Search results for: resonant structures
4185 Modified Tendon Model Considered Structural Nonlinearity in PSC Structures
Authors: Yangsu Kwon, Hyo-Gyoung Kwak
Abstract:
Nonlinear tendon constitutive model for nonlinear analysis of pre-stressed concrete structures are presented. Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as tendons and/or reinforcing steels are embedded, depends on many influencing factors(the tensile strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are deeply related to the bond characteristics between concrete and reinforcements, consideration of the tension stiffening effect on the basis of the bond-slip mechanism is necessary to evaluate ultimate resisting capacity of structures. In this paper, an improved tendon model, which considering the slip effect between concrete and tendon, and effect of tension stiffening, is suggested. The validity of the proposed models is established by comparing between the analytical results and experimental results in pre-stressed concrete beams.Keywords: bond-slip, prestressed concrete, tendon, ultimate strength
Procedia PDF Downloads 4934184 The Effects of the Aspect Ratio of a Flexible Cylinder on the Vortex Dynamics
Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman
Abstract:
The vortex structures observed in the wake of a flexible cylinder can be significantly different from those of a traditional vibrating, spring mounted, rigid cylinder. These differences can significantly affect the VIV characteristics of the flow and subsequently the VIV response of the cylindrical structures. In this work, we present how the aspect ratio of a flexible cylinder can change the vortex structures in its wake. We will discuss different vortex dynamics which can be observed in the wake of the vibrating flexible cylinder, and how they can affect the vibrational response of the cylinder. Moreover, we will study the transition of these structures versus the aspect ratio of the flexible cylinder. We will discuss how these transitions affect the in-line and transverse forces on the structure. In the end, we will provide general guidelines on the minimum acceptable aspect ratio for the offshore riser studies which may have grave implications for future numerical and experimental works.Keywords: aspect ratio, flexible cylinder, vortex-shedding, VIV
Procedia PDF Downloads 4884183 Applying Wavelet Transform to Ferroresonance Detection and Protection
Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang
Abstract:
Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer
Procedia PDF Downloads 4964182 Semirings of Graphs: An Approach Towards the Algebra of Graphs
Authors: Gete Umbrey, Saifur Rahman
Abstract:
Graphs are found to be most capable in computing, and its abstract structures have been applied in some specific computations and algorithms like in phase encoding controller, processor microcontroller, and synthesis of a CMOS switching network, etc. Being motivated by these works, we develop an independent approach to study semiring structures and various properties by defining the binary operations which in fact, seems analogous to an existing definition in some sense but with a different approach. This work emphasizes specifically on the construction of semigroup and semiring structures on the set of undirected graphs, and their properties are investigated therein. It is expected that the investigation done here may have some interesting applications in theoretical computer science, networking and decision making, and also on joining of two network systems.Keywords: graphs, join and union of graphs, semiring, weighted graphs
Procedia PDF Downloads 1484181 Structural Health Monitoring of Buildings and Infrastructure
Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi
Abstract:
Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating
Procedia PDF Downloads 3384180 Reliability Analysis of Variable Stiffness Composite Laminate Structures
Authors: A. Sohouli, A. Suleman
Abstract:
This study focuses on reliability analysis of variable stiffness composite laminate structures to investigate the potential structural improvement compared to conventional (straight fibers) composite laminate structures. A computational framework was developed which it consists of a deterministic design step and reliability analysis. The optimization part is Discrete Material Optimization (DMO) and the reliability of the structure is computed by Monte Carlo Simulation (MCS) after using Stochastic Response Surface Method (SRSM). The design driver in deterministic optimization is the maximum stiffness, while optimization method concerns certain manufacturing constraints to attain industrial relevance. These manufacturing constraints are the change of orientation between adjacent patches cannot be too large and the maximum number of successive plies of a particular fiber orientation should not be too high. Variable stiffness composites may be manufactured by Automated Fiber Machines (AFP) which provides consistent quality with good production rates. However, laps and gaps are the most important challenges to steer fibers that effect on the performance of the structures. In this study, the optimal curved fiber paths at each layer of composites are designed in the first step by DMO, and then the reliability analysis is applied to investigate the sensitivity of the structure with different standard deviations compared to the straight fiber angle composites. The random variables are material properties and loads on the structures. The results show that the variable stiffness composite laminate structures are much more reliable, even for high standard deviation of material properties, than the conventional composite laminate structures. The reason is that the variable stiffness composite laminates allow tailoring stiffness and provide the possibility of adjusting stress and strain distribution favorably in the structures.Keywords: material optimization, Monte Carlo simulation, reliability analysis, response surface method, variable stiffness composite structures
Procedia PDF Downloads 5204179 The Univalence Principle: Equivalent Mathematical Structures Are Indistinguishable
Authors: Michael Shulman, Paige North, Benedikt Ahrens, Dmitris Tsementzis
Abstract:
The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined in a non-algebraic and space-based style, as well as models of higher-order theories such as topological spaces. In particular, we formulate a general definition of indiscernibility for objects of any such structure, and a corresponding univalence condition that generalizes Rezk’s completeness condition for Segal spaces and ensures that all equivalences of structures are levelwise equivalences. Our work builds on Makkai’s First-Order Logic with Dependent Sorts, but is expressed in Voevodsky’s Univalent Foundations (UF), extending previous work on the Structure Identity Principle and univalent categories in UF. This enables indistinguishability to be expressed simply as identification, and yields a formal theory that is interpretable in classical homotopy theory, but also in other higher topos models. It follows that Univalent Foundations is a fully equivalence-invariant foundation for higher-categorical mathematics, as intended by Voevodsky.Keywords: category theory, higher structures, inverse category, univalence
Procedia PDF Downloads 1514178 Shuffled Structure for 4.225 GHz Antireflective Plates: A Proposal Proven by Numerical Simulation
Authors: Shin-Ku Lee, Ming-Tsu Ho
Abstract:
A newly proposed antireflective selector with shuffled structure is reported in this paper. The proposed idea is made of two different quarter wavelength (QW) slabs and numerically supported by the one-dimensional simulation results provided by the method of characteristics (MOC) to function as an antireflective selector. These two QW slabs are characterized by dielectric constants εᵣA and εᵣB, uniformly divided into N and N+1 pieces respectively which are then shuffled to form an antireflective plate with B(AB)N structure such that there is always one εᵣA piece between two εᵣB pieces. Another is A(BA)N structure where every εᵣB piece is sandwiched by two εᵣA pieces. Both proposed structures are numerically proved to function as QW plates. In order to allow maximum transmission through the proposed structures, the two dielectric constants are chosen to have the relation of (εᵣA)² = εᵣB > 1. The advantages of the proposed structures over the traditional anti-reflection coating techniques are two components with two thicknesses and to shuffle to form new QW structures. The design wavelength used to validate the proposed idea is 71 mm corresponding to a frequency about 4.225 GHz. The computational results are shown in both time and frequency domains revealing that the proposed structures produce minimum reflections around the frequency of interest.Keywords: method of characteristics, quarter wavelength, anti-reflective plate, propagation of electromagnetic fields
Procedia PDF Downloads 1464177 Determination of Weathering at Kilistra Ancient City by Using Non-Destructive Techniques, Central Anatolia, Turkey
Authors: İsmail İnce, Osman Günaydin, Fatma Özer
Abstract:
Stones used in the construction of historical structures are exposed to various direct or indirect atmospheric effects depending on climatic conditions. Building stones deteriorate partially or fully as a result of this exposure. The historic structures are important symbols of any cultural heritage. Therefore, it is important to protect and restore these historical structures. The aim of this study is to determine the weathering conditions at the Kilistra ancient city. It is located in the southwest of the Konya city, Central Anatolia, and was built by carving into pyroclastic rocks during the Byzantine Era. For this purpose, the petrographic and mechanical properties of the pyroclastic rocks were determined. In the assessment of weathering of structures in the ancient city, in-situ non-destructive testing (i.e., Schmidt hardness rebound value, relative humidity measurement) methods were applied.Keywords: cultural heritage, Kilistra ancient city, non-destructive techniques, weathering
Procedia PDF Downloads 3604176 Cost Comparison between R.C.C. Structures and Composite Columns Structures
Authors: Assad Rashid, Umair Ahmed, Zafar Baig
Abstract:
A new trend in construction is widely influenced by the use of Steel-Concrete Composite Columns. The rapid growth in Steel-Concrete Composite construction has widely decreased the conventional R.C.C structures. Steel Concrete composite construction has obtained extensive receiving around the globe. It is considering the fact that R.C.C structures construction is most suitable and economical for low-rise construction, so it is used in farming systems in most of the buildings. However, increased dead load, span restriction, less stiffness and risky formwork make R.C.C construction uneconomical and not suitable when it comes to intermediate to high-rise buildings. A Base + Ground +11 storey commercial building was designed on ETABS 2017 and made a comparison between conventional R.C.C and encased composite column structure. After performing Equivalent Static non-linear analysis, it has been found that construction cost is 13.01% more than R.C.C structure but encased composite column building has 7.7% more floor area. This study will help in understanding the behavior of conventional R.C.C structure and Encased Composite column structure.Keywords: composite columns structure, equivalent static non-linear analysis, comparison between R.C.C and encased composite column structures, cost-effective structure
Procedia PDF Downloads 2004175 Modeling and Tracking of Deformable Structures in Medical Images
Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan
Abstract:
This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images
Procedia PDF Downloads 3424174 Supercomputer Simulation of Magnetic Multilayers Films
Authors: Vitalii Yu. Kapitan, Aleksandr V. Perzhu, Konstantin V. Nefedev
Abstract:
The necessity of studying magnetic multilayer structures is explained by the prospects of their practical application as a technological base for creating new storages medium. Magnetic multilayer films have many unique features that contribute to increasing the density of information recording and the speed of storage devices. Multilayer structures are structures of alternating magnetic and nonmagnetic layers. In frame of the classical Heisenberg model, lattice spin systems with direct short- and long-range exchange interactions were investigated by Monte Carlo methods. The thermodynamic characteristics of multilayer structures, such as the temperature behavior of magnetization, energy, and heat capacity, were investigated. The processes of magnetization reversal of multilayer structures in external magnetic fields were investigated. The developed software is based on the new, promising programming language Rust. Rust is a new experimental programming language developed by Mozilla. The language is positioned as an alternative to C and C++. For the Monte Carlo simulation, the Metropolis algorithm and its parallel implementation using MPI and the Wang-Landau algorithm were used. We are planning to study of magnetic multilayer films with asymmetric Dzyaloshinskii–Moriya (DM) interaction, interfacing effects and skyrmions textures. This work was supported by the state task of the Ministry of Education and Science of the Russia # 3.7383.2017/8.9Keywords: The Monte Carlo methods, Heisenberg model, multilayer structures, magnetic skyrmion
Procedia PDF Downloads 1664173 The Usage of Adobe in Historical Structures of Van City
Authors: Mustafa Gülen, Eylem Güzel, Soner Guler
Abstract:
The studies concentrated on the historical background of Van show the fact that Van has had a significant position as a settlement since ancient times and that it has hosted many civilizations during history. With the dominance of Ottoman Empire in 16th century, the region had been re-constructed by building new walls at the southern side of Van Castle. These construction activities had mostly been fulfilled by the usage of adobe which had been a fundamental material for thousands of years. As a result of natural disasters, battles and the move at the threshold of 20th century to the new settlement which is 9 kilometers away from the Ancient City Van is an open-air museum with the ruins of churches, mosques and baths. In this study, the usage of adobe in historical structures of Van city is evaluated in detail.Keywords: historical structures, adobe, Van city, adobe
Procedia PDF Downloads 6114172 Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate
Authors: Nour Eldin Afyouni, Hassan Assoum, Kamel Abed-Meraim, Anas Sakout
Abstract:
The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise.Keywords: impinging jet, coherent structures, SPIV, aeroacoustics
Procedia PDF Downloads 834171 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response
Authors: Reza Behboodian
Abstract:
Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.Keywords: failure, time history analysis, dynamic response, strain energy
Procedia PDF Downloads 1334170 Combined Effect of Global Warming and Water Structures on Rivers’ Water Quality and Aquatic Life: Case Study of Esna Barrage on the Nile River in Egypt
Authors: Sherine A. El Baradei
Abstract:
Global warming and climatic change are very important topics that are being studied and investigated nowadays as they have lots of diverse impacts on mankind, water quality, aquatic life, wildlife,…etc. Also, many water and hydraulics structures like dams and barrages are being built every day to satisfy water consumption needs, irrigation purposes and power generating purposes. Each of global warming and water structures alone has diversity of impacts on water quality and aquatic life in rivers. This research is investigating the dual combined effect of both water structures and global warming on the water quality and aquatic life through mathematical modeling. A case study of the Esna Barrage on the Nile River in Egypt is being studied. This research study is taking into account the effects of both seasons; namely, winter and summer and their effects on air and hence water temperature of the Nile reach under study. To do so, the study is conducted on the last 23 years to investigate the effect of global warming and climatic change on the studied river water. The mathematical model is then combining the dual effect of the Esna barrage and the global warming on the water quality; as well as, on aquatic life of the Nile reach under study. From the results of the mathematical model, it could be concluded that the dual effect of water structures and global warming is very negative on the water quality and the aquatic life in rivers upstream those structures.Keywords: aquatic life, barrages, climatic change, dissolved oxygen, global warming, river, water quality, water structures
Procedia PDF Downloads 3674169 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 2984168 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites
Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias
Abstract:
Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance
Procedia PDF Downloads 2544167 Modeling of Complex Structures: Shear Wall with Openings and Stiffened Shells
Authors: Temami Oussama, Bessais Lakhdar, Hamadi Djamal, Abderrahmani Sifeddine
Abstract:
The analysis of complex structures encourages the engineer to make simplifying assumptions, sometimes attempting the analysis of the whole structure as complex as it is, and it can be done using the finite element method (FEM). In the modeling of complex structures by finite elements, various elements can be used: beam element, membrane element, solid element, plates and shells elements. These elements formulated according to the classical formulation and do not generally share the same nodal degrees of freedom, which complicates the development of a compatible model. The compatibility of the elements with each other is often a difficult problem for modeling complicated structure. This compatibility is necessary to ensure the convergence. To overcome this problem, we have proposed finite elements with a rotational degree of freedom. The study used is based on the strain approach formulation with 2D and 3D formulation with different degrees of freedom at each node. For the comparison and confrontation of results; the finite elements available in ABAQUS/Standard are used.Keywords: compatibility requirement, complex structures, finite elements, modeling, strain approach
Procedia PDF Downloads 4434166 Shape-Changing Structure: A Prototype for the Study of a Dynamic and Modular Structure
Authors: Annarita Zarrillo
Abstract:
This research is part of adaptive architecture, reflecting the evolution that the world of architectural design is going through. Today's architecture is no longer seen as a static system but, conversely, as a dynamic system that changes in response to the environment and the needs of users. One of the major forms of adaptivity is represented by kinetic structures. This study aims to underline the importance of experimentation on physical scale models for the study of dynamic structures and to present the case study of a modular kinetic structure designed through the use of parametric design software and created as a prototype in the laboratories of the Royal Danish Academy in Copenhagen.Keywords: adaptive architecture, architectural application, kinetic structures, modular prototype
Procedia PDF Downloads 1374165 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer
Authors: Simran Baweja, Bhavika Kalal, Surajit Maity
Abstract:
Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.Keywords: excited state hydrogen transfer, supersonic expansion, gas phase spectroscopy, IR-UV double resonance spectroscopy, laser induced fluorescence, photoionization efficiency spectroscopy
Procedia PDF Downloads 754164 Ice Load Measurements on Known Structures Using Image Processing Methods
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.Keywords: camera calibration, ice detection, ice load measurements, image processing
Procedia PDF Downloads 3684163 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door
Authors: Emin Z. Mahmud
Abstract:
This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening
Procedia PDF Downloads 1304162 A Theoretical Study of Multi-Leaf Spring in Seismic Response Control
Authors: M. Ezati Kooshki , H. Pourmohamad
Abstract:
Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices.Keywords: bracing system, finite element analysis, leaf spring, seismic protection, time history analysis
Procedia PDF Downloads 4054161 Particle Jetting Induced by the Explosive Dispersal
Authors: Kun Xue, Lvlan Miu, Jiarui Li
Abstract:
Jetting structures are widely found in particle rings or shells dispersed by the central explosion. In contrast, some explosive dispersal of particles only results in a dispersed cloud without distinctive structures. Employing the coupling method of the compressible computational fluid mechanics and discrete element method (CCFD-DEM), we reveal the underlying physics governing the formation of the jetting structure, which is related to the competition between the shock compaction and gas infiltration, two major processes during the shock interaction with the granular media. If the shock compaction exceeds the gas infiltration, the discernable jetting structures are expected, precipitated by the agglomerates of fast-moving particles induced by the heterogenous network of force chains. Otherwise, particles are uniformly accelerated by the interstitial flows, and no distinguishable jetting structures are formed. We proceed to devise the phase map of the jetting formation in the space defined by two dimensionless parameters which characterize the timescales of the shock compaction and the gas infiltration, respectively.Keywords: compressible multiphase flows, DEM, granular jetting, pattern formation
Procedia PDF Downloads 774160 On the Effects of External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder
Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman
Abstract:
Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). In this work, we present the effects of the external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of the external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder.Keywords: circular cylinder, external force, vortex-shedding, VIV
Procedia PDF Downloads 3734159 Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures
Authors: Davood Mousanezhad, Ashkan Vaziri
Abstract:
As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes.Keywords: cellular structures, honeycombs, hierarchical structures, metamaterials, multifunctional structures, phononic crystals, auxetic structures
Procedia PDF Downloads 3494158 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures
Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal
Abstract:
The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching
Procedia PDF Downloads 2024157 The Usage of Mudbrick in Historical Structures of Van City
Authors: Mustafa Gulen, Eylem Guzel, Soner Guler
Abstract:
The studies concentrated on the historical background of Van city show the fact that Van city has had a significant position as a settlement since ancient times and that it has hosted many civilizations during history. With the dominance of Ottoman Empire in 16th century, the region had been re-constructed by building new walls at the southern side of Van Castle. These construction activities had mostly been fulfilled by the usage of mudbrick which had been a fundamental material for thousands of years. As a result of natural disasters, battles and the move at the threshold of 20th century to the new settlement which is 9 kilometers away from the Ancient City Van is an open-air museum with the ruins of churches, mosques and baths. In this study, the usage of mudbrick from past till today in historical structures of Van city is evaluated in detail.Keywords: historical structures, history, mudbrick, Van city
Procedia PDF Downloads 5344156 Screening Methodology for Seismic Risk Assessment of Aging Structures in Oil and Gas Plants
Authors: Mohammad Nazri Mustafa, Pedram Hatami Abdullah, M. Fakhrur Razi Ahmad Faizul
Abstract:
With the issuance of Malaysian National Annex 2017 as a part of MS EN 1998-1:2015, the seismic mapping of Malaysian Peninsular including Sabah and Sarawak has undergone some changes in terms of the Peak Ground Acceleration (PGA) value. The revision to the PGA has raised a concern on the safety of oil and gas onshore structures as these structures were not designed to accommodate the new PGA values which are much higher than the previous values used in the original design. In view of the high numbers of structures and buildings to be re-assessed, a risk assessment methodology has been developed to prioritize and rank the assets in terms of their criticality against the new seismic loading. To-date such risk assessment method for oil and gas onshore structures is lacking, and it is the main intention of this technical paper to share the risk assessment methodology and risk elements scoring finalized via Delphi Method. The finalized methodology and the values used to rank the risk elements have been established based on years of relevant experience on the subject matter and based on a series of rigorous discussions with professionals in the industry. The risk scoring is mapped against the risk matrix (i.e., the LOF versus COF) and hence, the overall risk for the assets can be obtained. The overall risk can be used to prioritize and optimize integrity assessment, repair and strengthening work against the new seismic mapping of the country.Keywords: methodology, PGA, risk, seismic
Procedia PDF Downloads 152