Abstract:
The objective of greenhouse climate control is to improve the culture development and to minimize the production costs. A greenhouse is an open system to external environment and the challenge is to regulate the internal climate despite the strong meteorological disturbances. The internal state of greenhouse considered in this work is defined by too relevant and coupled variables, namely inside temperature and hygrometry. These two variables are chosen to describe the internal state of greenhouses due to their importance in the development of plants and their sensitivity to external climatic conditions, sources of weather disturbances. A multivariable model is proposed and validated by considering a greenhouse as black-box system and the least square method is applied to parameters identification basing on collected experimental measures. To regulate the internal climate, we propose a Model Predictive Control (MPC) scheme. This one considers the measured meteorological disturbances and the physical and operational constraints on the control and state variables. A successful feasibility study of the proposed controller is presented, and simulation results show good performances despite the high interaction between internal and external variables and the strong external meteorological disturbances. The inside temperature and hygrometry are tracking nearly the desired trajectories. A comparison study with an On/Off control applied to the same greenhouse confirms the efficiency of the MPC approach to inside climate control.Keywords: climate control, constraints, identification, greenhouse, model predictive control, optimization
Procedia PDF Downloads 2064549 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 1824548 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System
Authors: Fouzi Aboura
Abstract:
The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO
Procedia PDF Downloads 904547 Cheiloscopy: A Study on Predominant Lip Print Patterns among the Gujarati Population
Authors: Pooja Ahuja, Tejal Bhutani, M. S. Dahiya
Abstract:
Cheiloscopy, the study of lip prints, is a tool in forensic investigation technique that deals with identification of individuals based on lips patterns. The objective of this study is to determine predominant lip print pattern found among the Gujarati population, to evaluate whether any sex difference exists and to study the permanence of the pattern over six months duration. The study comprised of 100 healthy individuals (50 males and 50 females), in the age group of 18 to 25 years of Gujarati population of the Gandhinagar region of the Gujarat state, India. By using Suzuki and Tsuchihashi classification, Lip prints were then divided into four quadrants and also classified on the basis of peripheral shape of the lips. Materials used to record the lip prints were dark brown colored lipstick, cellophane tape, and white bond paper. Lipstick was applied uniformly, and lip prints were taken on the glued portion of cellophane tape and then stuck on to a white bond paper. These lip prints were analyzed with magnifying lens and virtually with stereo microscope. On the analysis of the subject population, results showed Branched pattern Type II (29.57 percentage) to be most predominant in the Gujarati population. Branched pattern Type II (35.60 percentage) and long vertical Type I (28.28 percentage) were most prevalent in males and females respectively and large full lips were most predominantly present in both the sexes. The study concludes that lip prints in any form can be an effective tool for identification of an individual in a closed or open group forms.Keywords: cheiloscopy, lip pattern, predomianant, Gujarati population
Procedia PDF Downloads 2984546 Cheiloscopy and Dactylography in Relation to ABO Blood Groups: Egyptian vs. Malay Populations
Authors: Manal Hassan Abdel Aziz, Fatma Mohamed Magdy Badr El Dine, Nourhan Mohamed Mohamed Saeed
Abstract:
Establishing association between lip print patterns and those of fingerprints as well as blood groups is of fundamental importance in the forensic identification domain. The first aim of the current study was to determine the prevalent types of ABO blood groups, lip prints and fingerprints patterns in both studied populations. Secondly, to analyze any relation found between the different print patterns and the blood groups, which would be valuable in identification purposes. The present study was conducted on 60 healthy volunteers, (30 males and 30 females) from each of the studied population. Lip prints and fingerprints were obtained and classified according to Tsuchihashi's classification and Michael Kuchen’s classification, respectively. The results show that the ulnar loop was the most frequent among both populations. Blood group A was the most frequent among Egyptians, while blood groups O and B were the predominant among Malaysians. Significant relations were observed between lip print patterns and fingerprint (in the second quadrant for Egyptian males and the first one for Malaysian). For Malaysian females, a statistically significant association was proved in the fourth quadrant. Regarding the blood groups, 89.5% of ulnar loops were significantly related to blood group A among Egyptian males. The results proved an association between the fingerprint pattern and the lip prints, as well as between the ABO blood group and the pattern of fingerprints. However, further researches with larger sample sizes need to be directed to approve the current results.Keywords: ABO, cheiloscopy, dactylography, Egyptians, Malaysians
Procedia PDF Downloads 2204545 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1274544 The Conceptual Design Model of an Automated Supermarket
Authors: V. Sathya Narayanan, P. Sidharth, V. R. Sanal Kumar
Abstract:
The success of any retail business is predisposed by its swift response and its knack in understanding the constraints and the requirements of customers. In this paper a conceptual design model of an automated customer-friendly supermarket has been proposed. In this model a 10-sided, space benefited, regular polygon shaped gravity shelves have been designed for goods storage and effective customer-specific algorithms have been built-in for quick automatic delivery of the randomly listed goods. The algorithm is developed with two main objectives, viz., delivery time and priority. For meeting these objectives the randomly listed items are reorganized according to the critical-path of the robotic arm specific to the identified shop and its layout and the items are categorized according to the demand, shape, size, similarity and nature of the product for an efficient pick-up, packing and delivery process. We conjectured that the proposed automated supermarket model reduces business operating costs with much customer satisfaction warranting a win-win situation.Keywords: automated supermarket, electronic shopping, polygon-shaped rack, shortest path algorithm for shopping
Procedia PDF Downloads 4054543 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS
Authors: Hamidreza Bagheri, Alireza Shariati
Abstract:
There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm
Procedia PDF Downloads 5224542 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System
Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt
Abstract:
Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC
Procedia PDF Downloads 4964541 DNA Barcoding Application in Study of Icthyo- Biodiversity in Rivers of Pakistan
Authors: Asma Karim
Abstract:
Fish taxonomy plays a fundamental role in the study of biodiversity. However, traditional methods of fish taxonomy rely on morphological features, which can lead to confusion due to great similarities between closely related species. To overcome this limitation, modern taxonomy employs DNA barcoding as a species identification method. This involves using a short standardized mitochondrial DNA region as a barcode, specifically a 658 base pair fragment near the 5′ ends of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, to exploit the diversity in this region for identification of species. To test the effectiveness and reliability of DNA barcoding, 25 fish specimens from nine different fish species found in various rivers of Pakistan were identified morphologically using a dichotomous key at the start of the study. Comprising nine freshwater fish species, including Mystus cavasius, Mystus bleekeri, Osteobrama cotio, Labeo rohita, Labeo culbasu, Labeo gonius, Cyprinus carpio, Catla catla and Cirrhinus mrigala from different rivers of Pakistan were used in the present study. DNA was extracted from one of the pectoral fins and a partial sequence of CO1 gene was amplified using the conventional PCR method. Analysis of the barcodes confirmed that genetically identified fishes were the same as those identified morphologically at the beginning of the study. The sequences were also analyzed for biodiversity and phylogenetic studies. Based on the results of the study, it can be concluded that DNA barcoding is an effective and reliable method for studying biodiversity and conducting phylogenetic analysis of different fish species in Pakistan.Keywords: DNA barcoding, fresh water fishes, taxonomy, biodiversity, Pakistan
Procedia PDF Downloads 1084540 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms
Authors: Divya Agarwal, Pushpendra S. Bharti
Abstract:
Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms
Procedia PDF Downloads 2324539 Phytochemical Screening and Identification of Anti-Biological Activity Properties of Pelargonium graveolens
Authors: Anupalli Roja Rani, Saraswathi Jaggali
Abstract:
Rose-scented geranium (Pelargonium graveolens L’Hér.) is an erect, much-branched shrub. It is indigenous to various parts of southern Africa, and it is often called Geranium. Pelargonium species are widely used by traditional healers in the areas of Southern Africa by Sotho, Xhosa, Khoi-San and Zulus for its curative and palliative effects in the treatment of diarrhea, dysentery, fever, respiratory tract infections, liver complaints, wounds, gastroenteritis, haemorrhage, kidney and bladder disorders. We have used Plant materials for extracting active compounds from analytical grades of solvents methanol, ethyl acetate, chloroform and water by a soxhlet apparatus. The phytochemical screening reveals that extracts of Pelargonium graveolens contains alkaloids, glycosides, steroids, tannins, saponins and phenols in ethyl acetate solvent. The antioxidant activity was determined using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method and the total phenolic content in the extracts was determined by the Folin–Ciocalteu method. Due to the presence of different phytochemical compounds in Pelargonium the anti-microbial activity against different micro-organisms like E.coli, Streptococcus, Klebsiella and Bacillus. Fractionation of plant extract was performed by column chromatography and was confirmed with HPLC analysis, NMR and FTIR spectroscopy for the compound identification in different organic solvent extracts.Keywords: Pelargonium graveolens L’Hér, DPPH, micro-organisms, HPLC analysis, NMR, FTIR spectroscopy
Procedia PDF Downloads 5004538 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data
Procedia PDF Downloads 3214537 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.Keywords: JPSO, operation, optimization, water distribution system
Procedia PDF Downloads 2454536 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3424535 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm
Authors: Ovidiu Domşa, Nicolae Bold
Abstract:
Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.Keywords: chromosome, genetic algorithm, subtree, test
Procedia PDF Downloads 3244534 Orbit Determination from Two Position Vectors Using Finite Difference Method
Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.
Abstract:
An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.Keywords: finite difference method, grid generation, NavIC system, orbit perturbation
Procedia PDF Downloads 85