Search results for: rhodium cobalt bimetallic catalyst
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1007

Search results for: rhodium cobalt bimetallic catalyst

857 Cutting Performance of BDD Coating on WC-Co Tools

Authors: Feng Xu, Zhaozhi Liu, Junhua Xu, Xiaolong Tang, Dunwen Zuo

Abstract:

Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.

Keywords: cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill

Procedia PDF Downloads 440
856 Supported Gold Nanocatalysts for CO Oxidation in Mainstream Cigarette Smoke

Authors: Krasimir Ivanov, Dimitar Dimitrov, Tatyana Tabakova, Stefka Kirkova, Anna Stoilova, Violina Angelova

Abstract:

It has been suggested that nicotine, CO and tar in mainstream smoke are the most important substances and have been judged as the most harmful compounds, responsible for the health hazards of smoking. As nicotine is extremely important for smoking qualities of cigarettes and the tar yield in the tobacco smoke is significantly reduced due to the use of filters with various content and design, the main efforts of cigarettes researchers and manufacturers are related to the search of opportunities for CO content reduction. Highly active ceria supported gold catalyst was prepared by the deposition-precipitation method, and the possibilities for CO oxidation in the synthetic gaseous mixture were evaluated using continuous flow equipment with fixed bed glass reactor at atmospheric pressure. The efficiently of the catalyst in CO oxidation in the real cigarette smoke was examined by a single port, puf-by-puff smoking machine. Quality assessment of smoking using cigarette holder containing catalyst was carried out. It was established that the catalytic activity toward CO oxidation in cigarette smoke rapidly decreases from 70% for the first cigarette to nearly zero for the twentieth cigarette. The present study shows that there are two critical factors which do not permit the successful use of catalysts to reduce the CO content in the mainstream cigarette smoke: (i) significant influence of the processes of adsorption and oxidation on the main characteristics of tobacco products and (ii) rapid deactivation of the catalyst due to the covering of the catalyst’s grains with condensate.

Keywords: cigarette smoke, CO oxidation, gold catalyst, mainstream

Procedia PDF Downloads 219
855 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation

Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang

Abstract:

Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.

Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method

Procedia PDF Downloads 212
854 Graphene-Oxide-Supported Coal-Layered Double Hydroxides: Synthesis and Characterizations

Authors: Shaeel A. Al Thabaiti, Sulaiman N. Basahel, Salem M. Bawaked, Mohamed Mokhtar

Abstract:

Nanosheets for cobalt-layered double hydroxide (Co-Al-LDH)/GO were successfully synthesized with different Co:M g:Al ratios (0:3:1, 1.5:1.5:1, and 3:0:1). The layered double hydroxide structure and morphology were determined using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Temperature prgrammed reduction (TPR) of Co-Al-LDH showed reduction peaks at lower temperature which indicates the ease reducibility of this particular sample. The thermal behaviour was studied using thermal graviemetric technique (TG), and the BET-surface area was determined using N2 physisorption at -196°C. The C-C coupling reaction was carried out over all the investigated catalysts. The Mg–Al LDH catalyst without Co ions is inactive, but the isomorphic substitution of Mg by Co ions (Co:Mg:Al = 1.5:1.5:1) in the cationic sheet resulted in 88% conversion of iodobenzene under reflux. LDH/GO hybrid is up to 2 times higher activity than for the unsupported LDH.

Keywords: adsorption, co-precipitation, graphene oxide, layer double hydroxide

Procedia PDF Downloads 301
853 Influence of Cobalt Incorporation on the Structure and Properties of SOL-Gel Derived Mesoporous Bioglass Nanoparticles

Authors: Ahmed El-Fiqi, Hae-Won Kim

Abstract:

Incorporation of therapeutic elements such as Sr, Cu and Co into bioglass structure and their release as ions is considered as one of the promising approaches to enhance cellular responses, e.g., osteogenesis and angiogenesis. Here, cobalt as angiogenesis promoter has been incorporated (at 0, 1 and 4 mol%) into sol-gel derived calcium silicate mesoporous bioglass nanoparticles. The composition and structure of cobalt-free (CFN) and cobalt-doped (CDN) mesoporous bioglass nanoparticles have been analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-Transform Infra-red spectroscopy (FT-IR). The physicochemical properties of CFN and CDN have been investigated using high-resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), and Energy-dispersive X-ray (EDX). Furthermore, the textural properties, including specific surface area, pore-volume, and pore size, have been analyzed from N²⁻sorption analyses. Surface charges of CFN and CDN were also determined from surface zeta potential measurements. The release of ions, including Co²⁺, Ca²⁺, and SiO₄⁴⁻ has been analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Loading and release of diclofenac as an anti-inflammatory drug model were explored in vitro using Ultraviolet-visible spectroscopy (UV-Vis). XRD results ensured the amorphous state of CFN and CDN whereas, XRF further confirmed that their chemical compositions are very close to the designed compositions. HR-TEM analyses unveiled nanoparticles with spherical morphologies, highly mesoporous textures, and sizes in the range of 90 - 100 nm. Moreover, N²⁻ sorption analyses revealed that the nanoparticles have pores with sizes of 3.2 - 2.6 nm, pore volumes of 0.41 - 0.35 cc/g and highly surface areas in the range of 716 - 830 m²/g. High-resolution XPS analysis of Co 2p core level provided structural information about Co atomic environment and it confirmed the electronic state of Co in the glass matrix. ICP-AES analysis showed the release of therapeutic doses of Co²⁺ ions from 4% CDN up to 100 ppm within 14 days. Finally, diclofenac loading and release have ensured the drug/ion co-delivery capability of 4% CDN.

Keywords: mesoporous bioactive glass, nanoparticles, cobalt ions, release

Procedia PDF Downloads 107
852 New Heterogenous α-Diimine Nickel (II)/ MWCNT Catalysts for Ethylene Polymerization

Authors: Sasan Talebnezhad, Saeed Pormahdian, Naghi Assali

Abstract:

Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl, and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α-diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.

Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization

Procedia PDF Downloads 407
851 New Heterogenous α-Diimine Nickel (II)/MWCNT Catalysts for Ethylene Polymerization

Authors: Sasan Talebnezhad, Saeed Pourmahdian, Naghi Assali

Abstract:

Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.

Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization

Procedia PDF Downloads 499
850 Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction

Authors: Mojgan Zendehdel, Safura Molla Mohammad Zamani

Abstract:

In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times.

Keywords: zeolite, magnetic, nanocompsite, esterification

Procedia PDF Downloads 461
849 Biodiesel Production From Waste Cooking Oil Using g-C3N4 Photocatalyst

Authors: A. Elgendi, H. Farag, M. E. Ossman, M. Abd-Elfatah

Abstract:

This paper explores the using of waste cooking oil (WCO) as an attractive option to reduce the raw material cost for the biodiesel production. This can be achieved through two steps; esterification using g-C3N4photocatalyst and then alkali transesterification. Several parameters have been studied to determine the yield of the biodiesel produced such as: Reaction time (2-6 hrs), catalyst concentration (0.3-1.5 wt.%), number of UV lamps (1or 3 lamps) and methanol: oil ratio (6:1-12:1). From the obtained results, the highest percentage yield was obtained using methanol: Oil molar ratio of 12:1, catalyst dosage 0.3%, time of 4 hrs and using 1 lamp. From the results it was clear that the produced biodiesel from waste cooking oil can be used as fuel.

Keywords: biodiesel, heterogeneous catalyst, photocatalytic esterification, waste cooking oil

Procedia PDF Downloads 528
848 Numerical Analysis of Catalytic Combustion in a Tabular Reactor with Methane and Air Mixtures over Platinum Catalyst

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promote desired chemical reactions. The objective of this work is to design and simulate a catalytic combustor by using CHEMKIN with detailed gas and surface chemistries. The simplified approach with single catalyst channel using plug flow reactor (PFR) can be used to predict reasonably well with the effect of various operating parameters such as the inlet temperature, velocity and fuel/air ratios. The numerical results are validated by comparing the surface chemistries in single channel catalytic combustor. The catalytic combustor operates at much lower temperature than the conventional combustor since lean-fuel mixture is used where the complete methane conversion is achieved. The coupling between gas and surface reactions in the catalyst bed is studied by investigating the commencement of flame ignition with respect to the surface site species.

Keywords: catalytic combustion, honeycomb monolith, plug flow reactor, surface reactions

Procedia PDF Downloads 226
847 Production Process for Diesel Fuel Components Polyoxymethylene Dimethyl Ethers from Methanol and Formaldehyde Solution

Authors: Xiangjun Li, Huaiyuan Tian, Wujie Zhang, Dianhua Liu

Abstract:

Polyoxymethylene dimethyl ethers (PODEn) as clean diesel additive can improve the combustion efficiency and quality of diesel fuel and alleviate the problem of atmospheric pollution. Considering synthetic routes, PODE production from methanol and formaldehyde is regarded as the most economical and promising synthetic route. However, methanol used for synthesizing PODE can produce water, which causes the loss of active center of catalyst and hydrolysis of PODEn in the production process. Macroporous strong acidic cation exchange resin catalyst was prepared, which has comparative advantages over other common solid acid catalysts in terms of stability and catalytic efficiency for synthesizing PODE. Catalytic reactions were carried out under 353 K, 1 MPa and 3mL·gcat-1·h-1 in a fixed bed reactor. Methanol conversion and PODE3-6 selectivity reached 49.91% and 23.43%, respectively. Catalyst lifetime evaluation showed that resin catalyst retained its catalytic activity for 20 days without significant changes and catalytic activity of completely deactivated resin catalyst can basically return to previous level by simple acid regeneration. The acid exchange capacities of original and deactivated catalyst were 2.5191 and 0.0979 mmol·g-1, respectively, while regenerated catalyst reached 2.0430 mmol·g-1, indicating that the main reason for resin catalyst deactivation is that Brønsted acid sites of original resin catalyst were temporarily replaced by non-hydrogen ion cations. A separation process consisting of extraction and distillation for PODE3-6 product was designed for separation of water and unreacted formaldehyde from reactive mixture and purification of PODE3-6, respectively. The concentration of PODE3-6 in final product can reach up to 97%. These results indicate that the scale-up production of PODE3-6 from methanol and formaldehyde solution is feasible.

Keywords: inactivation, polyoxymethylene dimethyl ethers, separation process, sulfonic cation exchange resin

Procedia PDF Downloads 137
846 Phenolic-Based Chemical Production from Catalytic Depolymerization of Alkaline Lignin over Fumed Silica Catalyst

Authors: S. Totong, P. Daorattanachai, N. Laosiripojana

Abstract:

Lignin depolymerization into phenolic-based chemicals is an interesting process for utilizing and upgrading a benefit and value of lignin. In this study, the depolymerization reaction was performed to convert alkaline lignin into smaller molecule compounds. Fumed SiO₂ was used as a catalyst to improve catalytic activity in lignin decomposition. The important parameters in depolymerization process (i.e., reaction temperature, reaction time, etc.) were also investigated. In addition, gas chromatography with mass spectrometry (GC-MS), flame-ironized detector (GC-FID), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze and characterize the lignin products. It was found that fumed SiO₂ catalyst led the good catalytic activity in lignin depolymerization. The main products from catalytic depolymerization were guaiacol, syringol, vanillin, and phenols. Additionally, metal supported on fumed SiO₂ such as Cu/SiO₂ and Ni/SiO₂ increased the catalyst activity in terms of phenolic products yield.

Keywords: alkaline lignin, catalytic, depolymerization, fumed SiO₂, phenolic-based chemicals

Procedia PDF Downloads 246
845 Kinetic Study of 1-Butene Isomerization over Hydrotalcite Catalyst

Authors: Sirada Sripinun

Abstract:

This work studied the isomerization of 1-butene over hydrotalcite catalyst. The experiments were conducted at various gas hourly space velocity (GHSV), reaction temperature, and feed concentration. No catalyst deactivation was observed over the reaction time of 16 hours. Two major reaction products were trans-2-butene and cis-2-butene. The reaction temperature played an important role on the reaction selectivity. At high operating temperatures, the selectivity of trans-2-butene was higher than the selectivity of cis-2-butene while it was opposite at a lower reaction temperature. In the range of operating conditions, the maximum conversion of 1-butene was found at 74% when T = 673 K and GHSV = 4 m3/h/kg-cat with trans- and cis-2-butene selectivities of 54% and 46% respectively. Finally, the kinetic parameters of the reaction were determined.

Keywords: hydrotalcite, isomerization, kinetic, 1-butene

Procedia PDF Downloads 400
844 Oxidative Dehydrogenation and Hydrogenation of Malic Acid over Transition Metal Oxides

Authors: Gheorghiţa Mitran, Adriana Urdă, Mihaela Florea, Octavian Dumitru Pavel, Florentina Neaţu

Abstract:

Oxidative dehydrogenation and hydrogenation reactions of L-malic acid are interesting ways for its transformation into valuable products, including oxaloacetic, pyruvic and malonic acids but also 1,4-butanediol and 1,2,4-butanetriol. Keto acids have a range of applicationsin many chemical syntheses as pharmaceuticals, food additives and cosmetics. 3-Hydroxybutyrolactone and 1,2,4-butanetriol are used for the synthesis of chiral pharmaceuticals and other fine chemicals, while 1,4-butanediol can be used for organic syntheses, such as polybutylene succinate (PBS), polybutylene terephthalate (PBT), and for production of tetrahydrofuran (THF). L-malic acid is a non-toxic and natural organic acid present in fruits, and it is the main component of wine alongside tartaric acid representing about 90% of the wine total acidity. Iron oxides dopped with cobalt (CoxFe3-xO4; x= 0; 0.05; 0.1; 0.15) were studied as catalysts in these reactions. There is no mention in the literature of non-noble transition metal catalysts for these reactions. The method used for catalysts preparation was coprecipitation, whileBET XRD, XPS, FTIR and UV-VIS spectroscopy were used for the physicochemical properties evaluation.TheXRD patterns revealed the presence of α-Fe2O3 rhombohedral hematite structure, with cobalt atoms well dispersed and embedded in this structure. The studied samples are highly crystalline, with a crystallite size ranged from 58 to 65 nm. The optical absorption properties were investigated using UV-Vis spectroscopy, emphasizing the presence of bands that correspond with the reported hematite nanoparticle. Likewise, the presence of bands corresponding to lattice vibration of hexagonal hematite structurehas been evidenced in DRIFT spectra. Oxidative dehydrogenation of malic acid was studied using as solvents for malic acid ethanol or water(2, 5 and 10% malic acid in 5 mL solvent)at room temperature, while the hydrogenation reaction was evaluated in water as solvent (5%), in the presence of 1% catalyst. The oxidation of malic acid into oxaloacetic acid is the first step, after that, oxaloacetic acid is rapidly decarboxylated to malonic acid or pyruvic acid, depending on the active site. The concentration of malic acid in solution, it, in turn, has an influence on conversionthis decreases when the concentration of malic acid in the solution is high. The spent catalysts after the oxidative dehydrogenation of malic acid in ethanol were characterized by DRIFT spectroscopy and the presence of oxaloacetic, pyruvic and malonicacids, along with unreacted malic acidwere observed on the surface. The increase of the ratio of Co/Fe on the surface has an influence on the malic acid conversion and on the pyruvic acid yield, while the yield of malonic acid is influenced by the percentage of iron on the surface (determined from XPS). Oxaloacetic acid yield reaches a maximumat one hour of reaction, being higher when ethanol is used as a solvent, after which it suddenly decreases. The hydrogenation of malic acid occurs by consecutive reactions with the production of 3-hydroxy-butyrolactone, 1,2,4-butanetriol and 1,4-butanediol. Malic acid conversion increases with cobalt loading increasing up to Co/Fe ratio of 0.1, after which it has a slight decrease, while the yield in 1,4-butanediol is directly proportional to the cobalt content.

Keywords: malic acid, oxidative dehydrogenation, hydrogenation, oxaloacetic acid

Procedia PDF Downloads 182
843 Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters

Authors: N. Nowzari-Dalini, S. Sabbaghi

Abstract:

Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO2 were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert® software. 98% of phenol degradation was achieved after 6h of irradiation.

Keywords: doping, metals, sol-gel, titanium dioxide, wastewater

Procedia PDF Downloads 328
842 Hydrometallurgical Production of Nickel Ores from Field Bugetkol

Authors: A. T. Zhakiyenova, E. E. Zhatkanbaev, Zh. K. Zhatkanbaeva

Abstract:

Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal.

Keywords: cobalt, degree of extraction, hydrometallurgy, igneous metallurgy, leaching, matte, nickel

Procedia PDF Downloads 384
841 Ultrasonic Degradation of Acephate: Effects of Operating Parameters

Authors: Naina Deshmukh

Abstract:

With the wide production, consumption, and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, Ultrasonication, as an emerging and promising technology for the removal of pesticides in the aqueous environment, has attracted the attention of many researchers in recent years. The degradation of acephate in aqueous solutions was investigated under the influence of ultrasound irradiation (20 kHz) in the presence of heterogeneous catalysts titanium dioxide (TiO2) and Zinc oxide (ZnO). The influence of various factors such as amount of catalyst (0.25, 0.5, 0.75, 1.0, 1.25 g/l), initial acephate concentration (100, 200, 300, 400 mg/l), and pH (3, 5, 7, 9, 11) were studied. The optimum catalyst dose was found to be 1 g/l of TiO2 and 1.25 g/l of ZnO for acephate at 100 mg/l, respectively. The maximum percentage degradation of acephate was observed at pH 11 for catalysts TiO2 and ZnO, respectively.

Keywords: ultrasonic degradation, acephate, TiO2, ZnO, heterogeneous catalyst

Procedia PDF Downloads 61
840 Formation Mechanism of Macroporous Cu/CuSe and Its Application as Electrocatalyst for Methanol Oxidation Reaction

Authors: Nabi Ullah

Abstract:

The single-step solvothermal method is used to prepare Cu/CuSe as an electrocatalyst for methanol electro-oxidation reaction (MOR). 1,3-butane-diol is selected as a reaction medium, whose viscosity and complex formation with Cu(II) ions dictate the catalyst morphology. The catalyst has a macroporous structure, which is composed of nanoballs with a high purity, crystallinity, and uniform morphology. The electrocatalyst is excellent for MOR, as it delivers a current density of 37.28 mA/mg at a potential of 0.6 V (vs Ag/AgCl) in the electrolyte of 1 M KOH and 0.75 M methanol at a 50 mV/s scan rate under conditions of cyclic voltammetry. The catalyst also shows good stability for 3600 s with negligible charge transfer resistance and a high electrochemical active surface area (ECSA) value of 0.100 mF/cm².

Keywords: MOR, copper selenide, electocatalyst, energy application

Procedia PDF Downloads 63
839 Synthesis and Characterization of Nano-Alumina Using Neem Oil as the Template for Efficient Hydrogen Generation via Photo-Hydrolysis of Sodium Borohydride

Authors: Dina M. Abd El-Aty, D. Aman, E. G. Zaki, Heba M. Salem

Abstract:

A friendly environmental source of energy as hydrogen was produced by photo-hydrolysis of hydrogen storage material as sodium borohydride (NaBH4), which is non-toxic and stores a high percentage of hydrogen. The photoreaction was produced under visible light and nano-alumina as a catalyst. In this study, we use more economical and friendly environmental oil as a template to produce a nano-catalyst. The prepared catalyst was characterized by X-Ray diffraction, N2-adsorption-desorption, Fourier Transforms Infrared, Scanning Electron microscope and X-Ray Photoelectron Spectroscopy. Different parameters such as catalyst weight, NaBH4 weight and time of irradiation were studied to obtain a highly efficient photo-hydrolysis reaction. The reaction is pseudo-first order and the hydrogen production rate was determined as 1500 ml min-1 g-1 at the optimum conditions.

Keywords: photo-reaction, nano-alumina, hydrogen production, sodium borohydride, visible light

Procedia PDF Downloads 83
838 Systematic Study of Mutually Inclusive Influence of Temperature and Substitution on the Coordination Geometry of Co(II) in a Series of Coordination Polymer and Their Properties

Authors: Manasi Roy, Raju Mondal

Abstract:

During last two decades the synthesis and design of MOFs or novel coordination polymers (CPs) has flourished as an emerging area of research due to their role as functional materials. Accordingly, ten new cobalt-based MOFs have been synthesized using a simple bispyrazole ligand, 4,4′-methylene-bispyrazole (H2MBP), and isophthalic acid (H2IPA) and its four 5-substituted derivatives R-H2IPA (R = COOH, OH, tBu, NH2). The major aim of this study was to validate the mutual influence of temperature and substitutions on the final structural self-assembly. Five different isophthalic acid derivatives were used to study the influence of substituents while each reaction was carried out at two different temperatures to assess the temperature effect. A clear correlation was observed between the reaction temperature and the coordination number of the cobalt atoms which consequently changes the self assembly pattern. Another fact that the periodical change in coordination number did bring about some systematic changes in the structural network via secondary building unit selectivity. With the presence of a tunable cavity inside the network, and unsaturated metal centers, MOFs show highly encouraging photocatalytic degradation of toxic dye with a potential application in waste water purification. Another fascinating aspect of this work is the construction of magnetic coordination polymers with the occurrence of a not-so-common MCE behavior of cobalt-based MOF.

Keywords: MOFs, temperature effect, MCE, dye degradation

Procedia PDF Downloads 136
837 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper

Authors: Thidarat Imyen, Paisan Kongkachuichay

Abstract:

Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.

Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc

Procedia PDF Downloads 302
836 Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 236
835 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation

Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager

Abstract:

The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.

Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization

Procedia PDF Downloads 100
834 Phosphorus Reduction in Plain and Fully Formulated Oils Using Fluorinated Additives

Authors: Gabi N. Nehme

Abstract:

The reduction of phosphorus and sulfur in engine oil are the main topics of this paper. Very reproducible boundary lubrication tests were conducted as part of Design of Experiment software (DOE) to study the behavior of fluorinated catalyst iron fluoride (FeF3), and polutetrafluoroethylene or Teflon (PTFE) in developing environmentally friendly (reduced P and S) anti-wear additives for future engine oil formulations. Multi-component Chevron fully formulated oil (GF3) and Chevron plain oil were used with the addition of PTFE and catalyst to characterize and analyze their performance. Lower phosphorus blends were the goal of the model solution. Experiments indicated that new sub-micron FeF3 catalyst played an important role in preventing breakdown of the tribofilm.

Keywords: wear, SEM, EDS, friction, lubricants

Procedia PDF Downloads 286
833 Elevated Reductive Defluorination of Branched Per and Polyfluoroalkyl Substances by Soluble Metal-Porphyrins and New Mechanistic Insights on the Degradation

Authors: Jun Sun, Tsz Tin Yu, Maryam Mirabediny, Matthew Lee, Adele Jones, Denis M. O’Carroll, Michael J. Manefield, Björn Åkermark, Biswanath Das, Naresh Kumar

Abstract:

Reductive defluorination has emerged as a sustainable approach to clean water from Per and polyfluoroalkyl substances (PFASs), also known as forever organic containments. For last few decades, nano zero valent metals (nZVMs) have been intensively applied in the reductive remediation of groundwater contaminated with chlorinated organic compounds due to its low redox potential, easy application, and low production cost. However, there is inadequate information on the effective reductive defluorination of linear or branched PFAS using nZVMs as reductants because of the lack of suitable catalysts. CoII-5,10,15,20-Tetraphenyl-21H,23H-porphyrin (CoTPP) has been recently reported for effective catalyzing reductive defluorination of branched (br-) perfluorooctane sulfonate (PFOS) by using TiIII citrate as reductant. However, the low water solubility of CoTPP limited its applicability. Here, we explored a series of structurally related soluble cobalt porphyrin catalysts based on our previously reported best performing CoTPP. All soluble porphyrins [[meso-tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·₇H₂O (CoTCPP), [[meso-tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso-tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)₄·₄H₂O (CoTMpyP) displayed better defluorination efficiencies than CoTPP. Especially, CoTMpyP presented the best defluorination efficiency for br-PFOS (94 %), branched perfluorooctanoic acid (PFOA) (89 %), and 3,7-Perfluorodecanoic acid (PFDA) (60 %) after 1 day at 70 0C. CoTMpyP-nZn0 system showed 88-164 times higher defluorination rate than VB12-nZn0 system in terms of all investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature, demonstrating the potential prospect for in-situ reductive systems. Based on the analysis of the intermediate products, the calculated bond dissociation energies (BDEs) and possible first interaction between CoTMpyP and PFAS, degradation pathways of 3,7-PFDA and 6-PFOS are proposed.

Keywords: cationic, soluble porphyrin, cobalt, vitamin b12, pfas, reductive defluorination

Procedia PDF Downloads 78
832 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 273
831 Photocatalytic Degradation of Bisphenol A Using ZnO Nanoparticles as Catalyst under UV/Solar Light: Effect of Different Parameters and Kinetic Studies

Authors: Farida Kaouah, Chahida Oussalah, Wassila Hachi, Salim Boumaza, Mohamed Trari

Abstract:

A catalyst of ZnO nanoparticles was used in the photocatalytic process of treatment for potential use towards bisphenol A (BPA) degradation in an aqueous solution. To achieve this study, the effect of parameters such as the catalyst dose, initial concentration of BPA and pH on the photocatalytic degradation of BPA was studied. The results reveal that the maximum degradation (more than 93%) of BPA occurred with ZnO catalyst in 120 min of stirring at natural pH (7.1) under solar light irradiation. It was found that chemical oxygen demand (COD) reduction takes place at a faster rate under solar light as compared to that of UV light. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed a Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of bisphenol A from wastewater.

Keywords: bisphenol A, photocatalytic degradation, sunlight, zinc oxide, Langmuir–Hinshelwood model, chemical oxygen demand

Procedia PDF Downloads 156
830 Microwave Assisted Thermal Cracking of Castor Oil Zeolite ZSM-5 as Catalyst for Biofuel Production

Authors: Ghazi Faisal Najmuldeen, Ali Abdul Rahman–Al Ezzi, Tharmathas A/L Alagappan

Abstract:

The aim of this investigation was to produce biofuel from castor oil through microwave assisted thermal cracking with zeolite ZSM-5 as catalyst. The obtained results showed that microwave assisted thermal cracking of castor oil with Zeolite ZSM-5 as catalyst generates products consisting of alcohol, methyl esters and fatty acids. The products obtained from this experimental procedure by the cracking of castor oil are components of biodiesel. Samples of cracked castor oil containing 1, 3 and 5wt % catalyst was analyzed, however, only the sample containing the 5wt % catalyst showed significant presence of condensate. FTIR and GCMS studies show that the condensate obtained is an unsaturated fatty acid, is 9, 12-octadecadienoic acid, suitable for biofuel use. 9, 12-octadecadienoic acid is an unsaturated fatty acid with a molecular weight of 280.445 g/mol. Characterization of the sample demonstrates that functional group for the products from the three samples display a similar peak in the FTIR graph analysis at 1700 cm-1 and 3600 cm-1. The result obtained from GCMS shows that there are 16 peaks obtained from the sample. The compound with the highest peak area is 9, 12-octadecadienoic acid with a retention time of 9.941 and 24.65 peak areas. All these compounds are organic material and can be characterized as biofuel and biodiesel.

Keywords: castor oil, biofuel, biodiesel, thermal cracking, microwave

Procedia PDF Downloads 232
829 High Quality Gallium Oxide Microstructures by Catalyst-Free Thermal Oxidation

Authors: Jiang-Bei Qin, Rui-Xia Miao, Wei Ren

Abstract:

In this study, high crystalline gallium oxide microstructures (wires, belts, and sheets) were synthesized by catalyst-free thermal oxidation. Structural studies such as X-ray diffraction, Raman and transmission electron microscope (TEM) investigations on the microstructures showed monoclinic phase of gallium oxide and single crystalline structure. The scanning electron microscopy (SEM) observations revealed that a huge super microsheet even grows up to 450 µm in length and 206 µm in width. Gallium oxide microstructures exhibit high crystallinity along (002) and (401), respectively. The PL spectrum of these microstructures excites a blue light band centered at 441 and 489nm. The growth mechanism of gallium oxide microstructures is discussed. These gallium oxide microstructures have great potential in functional devices.

Keywords: catalyst-free, gallium oxide, microstructures, thermal oxide

Procedia PDF Downloads 189
828 Highly Efficient Iron Oxide-Sulfonated Graphene Oxide Catalyst for Esterification and Trans-Esterification Reactions

Authors: Reena D. Souza, Tripti Vats, Prem F. Siril

Abstract:

Esterification of free fatty acid (oleic acid) and transesterification of waste cooking oil (WCO) with ethanol over graphene oxide (GO), GO-Fe2O3, sulfonated GO (GO-SO3H), and Fe2O3/GO-SO3H catalysts were examined in the present study. Iron oxide supported graphene-based acid catalyst (Fe2O3/GO-SO3H) exhibited highest catalytic activity. GO was prepared by modified Hummer’s process. The GO-Fe2O3 nanocomposites were prepared by the addition of NaOH to a solution containing GO and FeCl3. Sulfonation was done using concentrated sulfuric acid. Transmissionelectron microscopy (TEM) and atomic force microscopy (AFM) imaging revealed the presence of Fe2O3 particles having size in the range of 50-200 nm. Crystal structure was analyzed by XRD and defect states of graphene were characterized using Raman spectroscopy. The effects of the reaction variables such as catalyst loading, ethanol to acid ratio, reaction time and temperature on the conversion of fatty acids were studied. The optimum conditions for the esterification process were molar ratio of alcohol to oleic acid at 12:1 with 5 wt% of Fe2O3/GO-SO3H at 1000C with a reaction time of 4h yielding 99% of ethyl oleate. This is because metal oxide supported solid acid catalysts have advantages of having both strong Brønsted as well as Lewis acid properties. The biodiesel obtained by transesterification of WCO was characterized by 1H NMR and Gas Chromatography techniques. XRD patterns of the recycled catalyst evidenced that the catalyst structure was unchanged up to the 5th cycle, which indicated the long life of the catalyst.

Keywords: Fe₂O₃/GO-SO₃H, Graphene Oxide, GO-Fe₂O₃, GO-SO₃H, WCO

Procedia PDF Downloads 277