Search results for: rectangular duct
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 452

Search results for: rectangular duct

302 A New Approach in a Problem of a Supersonic Panel Flutter

Authors: M. V. Belubekyan, S. R. Martirosyan

Abstract:

On the example of an elastic rectangular plate streamlined by a supersonic gas flow, we have investigated the phenomenon of divergence and of panel flatter of the overrunning of the gas flow at a free edge under assumption of the presence of concentrated inertial masses and moments at the free edge. We applied a new approach of finding of solution of these problems, which was developed based on the algorithm for an analytical solution finding. This algorithm is easy to use for theoretical studies for the wides circle of nonconservative problems of linear elastic stability. We have established the relation between the characteristics of natural vibrations of the plate and velocity of the streamlining gas flow, which enables one to draw some conclusions on the stability of disturbed motion of the plate depending on the parameters of the system plate-flow. Its solution shows that either the divergence or the localized divergence and the flutter instability are possible. The regions of the stability and instability in space of parameters of the problem are identified. We have investigated the dynamic behavior of the disturbed motion of the panel near the boundaries of region of the stability. The safe and dangerous boundaries of region of the stability are found. The transition through safe boundary of the region of the stability leads to the divergence or localized divergence arising in the vicinity of free edge of the rectangular plate. The transition through dangerous boundary of the region of the stability leads to the panel flutter. The deformations arising at the flutter are more dangerous to the skin of the modern aircrafts and rockets resulting to the loss of the strength and appearance of the fatigue cracks.

Keywords: stability, elastic plate, divergence, localized divergence, supersonic panels flutter

Procedia PDF Downloads 461
301 Numerical Model Validation Using Durbin Method

Authors: H. Al-Hajeri

Abstract:

The computation of the effectiveness of turbulence enhancement surface features, such as ribs as means of promoting mixing and hence heat transfer, has attracted the continued attention of the engineering community. In this study, the simulation of a three-dimensional cooling passage is carried out employing a number of turbulence models including Durbin model. The cooling passage consists of a square section duct whose upper and lower surfaces feature staggered cuboid ribs. The main objective of this paper is to provide comparisons of the performance of the v2-f model against other established turbulence models as implemented in the commercial CFD code Ansys Fluent. The present study demonstrates that the v2-f model can successfully capture the isothermal air flow phenomena in flow over obstacles.

Keywords: CFD, cooling passage, Durbin model, turbulence model

Procedia PDF Downloads 503
300 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 334
299 Outcome of Dacryocystorhinostomy with Peroperative Local Use of Mitomycin-C

Authors: Chandra Shekhar Majumder, Orin Sultana Jamie

Abstract:

Background: Dacryocystorhinostomy (DCR) has been a widely accepted surgical intervention for nasolacrimal duct obstructions. Some previous studies demonstrated the potential benefits of the peroperative application of agents like Mitomycin-C (MMC) with DCR to improve surgical outcomes. Relevant studies are rare in Bangladesh, and there are controversies about the dose, duration of MMC, and outcome. Therefore, the present study aimed to investigate the comparative efficacy of DCR with and without MMC in a tertiary hospital in Bangladesh. Objective: The study aims to determine the outcome of a dacryocystorhinostomy with preoperative local use of mitomycin–C. Methods: An analytical study was conducted in the Department of Ophthalmology, Sir Salimullah Medical College & Mitford Hospital, Dhaka, from January 2023 to September 2023. Seventy patients who were admitted for DCR operation were included according to the inclusion and exclusion criteria. Patients were divided into two groups: those who underwent DCR with peroperative administration of 0.2 mg/ml Mitomycin-C for 5 minutes (Group I) and those who underwent DCR alone (Group II). All patients were subjected to detailed history taking, clinical examination, and relevant investigations. All patients underwent DCR according to standard guidelines and ensured the highest peroperative and postoperative care. Then, patients were followed up at 7th POD, 1-month POD, 3 months POD, and 6 months POD to observe the success rate between the two groups by assessing tearing condition, irrigation, height of tear meniscus, and FDDT- test. Data was recorded using a pre-structured questionnaire, and collected data were analyzed using SPSS 23. Results: The mean age of the study patients was 42.17±6.7 (SD) years and 42.29±7.1 (SD) years in Groups I and II, respectively, with no significant difference (p=0.945). At the 6th month’s follow-up, group I patients were observed with 94.3% frequency of symptom-free, 85.6% patency of lacrimal drainage system, 68.6% had tear meniscus <0.1mm and 88.6% had positive Fluorescence Dye Disappearance Test (FDDT test). In group II, 91.4% were symptom-free, 68.6% showed patency, 57.1% had a height of tear meniscus < 0.1 mm, and 85.6% had FDDT test positive. But no statistically significant difference was observed (p<.05). Conclusion: The use of Mitomycin-C preoperatively during DCR offers better postoperative outcomes, particularly in maintaining patency and achieving symptom resolution with more FDDT test positive and improvement of tear meniscus in the MMC group than the control group. However, this study didn’t demonstrate a statistically significant difference between the two groups. Further research with larger sample sizes and longer follow-up periods would be beneficial to corroborate these findings.

Keywords: dacryocystorhinostomy, mitomycin-c, dacryocystitis, nasolacrimal duct obstruction

Procedia PDF Downloads 45
298 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 266
297 Transverse Testicular Ectopia: A Case Report with Review of Literature

Authors: Rida Ahmad, Areej S. Habib, Sohail A. Dogar, Saqib H. Qazi

Abstract:

Transverse testicular ectopia is a rare congenital disorder involving mal descent and mal-positioning of the testes, reported in the medical literature about 300 times. Many theories attempt to explain the failure of the testes to migrate to their correct location. While the age at presentation can vary; most cases present in early adolescents or late adulthood. It is often an incidental discovery made during an operative intervention, most commonly during hernia exploration. It can be isolated or present with a plethora of anomalies. We present the case of a 2-year-old male with transverse testicular ectopia who presented with vague abdominal pain. He was managed successfully with the Modified Ombredanne procedure and good outcome 6 months after the procedure.

Keywords: cryptorchidism, persistent Mullerian duct syndrome, transverse testicular ectopia, testicular mal-descent

Procedia PDF Downloads 341
296 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique

Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich

Abstract:

In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.

Keywords: annular flow, disturbance waves, entrainment, flow development

Procedia PDF Downloads 251
295 Numerical Study of a Ventilation Principle Based on Flow Pulsations

Authors: Amir Sattari, Mac Panah, Naeim Rashidfarokhi

Abstract:

To enhance the mixing of fluid in a rectangular enclosure with a circular inlet and outlet, an energy-efficient approach is further investigated through computational fluid dynamics (CFD). Particle image velocimetry (PIV) measurements help confirm that the pulsation of the inflow velocity improves the mixing performance inside the enclosure considerably without increasing energy consumption. In this study, multiple CFD simulations with different turbulent models were performed. The results obtained were compared with experimental PIV results. This study investigates small-scale representations of flow patterns in a ventilated rectangular room. The objective is to validate the concept of an energy-efficient ventilation strategy with improved thermal comfort and reduction of stagnant air inside the room. Experimental and simulated results confirm that through pulsation of the inflow velocity, strong secondary vortices are generated downstream of the entrance wall-jet. The pulsatile inflow profile promotes a periodic generation of vortices with stronger eddies despite a relatively low inlet velocity, which leads to a larger boundary layer with increased kinetic energy in the occupied zone. A real-scale study was not conducted; however, it can be concluded that a constant velocity inflow profile can be replaced with a lower pulsated flow rate profile while preserving the mixing efficiency. Among the turbulent CFD models demonstrated in this study, SST-kω is most advantageous, exhibiting a similar global airflow pattern as in the experiments. The detailed near-wall velocity profile is utilized to identify the wall-jet instabilities that consist of mixing and boundary layers. The SAS method was later applied to predict the turbulent parameters in the center of the domain. In both cases, the predictions are in good agreement with the measured results.

Keywords: CFD, PIV, pulsatile inflow, ventilation, wall-jet

Procedia PDF Downloads 174
294 Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model

Authors: Sonia Besbes, Mahmoud El Hajem, Habib Ben Aissia, Jean Yves Champagne, Jacques Jay

Abstract:

In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center.

Keywords: bubble column, computational fluid dynamics (CFD), coupled DPM and VOF model, hydrodynamics

Procedia PDF Downloads 387
293 Numerical Simulation of Two-Dimensional Porous Cylinder Flow in In-Line Arrangement

Authors: Hamad Alhajeri, Abdulrahman Almutairi, A. H. Alenezi, M. H. Alhajeri, Ayedh Alajmi

Abstract:

The flow around three porous cylinders in inline arrangement is investigated in this paper computationally using the commercial code FLUENT. The arrangement generally operates with the dirty gases passing through the porous cylinders, the particulate material being deposited on the outside of the cylinders. However, in a combined cycle power plant, filtration is required to allow the hot exhaust gases to be fed to a turbine without causing any physical damage to the turbine blades. Three cylinder elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the cylinder.

Keywords: porous cylinders, CFD, fluid flow, filtration

Procedia PDF Downloads 484
292 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method

Authors: Rahim Jafari, Tuba Okutucu-Özyurt

Abstract:

The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.

Keywords: microchannel, boiling, Cahn-Hilliard method, simulation

Procedia PDF Downloads 424
291 [Keynote Talk]: Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture

Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little

Abstract:

Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.

Keywords: by-products, inhibitory effect, mixture, photocatalytic oxidation

Procedia PDF Downloads 499
290 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency

Procedia PDF Downloads 372
289 Uncovering Geometrical Ideas in Weaving: An Ethnomathematical Approaches to School Pedagogy

Authors: Jaya Bishnu Pradhan

Abstract:

Weaving mat is one of the common activities performed in different community generally in the rural part of Nepal. Mat weavers’ practice mathematical ideas and concepts implicitly in order to perform their job. This study is intended to uncover the mathematical ideas embedded in mat weaving that can help teachers and students for the teaching and learning of school geometry. The ethnographic methodology was used to uncover and describe the beliefs, values, understanding, perceptions, and attitudes of the mat weavers towards mathematical ideas and concepts in the process of mat weaving. A total of 4 mat weavers, two mathematics teachers and 12 students from grade level 6-8, who are used to participate in weaving, were selected for the study. The whole process of the mat weaving was observed in a natural setting. The classroom observation and in-depth interview were taken with the participants with the help of interview guidelines and observation checklist. The data obtained from the field were categorized according to the themes regarding mathematical ideas embedded in the weaving activities, and its possibilities in teaching learning of school geometry. In this study, the mathematical activities in different sectors of their lives, their ways of understanding the natural phenomena, and their ethnomathematical knowledge were analyzed with the notions of pluralism. From the field data, it was found that the mat weaver exhibited sophisticated geometrical ideas in the process of construction of frame of mat. They used x-test method for confirming if the mat is rectangular. Mat also provides a good opportunity to understand the space geometry. A rectangular form of mat may be rolled up when it is not in use and can be converted to a cylindrical form, which usually can be used as larder so as to reserve food grains. From the observation of the situations, this cultural experience enables students to calculate volume, curved surface area and total surface area of the cylinder. The possibilities of incorporation of these cultural activities and its pedagogical use were observed in mathematics classroom. It is argued that it is possible to use mat weaving activities in the teaching and learning of school geometry.

Keywords: ethnography, ethnomathematics, geometry, mat weaving, school pedagogy

Procedia PDF Downloads 156
288 Enhancement Performance of Desalination System Using Humidification and Dehumidification Processes

Authors: Zeinab Syed Abdel Rehim

Abstract:

Water shortage is considered as one of the huge problems the world encounter now. Water desalination is considered as one of the more suitable methods governments can use to substitute the increased need for potable water. The humidification-dehumidification process for water desalination is viewed as a promising technique for small capacity production plants. The process has several attraction features which include the use of sustainable energy sources, low technology, and low-temperature dehumidification. A pilot experimental set-up plant was constructed with the conventional HVAC components such as air blower that supplies air to an air duct inside which air preheater, steam injector and cooling coil of a small refrigeration unit are placed. The present work evaluates the characteristics of humidification-dehumidification process for water desalination as a function of air flow rate, total power input and air inlet temperature in order to study the optimum conditions required to produce distilled water.

Keywords: condensation, dehumidification, evaporation, humidification, water desalination

Procedia PDF Downloads 243
287 The Differences between Direct Examination and ELISA Test during the Diagnosis of Fasciolosis in Jaundiced Slaughtered Sheep in Iraq

Authors: Azad A. Meerkhan, Alaa Hani Razak, Bayan M. S. Younis

Abstract:

The efficiency of enzyme-linked immunosorbent assay (ELISA) in sheep infected with Fasciola hepatica was studied. 232 jaundiced sheep among 5208 sheep slaughter in the Duhok abattoir (regardless of the age and gender) between the period of May. 2012 to Oct. 2012 were examined by direct examination (Searching of adult flukes in the bile duct) and by Enzyme-linked immunosorbent assay (ELISA) to detect the prevalence of fascioliasis in the studied population which showed a high observed infection ratio in Sep. 2012 (12.2%) with the high (ELISA) result of infection in May. 2012 (25.36%). Significant differences were found between the two ways in all of the months with the highest difference in May. 2012 and the net deference between the both ways was 6.91%.

Keywords: fascioliasis, Fasciola hepatica, layers, liver fluk, ELISA, direct examination

Procedia PDF Downloads 322
286 New Effect of Duct Cross Sectional Shape on the Nanofluid Flow Heat Transfer

Authors: Mohammad R. Salimpour, Amir Dehshiri

Abstract:

In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. we check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enchantment than conduit with circular cross section.

Keywords: nano fluid, cross-sectional shape, TiO2, convection

Procedia PDF Downloads 523
285 Numerical Analysis of Heat Transfer Enhancement in Heat Exchangers by using Dimpled Tube

Authors: Bader Alhumaidi Alsubaei, Zahid H. Akash, Ali Imam Sunny

Abstract:

The heat transfer coefficient can be improved passively by using a dimpled surface on the tube. The contact area where heat transfer takes place can be enlarged and turbulence will be purposefully produced inside the duct; as a consequence, higher heat transfer quality will be achieved by employing an extended inner or outer surface (dimpled surface). In order to compare the rate and quality of heat transfer between a regular-shaped pipe and a dimpled pipe, a dimpled tube with a fixed dimple radius was created. Numerical analysis of the plain and dimpled pipes was performed using ANSYS. A 23% increase in Nusselt number was seen for dimpled tubes compared to plain tubes. In comparison to plain tubes, dimpled tubes' increase in thermal performance index was found to be between 8% and 10%. An increase in pressure drop of 18% was noted.

Keywords: heat transfer, dimpled tube, CFD, ANSYS

Procedia PDF Downloads 109
284 A New Realization of Multidimensional System for Grid Sensor Network

Authors: Yang Xiong, Hua Cheng

Abstract:

In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.

Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems

Procedia PDF Downloads 655
283 Sound Quality Analysis of Sloshing Noise from a Rectangular Tank

Authors: Siva Teja Golla, B. Venkatesham

Abstract:

The recent technologies in hybrid and high-end cars have subsided the noise from major sources like engines and transmission systems. This resulted in the unmasking of the previously subdued noises. These noises are becoming noticeable to the passengers, causing annoyance to them and affecting the perceived quality of the vehicle. Sloshing in the fuel tank is one such source of noise. Sloshing occurs due to the excitations undergone by the fuel tank due to the vehicle's movement. Sloshing noise occurs due to the interaction of the fluid with the surrounding tank walls or with the fluid itself. The noise resulting from the interaction of the fluid with the structure is ‘Hit noise’, and the noise due to fluid-fluid interaction is ‘Splash noise’. The type of interactions the fluid undergoes inside the tank, and the type of noise generated depends on a variety of factors like the fill level of the tank, type of fluid, presence of objects like baffles inside the tank, type and strength of the excitation, etc. There have been studies done to understand the effect of each of these parameters on the generation of different types of sloshing noises. But little work is done in the psychoacoustic aspect of these sounds. The psychoacoustic study of the sloshing noises gives an understanding of the level of annoyance it can cause to the passengers and helps in taking necessary measures to address it. In view of this, the current paper focuses on the calculation of the psychoacoustic parameters like loudness, sharpness, roughness and fluctuation strength for the sloshing noise. As the noise generation mechanisms for the hit and splash noises are different, these parameters are calculated separately for them. For this, the fluid flow regimes that predominantly cause the hit-and-splash noises are to be separately emulated inside the tank. This is done through a reciprocating test rig, which imposes reciprocating excitation to a rectangular tank filled with the fluid. By varying the frequency of excitation, the fluid flow regimes with the predominant generation of hit-and-splash noises can be separately created inside the tank. These tests are done in a quiet room and the noise generated is captured using microphones and is used for the calculation of psychoacoustic parameters of the sloshing noise. This study also includes the effect of fill level and the presence of baffles inside the tank on these parameters.

Keywords: sloshing, hit noise, splash noise, sound quality

Procedia PDF Downloads 29
282 3D Modeling of Flow and Sediment Transport in Tanks with the Influence of Cavity

Authors: A. Terfous, Y. Liu, A. Ghenaim, P. A. Garambois

Abstract:

With increasing urbanization worldwide, it is crucial to sustainably manage sediment flows in urban networks and especially in stormwater detention basins. One key aspect is to propose optimized designs for detention tanks in order to best reduce flood peak flows and in the meantime settle particles. It is, therefore, necessary to understand complex flows patterns and sediment deposition conditions in stormwater detention basins. The aim of this paper is to study flow structure and particle deposition pattern for a given tank geometry in view to control and maximize sediment deposition. Both numerical simulation and experimental works were done to investigate the flow and sediment distribution in a storm tank with a cavity. As it can be indicated, the settle distribution of the particle in a rectangular tank is mainly determined by the flow patterns and the bed shear stress. The flow patterns in a rectangular tank differ with different geometry, entrance flow rate and the water depth. With the changing of flow patterns, the bed shear stress will change respectively, which also play an influence on the particle settling. The accumulation of the particle in the bed changes the conditions at the bottom, which is ignored in the investigations, however it worth much more attention, the influence of the accumulation of the particle on the sedimentation should be important. The approach presented here is based on the resolution of the Reynolds averaged Navier-Stokes equations to account for turbulent effects and also a passive particle transport model. An analysis of particle deposition conditions is presented in this paper in terms of flow velocities and turbulence patterns. Then sediment deposition zones are presented thanks to the modeling with particle tracking method. It is shown that two recirculation zones seem to significantly influence sediment deposition. Due to the possible overestimation of particle trap efficiency with standard wall functions and stick conditions, further investigations seem required for basal boundary conditions based on turbulent kinetic energy and shear stress. These observations are confirmed by experimental investigations processed in the laboratory.

Keywords: storm sewers, sediment deposition, numerical simulation, experimental investigation

Procedia PDF Downloads 325
281 Analysis of Plates with Varying Rigidities Using Finite Element Method

Authors: Karan Modi, Rajesh Kumar, Jyoti Katiyar, Shreya Thusoo

Abstract:

This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied.

Keywords: ANSYS, finite element method, plates, static analysis

Procedia PDF Downloads 453
280 Behavior of Laminated Plates under Mechanical Loading

Authors: Mahmoudi Noureddine

Abstract:

In this study the use of two variable refined plate theories of laminated composite plates to static response of laminated plates. The plate theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The validity of the present theory is demonstrated by comparison with solutions available in the literature and finite element method. The result is presented for the static response of simply supported rectangular plates under uniform sinusoidal mechanical loadings.

Keywords: bending, composite, laminate, plates, fem

Procedia PDF Downloads 406
279 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study

Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar

Abstract:

In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.

Keywords: effective cooling, numerical modeling, photovoltaic cell, triangular ribs

Procedia PDF Downloads 177
278 Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber

Authors: Amel Boulemtafes-Boukadoum, Ahmed Benzaoui

Abstract:

Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness.

Keywords: solar air heater, artificial roughness, heat transfer enhancement, CFD

Procedia PDF Downloads 570
277 Evaluation of Intraoral Complications of Buccal Mucosa Graft in Augmentation Urethroplasty

Authors: Dahna Alkahtani, Faryal Suraya, Fadah Alanazi

Abstract:

Background: Buccal mucosal graft for urethral augmentation has surpassed other grafting options, and is now considered the standard of choice for substitution Urethroplasty. The graft has gained its popularity due to its excellent short and long-term results, easy harvesting as well as its ability in withstanding wet environments. However, although Buccal mucosal grafts are an excellent option, it is not free of complications, potential intraoral complications are bleeding, pain, swelling, injury to the nerve resulting in numbness, lip deviation or retraction. Objectives: The current study aims to evaluate the intraoral complications of buccal mucosa grafts harvested from one cheek, and used in Augmentation Urethroplasty. Methodology: The study was conducted retrospectively using the medical records of patients who underwent open augmentation urethroplasty with a buccal mucosa graft at King Khalid University Hospital, Saudi Arabia. Data collection of demographics included the type of graft used, presence or absence of strictures and its etiological factors. Pre-operative and post-operative evaluations were carried out on the subjects including the medical history, physical examination, uroflowmetry, retrograde urethrography, voiding cystourethrography and urine cultures were also noted. Further, the quality of life and complications of the procedure including the presence or occurrence of bleeding within 3-days post-procedure, the severity of pain, oral swelling after grafting, length of return to normal daily diet, painful surgical site, intake of painkillers, presence or absence of speech disturbance, numbness in the cheeks and lips were documented. Results: Thirty-two male subjects with ages ranging from 15 years to 72 years were included in the current study. Following the procedure, a hundred percent of the subjects returned to their normal daily diet by the sixth postoperative day. Further, the majority of the patients reported experiencing mild pain accounting for 61.3%, and 90.3% of the subjects reported using painkillers to control the pain. Surgical wound Pain was reportedly more common at the perineal site as 48.4% of the subjects experienced it; on the other hand, 41.9% of the patients experienced pain in the oral mucosa. The presence of speech disorders, as assessed through medical history, was found to be present in 3.2% of patients. The presence of numbness in the cheeks and lips was found in 3.2% of patients. Other complications such as parotid duct injury, delayed wound healing, non-healing wound and suture granuloma were rare as 90.3% of the subjects denied experiencing any of them, there were nonetheless reports of parotid duct injury by 6.5% of the patients, and non-healing wound by the 3.2% of patients. Conclusion: Buccal Mucosa Graft in Augmentation Urethroplasty is an ideal source of allograft, although not entirely painless; it is considerably safe with minimal intra-oral complication and undetectable strain on the patients’ quality of life.

Keywords: augmentation, buccal, graft, oral

Procedia PDF Downloads 179
276 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications

Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie

Abstract:

In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.

Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer

Procedia PDF Downloads 150
275 A Superposition Method in Analyses of Clamped Thick Plates

Authors: Alexander Matrosov, Guriy Shirunov

Abstract:

A superposition method based on Lame's idea is used to get a general analytical solution to analyze a stress and strain state of a rectangular isotropjc elastic thick plate. The solution is built by using three solutions of the method of initial functions in the form of double trigonometric series. The results of bending of a thick plate under normal stress on its top face with two opposite sides clamped while others free of load are presented and compared with FEM modelling.

Keywords: general solution, method of initial functions, superposition method, thick isotropic plates

Procedia PDF Downloads 598
274 Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake

Authors: Subrat Partha Sarathi Pattnaik, Rajan N.K.S.

Abstract:

Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance.

Keywords: internal contraction ratio, mass flow ratio, mixed compression intake, performance, supersonic flows

Procedia PDF Downloads 108
273 Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator

Authors: Aimad Koulali

Abstract:

Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance.

Keywords: finte element method, deformable vortex generator, numerical analysis, fluid structure interaction, ALE formlation, turbulent flow

Procedia PDF Downloads 99