Search results for: post model selection
21973 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment
Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh
Abstract:
This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm
Procedia PDF Downloads 31321972 An Analysis of the Differences between Three Levels Water Polo Players Based on Indicators of Efficiency
Authors: Mladen Hraste, Igor Jelaska, Ivan Granic
Abstract:
The scope of this research is the identification and explanation of differences of three levels of water polo players in some parameters of effectiveness. The sample for this study was 132 matches of the Adriatic Water Polo League in the 2013/14 competition season. Using the Kruskal-Wallis test and multiple comparisons of mean ranks for all groups at the significance level of α=0, 05, the hypothesis that there are significant differences between groups of respondents in ten of the seventeen variables of effectiveness was confirmed. There is a reasonable possibility that the differences are caused by the degree of learned and implemented tactical knowledge, the degree of scoring ability and the best selection for certain roles in the team. The results of this study can be applied to selection of teams and players, for the selection of the appropriate match concept and for organizing training process.Keywords: scoring abilities, selection, tactical knowledge, water polo effectiveness
Procedia PDF Downloads 50221971 Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives
Authors: Zou Xuan, Liu Hongchen
Abstract:
The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05).Keywords: dentin, desensitizer, dentin permeability, thermal cycling, micro-tensile bond strength
Procedia PDF Downloads 39321970 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 6321969 Prevalence of Depression among Post Stroke Survivors in South Asian Region: A Systematic Review and Meta-Analysis
Authors: Roseminu Varghese, Laveena Anitha Barboza, Jyothi Chakrabarty, Ravishankar
Abstract:
Depression among post-stroke survivors is prevalent, but it is unidentified. The purpose of this review was to determine the pooled prevalence of depression among post-stroke survivors in the South Asian region from all published health sciences research articles. The review also aimed to analyze the disparities in the prevalence of depression among the post-stroke survivors from different study locations. Data search to identify the relevant research articles published from 2005 to 2016 was done by using mesh terms and keywords in Web of Science, PubMed Medline, CINAHL, Scopus, J gate, IndMED databases. The final analysis comprised of 9 studies, including a population of 1,520 men and women. Meta-analysis was performed in STATA version 13.0. The overall pooled post-stroke depression prevalence was 0.46, 95% (CI), (0.3- 0.62). The prevalence rate in this systematic review is evident of depression among post-stroke survivors in the South Asian Region. Identifying the prevalence of post-stroke depression at an early stage is important to improve outcomes of the rehabilitative process of stroke survivors and for its early intervention.Keywords: depression, post stroke survivors, prevalence, systematic review
Procedia PDF Downloads 15921968 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 10921967 On Hyperbolic Gompertz Growth Model (HGGM)
Authors: S. O. Oyamakin, A. U. Chukwu,
Abstract:
We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz
Procedia PDF Downloads 44321966 Effect of Passive Pectoralis Minor Stretching on Scapular Kinematics in Scapular Dyskinesia
Authors: Seema Saini, Nidhi Chandra, Tushar Palekar
Abstract:
Objective: To determine the effect of Passive pectoralis minor muscle stretching on scapular kinematics in individuals with scapular dyskinesia. Design: A randomized controlled study was conducted in Pune. The sample size was 30 subjects, which were randomly allocated to either Group A, the experimental group in which passive pectoralis minor stretch was given, or Group B, the control group, in which conventional exercises were given for 3 days a week over 4 weeks. Pre and Post treatment readings of the outcome measures, pectoralis minor length, scapular upward rotation, and lateral scapular slide test were recorded. Results: The results obtained prove a significant difference between pre and post mean values of pectoralis minor length in group A (pre 21.91, post 22.87) and in group B (pre 23.55 post 23.99); scapular upward rotation in group A (pre 49.95, post 50.61) and group B (pre 52.64, post 53.51); lateral scapular slide test at 0° abduction in group A (pre 6.613, post 6.14) and group B (pre 6.84, post 6.22); lateral scapular slide test at 45° abduction in group A (pre 7.14 and post 7.12) and group B (pre 8.18, post 7.53). With an inter-group analysis, it was found that mean of pectoralis minor length, scapular upward rotation, and LSST at 0° abduction in group A was significant than group B (p<0.05). Conclusion: Passive pectoralis minor stretching along with conventional strengthening exercises was shown to be more effective in improving scapular kinematics among patients with scapular dyskinesia.Keywords: scapulohumeral rhythm, scapular upward rotation, rounded shoulders, scapular strengthening
Procedia PDF Downloads 16121965 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling
Authors: Ahmad Odeh, Ahmad Jrade
Abstract:
Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.Keywords: building information modelling, energy, life cycle analysis, sustainablity
Procedia PDF Downloads 27021964 Switching Losses in Power Electronic Converter of Switched Reluctance Motor
Authors: Ali Asghar Memon
Abstract:
A cautious and astute selection of switching devices used in power electronic converters of a switched reluctance (SR) motor is required. It is a matter of choice of best switching devices with respect to their switching ability rather than fulfilling the number of switches. This paper highlights the computational determination of switching losses comprising of switch-on, switch-off and conduction losses respectively by using experimental data in simulation model of a SR machine. The finding of this research is helpful for proper selection of electronic switches and suitable converter topology for switched reluctance motor.Keywords: converter, operating modes, switched reluctance motor, switching losses
Procedia PDF Downloads 50721963 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant
Authors: M. N. A. Azman, M. S. S. Ahamad
Abstract:
The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering
Procedia PDF Downloads 28821962 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs
Authors: Iman Farasat, Howard M. Salis
Abstract:
The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.Keywords: biophysical model, CRISPR, Cas9, genome editing
Procedia PDF Downloads 40621961 Including All Citizens Pathway (IACP): Transforming Post-Secondary Education Using Inclusion and Accessibility as Foundation
Authors: Fiona Whittington-Walsh
Abstract:
Including All Citizens Pathway (IACP) is addressing the systems wide discrimination that students with disabilities experience throughout the education system. IACP offers a wide, institutional support structure so that all students, including students with intellectual/developmental disabilities, are included and can succeed. The entire process from admissions, course selection, course instruction, graduation is designed to address systemic discrimination while supporting learners and faculty. The inclusive and accessible pedagogical model that is the foundation of IACP opens the doors of post-secondary education by making existing academic courses environments where all students can participate and succeed. IACP is about transforming teaching, not modifying, or adapting the curriculum or essential knowledge and skill sets that are required learning outcomes. Universal Design for Learning (UDL) principles are applied to instructional teaching strategies such as lectures, presentations, and assessment tools. Created in 2016 as a research pilot, IACP is one of the first fully inclusive for credit post-secondary options available. The pilot received numerous external and internal grants to support its initiative to investigate and assess the teaching strategies and techniques that support student learning of essential knowledge and skill sets. IACP pilot goals included: (1) provide a successful pilot as a model of inclusive and accessible pedagogy; (2) create a teacher’s guide to assist other instructors in transforming their teaching to reach a wide range of learners; (3) identify policy barriers located within the educational system; and (4) provide leadership and encouraging innovative and inclusive pedagogical practices. The pilot was a success and in 2020 the first cohort of students graduated with an exit credential that pre-exists IACP and consists of ten academic courses. The University has committed to continue IACP and has developed a sustainable model. Each new academic year a new cohort of IACP students starts their post-secondary educational journey, while two additional instructors are mentored with the pedagogy. The pedagogical foundation of IACP has far-reaching potential including, but not limited to, programs that offer services for international students whose first language is not English as well as influencing pedagogical reform in secondary and post-secondary education. IACP also supports universities in satisfying educational standards that are or will be included in accessibility/disability legislation. This session will present information about IACP, share examples of systems transformation, hear from students and instructors, and provide participatory experiential activities that demonstrate the transformative techniques. We will be drawing from the experiences of a recent course that explored research documenting the lived experiences of students with disabilities in post-secondary institutes in B.C (Whittington-Walsh). Students created theatrical scenes out of the data and presented it using Forum Theatre method. Forum Theatre was used to create conversations, challenge stereotypes, and build connections between ableism, disability justice, Indigeneity, and social policy.Keywords: disability justice, inclusive education, pedagogical transformation, systems transformation
Procedia PDF Downloads 1121960 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters
Authors: Hecson Christian, Joel Macwan
Abstract:
Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.Keywords: GIS, AHP, MCDA, Geo-technical
Procedia PDF Downloads 14521959 A Quasi-Experimental Study of the Impact of 5Es Instructional Model on Students' Mathematics Achievement in Northern Province, Rwanda
Authors: Emmanuel Iyamuremye, Jean François Maniriho, Irenee Ndayambaje
Abstract:
Mathematics is the foundational enabling discipline that underpins science, technology, and engineering disciplines. Science, technology, engineering, and mathematics (STEM) subjects are foreseen as the engine for socio-economic transformation. Rwanda has done reforms in education aiming at empowering and preparing students for the real world job by providing career pathways in science, technology, engineering, and mathematics related fields. While that considered so, the performance in mathematics has remained deplorable in both formative and national examinations. Therefore, this paper aims at exploring the extent to which the engage, explore, explain, elaborate and evaluate (5Es) instructional model contributing towards students’ achievement in mathematics. The present study adopted the pre-test, post-test non-equivalent control group quasi-experimental design. The 5Es instructional model was applied to the experimental group while the control group received instruction with the conventional teaching method for eight weeks. One research-made instrument, mathematics achievement test (MAT), was used for data collection. A pre-test was given to students before the intervention to make sure that both groups have equivalent characteristics. At the end of the experimental period, the two groups have undergone a post-test to ascertain the contribution of the 5Es instructional model. Descriptive statistics and analysis of covariance (ANCOVA) were used for the analysis of the study. For determining the improvement in mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post-test scores. Results showed that students exposed to 5Es instructional model achieved significantly better performance in mathematics than students instructed using the conventional teaching method. It was also found that 5Es instructional model made lessons more interesting, easy and created friendship among students. Thus, 5Es instructional model was recommended to be adopted as a close substitute to the conventional teaching method in teaching mathematics in lower secondary schools in Rwanda.Keywords: 5Es instructional model, achievement, conventional teaching method, mathematics
Procedia PDF Downloads 10321958 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System
Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli
Abstract:
This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.Keywords: feature selection, genetic algorithm, optimization, wood recognition system
Procedia PDF Downloads 54521957 Media Literacy Development: A Methodology to Systematically Integrate Post-Contemporary Challenges in Early Childhood Education
Authors: Ana Mouta, Ana Paulino
Abstract:
The following text presents the ik.model, a theoretical framework that guided the pedagogical implementation of meaningful educational technology-based projects in formal education worldwide. In this paper, we will focus on how this framework has enabled the development of media literacy projects for early childhood education during the last three years. The methodology that guided educators through the challenge of systematically merging analogic and digital means in dialogic high-quality opportunities of world exploration is explained throughout these lines. The effects of this methodology on early age media literacy development are considered. Also considered is the relevance of this skill in terms of post-contemporary challenges posed to learning.Keywords: early learning, ik.model, media literacy, pedagogy
Procedia PDF Downloads 32421956 An Assessment of the Factors Affecting Green Building Technology (GBT) Adoption
Authors: Nuruddeen Usman, Usman Mohammed Gidado
Abstract:
A construction and post construction activity in buildings contributes to environmental degradation, because of the generation of solid waste during construction to the production of carbon dioxide by the occupants during utilization. These problems were caused as a result of lack of adopting green building technology during and after construction. However, this study aims at conceptualizing the factors that are affecting the adoption of green building technology with a view to suggest better ways for its successful adoption in the construction industry through developing a green building technology model. Thus, the research findings show that: Economic, social, cultural, and technological progresses are the factors affecting Green Building Technology Adoption. Therefore, identifying these factors and developing the model might help in the successful adoption of green building technology.Keywords: green building technology, construction, post construction, degradation
Procedia PDF Downloads 66221955 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 49121954 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm
Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh
Abstract:
In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection
Procedia PDF Downloads 25621953 Optimization in Locating Firefighting Stations Using GIS Data and AHP Model; A Case Study on Arak City
Authors: Hasan Heydari
Abstract:
In recent decades, locating urban services is one of the significant discussions in urban planning. Among these considerations, cities require more accurate planning in order to supply citizen needs, especially part of urban safety. In order to gain this goal, one of the main tasks of urban planners and managers is specifying suitable sites to locate firefighting stations. This study has been done to reach this purpose. Therefore effective criteria consist of coverage radius, population density, proximity to pathway network, land use (compatible and incompatible neighborhood) have been specified. After that, descriptive and local information of the criteria was provided and their layers were created in ArcGIS 9.3. Using Analytic Hierarchy Process (AHP) these criteria and their sub-criteria got the weights. These layers were classified regarding their weights and finally were overlaid by Index Overlay Model and provided the final site selection map for firefighting stations of Arak city. The results gained by analyzing in GIS environment indicate the existing fire station don’t cover the whole city sufficiently and some of the stations have established on the unsuitable sites. The output map indicates the best sites to locate firefighting stations of Arak.Keywords: site-selection, firefighting stations, analytic hierarchy process (AHP), GIS, index overlay model
Procedia PDF Downloads 34921952 A Review of the Parameters Used in Gateway Selection Schemes for Internet Connected MANETs
Authors: Zainab S. Mahmood, Aisha H. Hashim, Wan Haslina Hassan, Farhat Anwar
Abstract:
The wide use of the internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, hand off, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.Keywords: Internet Gateway, MANET, mobility, selection criteria
Procedia PDF Downloads 42421951 Improvement of Low Delta-9 Tetrahydrocannabinol (THC) Hemp Cultivars for High Fiber Content
Authors: Sarita Pinmanee, Saipan Krapbia, Rataya Yanaphan
Abstract:
Hemp (Cannabis sativa L.) is multi-purpose crop delivering fibers, shives, and seed. The fiber is used today for special paper, insulation material, and biocomposites. This research was to improve low delta-9 Tetrahydrocannabinol (THC) hemp variety for high fiber contents. Mass selection for increased fiber content in four low THC Thai cultivars (including RPF1, RPF2, RPF3, and RPF4) was carried out in highland areas in the northern Thailand. Research work was conducted for three consecutive growing seasons during 2012 to 2014 at Pangda Royal Agricultural Station, Samoeng District, Chiang Mai Province, Thailand. Results of selection indicated that after selecting for three successive generations, the average fiber content of four low THC Thai cultivars increased to 28-36 %. The resulted of selection was found that fiber content of RPF1, RPF2, RPF3 and RPF4 increased to 20.6, 19.1, 19.9 and 22.8%, respectively. In addition, THC contents of these four varieties were 0.07, 0.138, 0.08 and 0.072 % respectively. As well, mass selection method was considered as an effective and suitable method for improving this fiber content.Keywords: Hemp, mass selection, fiber content, low THC content
Procedia PDF Downloads 41121950 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 13721949 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks
Authors: Mehdi Assefi, Keihan Hataminezhad
Abstract:
One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient
Procedia PDF Downloads 29121948 Efficiency Measurement of Indian Sugar Manufacturing Firms - a DEA Approach
Authors: Amit Kumar Dwivedi, Priyanko Ghosh
Abstract:
Data Envelopment analysis (DEA) has been used to calculate the technical and scale efficiency measures of the public and private sugar manufacturing firms of the Indian Sugar Industry (2006 to 2010). Within DEA framework, the input & Output oriented Variable Returns to Scale (VRS) & Constant Return to Scale (CRS) model is employed for the study of Decision making units (DMUs). A representative sample of 43 firms which account for major portion of the total market share is studied. The selection criterion for the inclusion of a firm in the analysis was the total sales of INR 5,000 million or more in the year 2010. After reviewing the literature it is found that no study has been conducted in the context of Indian sugar manufacturing firms in the Post-liberalization era which motivates us to initiate the study.Keywords: technical efficiency, Indian sugar manufacturing units, DEA, input output oriented
Procedia PDF Downloads 54321947 HD-WSComp: Hypergraph Decomposition for Web Services Composition Based on QoS
Authors: Samah Benmerbi, Kamal Amroun, Abdelkamel Tari
Abstract:
The increasing number of Web service (WS)providers throughout the globe, have produced numerous Web services providing the same or similar functionality. Therefore, there is a need of tools developing the best answer of queries by selecting and composing services with total transparency. This paper reviews various QoS based Web service selection mechanisms and architectures which facilitate qualitatively optimal selection, in other fact Web service composition is required when a request cannot be fulfilled by a single web service. In such cases, it is preferable to integrate existing web services to satisfy user’s request. We introduce an automatic Web service composition method based on hypergraph decomposition using hypertree decomposition method. The problem of selection and the composition of the web services is transformed into a resolution in a hypertree by exploring the relations of dependency between web services to get composite web service via employing an execution order of WS satisfying global request.Keywords: web service, web service selection, web service composition, QoS, hypergraph decomposition, BE hypergraph decomposition, hypertree resolution
Procedia PDF Downloads 51021946 Comparative Assessment of Finite Element Methodologies for Predicting Post-Buckling Collapse in Stiffened Carbon Fiber-Reinforced Plastic (CFRP) Panels
Authors: Naresh Reddy Kolanu
Abstract:
The stability and collapse behavior of thin-walled composite structures, particularly carbon fiber-reinforced plastic (CFRP) panels, are paramount concerns for structural designers. Accurate prediction of collapse loads necessitates precise modeling of damage evolution in the post-buckling regime. This study conducts a comparative assessment of various finite element (FE) methodologies employed in predicting post-buckling collapse in stiffened CFRP panels. A systematic approach is adopted, wherein FE models with various damage capabilities are constructed and analyzed. The study investigates the influence of interacting intra- and interlaminar damage modes on the post-buckling response and failure behavior of the stiffened CFRP structure. Additionally, the capabilities of shell and brick FE-based models are evaluated and compared to determine their effectiveness in capturing the complex collapse behavior. Conclusions are drawn through quantitative comparison with experimental results, focusing on post-buckling response and collapse load. This comprehensive evaluation provides insights into the most effective FE methodologies for accurately predicting the collapse behavior of stiffened CFRP panels, thereby aiding structural designers in enhancing the stability and safety of composite structures.Keywords: CFRP stiffened panels, delamination, Hashin’s failure, post-buckling, progressive damage model
Procedia PDF Downloads 4421945 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization
Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson
Abstract:
A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion
Procedia PDF Downloads 21121944 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search
Procedia PDF Downloads 416