Search results for: numerical bias
4061 Numerical Study of Heat Transfer in Silica Aerogel
Authors: Amal Maazoun, Abderrazak Mezghani, Ali Ben Moussa
Abstract:
Aerogel consists of a ramified and inter-connected solid skeleton enclosing a very important number of nano-sized pores filled with air that occupies most of the volume and makes very low density. The thermal conductivity of this material can reach lower values than those of any other material, and it changes with the type of the aerogel and its composition. So, in order to explain the causes of the super-insulation of our material and to determine the factors in which depends on its conductivity we used a numerical simulation. We have developed a numerical code that generates random fractal structure of silica aerogel with pre-defined concentration, properties of the backbone and the gas in the pores as well as the size of the particles. The calculation of the conductivity at any point of domain shows that it is not constant and that it depends on the pore size and the location in the pore. A numerical method based on resolution by inversion of block tridiagonal matrices is used to calculate the equivalent thermal conductivity of the whole fractal structure. The average conductivity calculated for each concentration is in good agreement with those of typical aerogels. And we found that the equivalent thermal conductivity of a silica aerogel depends strongly not only on the porosity but also on the tortuosity of the solid backbone.Keywords: aerogel, fractal structure, numerical study, porous media, thermal conductivity
Procedia PDF Downloads 2904060 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes
Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu
Abstract:
Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment
Procedia PDF Downloads 1944059 The Effect of Undernutrition on Sputum Culture Conversion and Treatment Outcomes among People with Multidrug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis
Authors: Fasil Wagnew, Kerri Viney, Kefyalew Addis Alene, Matthew Kelly, Darren Gray
Abstract:
Background: Undernutrition is a risk factor for tuberculosis (TB), including poor treatment outcomes. However, evidence regarding the effect of undernutrition on TB treatment outcomes is not well understood. We aimed to evaluate the effect of undernutrition on sputum culture conversion and treatment outcomes among people with multi-drug resistance (MDR)-TB. Methods: We searched for publications in the Medline, Embase, Scopus, and Web of Science databases without restrictions on geography or year of publication. We conducted a random-effect meta-analysis to estimate the effects of undernutrition on sputum culture conversion and treatment outcomes. Two reviewers independently assessed the study eligibility, extracted the necessary information, and assessed the risk of bias. Depending on the nature of the data, odds ratio (OR) and hazard ratio (HR) with 95% confidence intervals (CIs) were used to summarize the effect estimates. Potential publication bias was checked using funnel plots and Egger’s tests. Results: Of 2358 records screened, 59 studies comprising a total of 31,254 people with MDR-TB were included. Undernutrition was significantly associated with a lower sputum culture conversion rate (HR 0·7, 95% CI 0·6–0·9, I2=67·1%) and a higher rate of mortality (OR 2·9, 95%CI 2·1–3·8, I2=23·7%) and unfavourable treatment outcomes (OR 1·8, 95%CI 1·5–2·0, I2=72·7%). There was no statistically significant publication bias in the included studies. Three studies were low, forty-two studies were moderate, and fourteen studies were high quality. Interpretations: Undernutrition was significantly associated with unfavourable treatment outcomes, including mortality and lower sputum culture conversion among people with MDR-TB. These findings have implications for supporting targeted nutritional interventions alongside standardised second-line TB drugs.Keywords: undernutrition, MDR-TB, sputum culture conversion, treatment outcomes, meta-analysis
Procedia PDF Downloads 1524058 Exploring Behavioural Biases among Indian Investors: A Qualitative Inquiry
Authors: Satish Kumar, Nisha Goyal
Abstract:
In the stock market, individual investors exhibit different kinds of behaviour. Traditional finance is built on the notion of 'homo economics', which states that humans always make perfectly rational choices to maximize their wealth and minimize risk. That is, traditional finance has concern for how investors should behave rather than how actual investors are behaving. Behavioural finance provides the explanation for this phenomenon. Although finance has been studied for thousands of years, behavioural finance is an emerging field that combines the behavioural or psychological aspects with conventional economic and financial theories to provide explanations on how emotions and cognitive factors influence investors’ behaviours. These emotions and cognitive factors are known as behavioural biases. Because of these biases, investors make irrational investment decisions. Besides, the emotional and cognitive factors, the social influence of media as well as friends, relatives and colleagues also affect investment decisions. Psychological factors influence individual investors’ investment decision making, but few studies have used qualitative methods to understand these factors. The aim of this study is to explore the behavioural factors or biases that affect individuals’ investment decision making. For the purpose of this exploratory study, an in-depth interview method was used because it provides much more exhaustive information and a relaxed atmosphere in which people feel more comfortable to provide information. Twenty investment advisors having a minimum 5 years’ experience in securities firms were interviewed. In this study, thematic content analysis was used to analyse interview transcripts. Thematic content analysis process involves analysis of transcripts, coding and identification of themes from data. Based on the analysis we categorized the statements of advisors into various themes. Past market returns and volatility; preference for safe returns; tendency to believe they are better than others; tendency to divide their money into different accounts/assets; tendency to hold on to loss-making assets; preference to invest in familiar securities; tendency to believe that past events were predictable; tendency to rely on the reference point; tendency to rely on other sources of information; tendency to have regret for making past decisions; tendency to have more sensitivity towards losses than gains; tendency to rely on own skills; tendency to buy rising stocks with the expectation that this rise will continue etc. are some of the major concerns showed by experts about investors. The findings of the study revealed 13 biases such as overconfidence bias, disposition effect, familiarity bias, framing effect, anchoring bias, availability bias, self-attribution bias, representativeness, mental accounting, hindsight bias, regret aversion, loss aversion and herding bias/media biases present in Indian investors. These biases have a negative connotation because they produce a distortion in the calculation of an outcome. These biases are classified under three categories such as cognitive errors, emotional biases and social interaction. The findings of this study may assist both financial service providers and researchers to understand the various psychological biases of individual investors in investment decision making. Additionally, individual investors will also be aware of the behavioural biases that will aid them to make sensible and efficient investment decisions.Keywords: financial advisors, individual investors, investment decisions, psychological biases, qualitative thematic content analysis
Procedia PDF Downloads 1694057 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model
Authors: Mustapha Kamel Mihoubi, Hocine Dahmani
Abstract:
Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.Keywords: swell, current, radiation, stress, mesh, mike21, sediment
Procedia PDF Downloads 4694056 Performance Evaluation of the CSAN Pronto Point-of-Care Whole Blood Analyzer for Regular Hematological Monitoring During Clozapine Treatment
Authors: Farzana Esmailkassam, Usakorn Kunanuvat, Zahraa Mohammed Ali
Abstract:
Objective: The key barrier in Clozapine treatment of treatment-resistant schizophrenia (TRS) includes frequent bloods draws to monitor neutropenia, the main drug side effect. WBC and ANC monitoring must occur throughout treatment. Accurate WBC and ANC counts are necessary for clinical decisions to halt, modify or continue clozapine treatment. The CSAN Pronto point-of-care (POC) analyzer generates white blood cells (WBC) and absolute neutrophils (ANC) through image analysis of capillary blood. POC monitoring offers significant advantages over central laboratory testing. This study evaluated the performance of the CSAN Pronto against the Beckman DxH900 Hematology laboratory analyzer. Methods: Forty venous samples (EDTA whole blood) with varying concentrations of WBC and ANC as established on the DxH900 analyzer were tested in duplicates on three CSAN Pronto analyzers. Additionally, both venous and capillary samples were concomitantly collected from 20 volunteers and assessed on the CSAN Pronto and the DxH900 analyzer. The analytical performance including precision using liquid quality controls (QCs) as well as patient samples near the medical decision points, and linearity using a mix of high and low patient samples to create five concentrations was also evaluated. Results: In the precision study for QCs and whole blood, WBC and ANC showed CV inside the limits established according to manufacturer and laboratory acceptability standards. WBC and ANC were found to be linear across the measurement range with a correlation of 0.99. WBC and ANC from all analyzers correlated well in venous samples on the DxH900 across the tested sample ranges with a correlation of > 0.95. Mean bias in ANC obtained on the CSAN pronto versus the DxH900 was 0.07× 109 cells/L (95% L.O.A -0.25 to 0.49) for concentrations <4.0 × 109 cells/L, which includes decision-making cut-offs for continuing clozapine treatment. Mean bias in WBC obtained on the CSAN pronto versus the DxH900 was 0.34× 109 cells/L (95% L.O.A -0.13 to 0.72) for concentrations <5.0 × 109 cells/L. The mean bias was higher (-11% for ANC, 5% for WBC) at higher concentrations. The correlations between capillary and venous samples showed more variability with mean bias of 0.20 × 109 cells/L for the ANC. Conclusions: The CSAN pronto showed acceptable performance in WBC and ANC measurements from venous and capillary samples and was approved for clinical use. This testing will facilitate treatment decisions and improve clozapine uptake and compliance.Keywords: absolute neutrophil counts, clozapine, point of care, white blood cells
Procedia PDF Downloads 944055 Axle Load Estimation of Moving Vehicles Using BWIM Technique
Authors: Changgil Lee, Seunghee Park
Abstract:
Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model.Keywords: bridge weigh-in-motion(BWIM) system, precision analysis model, dynamic characteristic of bridge, numerical simulation
Procedia PDF Downloads 2914054 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation
Authors: Praveen Kumar, R. Uma, R. P. Sharma
Abstract:
This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation
Procedia PDF Downloads 724053 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method
Authors: Md. Moinul Islam, N. M. Golam Zakaria
Abstract:
Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function
Procedia PDF Downloads 2204052 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition
Authors: Habtamu Garoma Debela, Gemechis File Duressa
Abstract:
In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent
Procedia PDF Downloads 1434051 Investigation of Static Stability of Soil Slopes Using Numerical Modeling
Authors: Seyed Abolhasan Naeini, Elham Ghanbari Alamooti
Abstract:
Static stability of soil slopes using numerical simulation by a finite element code, ABAQUS, has been investigated, and safety factors of the slopes achieved in the case of static load of a 10-storey building. The embankments have the same soil condition but different loading distance from the slope heel. The numerical method for estimating safety factors is 'Strength Reduction Method' (SRM). Mohr-Coulomb criterion used in the numerical simulations. Two steps used for measuring the safety factors of the slopes: first is under gravity loading, and the second is under static loading of a building near the slope heel. These safety factors measured from SRM, are compared with the values from Limit Equilibrium Method, LEM. Results show that there is good agreement between SRM and LEM. Also, it is seen that by increasing the distance from slope heel, safety factors increases.Keywords: limit equilibrium method, static stability, soil slopes, strength reduction method
Procedia PDF Downloads 1634050 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 1424049 Taleghan Dam Break Numerical Modeling
Authors: Hamid Goharnejad, Milad Sadeghpoor Moalem, Mahmood Zakeri Niri, Leili Sadeghi Khalegh Abadi
Abstract:
While there are many benefits to using reservoir dams, their break leads to destructive effects. From the viewpoint of International Committee of Large Dams (ICOLD), dam break means the collapse of whole or some parts of a dam; thereby the dam will be unable to hold water. Therefore, studying dam break phenomenon and prediction of its behavior and effects reduces losses and damages of the mentioned phenomenon. One of the most common types of reservoir dams is embankment dam. Overtopping in embankment dams occurs because of flood discharge system inability in release inflows to reservoir. One of the most important issues among managers and engineers to evaluate the performance of the reservoir dam rim when sliding into the storage, creating waves is large and long. In this study, the effects of floods which caused the overtopping of the dam have been investigated. It was assumed that spillway is unable to release the inflow. To determine outflow hydrograph resulting from dam break, numerical model using Flow-3D software and empirical equations was used. Results of numerical models and their comparison with empirical equations show that numerical model and empirical equations can be used to study the flood resulting from dam break.Keywords: embankment dam break, empirical equations, Taleghan dam, Flow-3D numerical model
Procedia PDF Downloads 3214048 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization
Procedia PDF Downloads 1524047 Numerical Solution of Integral Equations by Using Discrete GHM Multiwavelet
Authors: Archit Yajnik, Rustam Ali
Abstract:
In this paper, numerical method based on discrete GHM multiwavelets is presented for solving the Fredholm integral equations of second kind. There is hardly any article available in the literature in which the integral equations are numerically solved using discrete GHM multiwavelet. A number of examples are demonstrated to justify the applicability of the method. In GHM multiwavelets, the values of scaling and wavelet functions are calculated only at t = 0, 0.5 and 1. The numerical solution obtained by the present approach is compared with the traditional Quadrature method. It is observed that the present approach is more accurate and computationally efficient as compared to quadrature method.Keywords: GHM multiwavelet, fredholm integral equations, quadrature method, function approximation
Procedia PDF Downloads 4624046 Marine Propeller Cavitation Analysis Using BEM
Authors: Ehsan Yari
Abstract:
In this paper, a numerical study of sheet cavitation has been performed on DTMB4119 and E779A marine propellers with the boundary element method. In propeller design, various parameters of geometry and fluid are incorporated. So a program is needed to solve the flow taking the whole parameters changing into account. The capability of analyzing the wetted and cavitation flow around propellers in steady, unsteady, uniform, and non-uniform conditions while decreasing computational time compared to numerical finite volume methods with acceptable precision are the characteristic features of the present method. Moreover, modifying the position of the detachment point and its corresponding potential value has been considered. Numerical results have been validated with experimental data, showing a good conformation.Keywords: cavitation, BEM, DTMB4119, E779A
Procedia PDF Downloads 694045 Minimizing the Impact of Covariate Detection Limit in Logistic Regression
Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque
Abstract:
In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution
Procedia PDF Downloads 2364044 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation
Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast
Abstract:
Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach
Procedia PDF Downloads 3524043 Analysis of High-Velocity Impacts on Concrete
Authors: Conceição, J. F. M., Rebelo H., Corneliu C., Pereira L.
Abstract:
This research analyses the response of two distinct types of concrete blocks, each possessing an approximate unconfined compressive strength of 30MPa, when exposed to high-velocity impacts produced by an Explosively Formed Penetrator (EFP) traveling at an initial velocity of 1200 m/s. Given the scarcity of studies exploring high-velocity impacts on concrete, the primary aim of this research is to scrutinize how concrete behaves under high-speed impacts, ultimately contributing valuable insights to the development of protective structures. To achieve this objective, a comprehensive numerical analysis was carried out in LS-DYNA to delve into the fracture mechanisms inherent in concrete under such extreme conditions. Subsequently, the obtained numerical outcomes were compared and validated through eight experimental field tests. The methodology employed involved a robust combination of numerical simulations and real-world experiments, ensuring a comprehensive understanding of concrete behavior in scenarios involving rapid, high-energy impacts.Keywords: high-velocity, impact, numerical analysis, experimental tests, concrete
Procedia PDF Downloads 864042 Field Investigating the Effects of Lateral Support Elements on Lateral Resistance of Ballasted Tracks with Sharp Curves
Authors: Milad Alizadeh Galdiani, Jabbar Ali Zakeri
Abstract:
Lateral movement of CWR ballasted track occurs in sharp curves because of the lack of adequate lateral resistance. Several strategies have been proposed and used for increase the lateral resistance of ballasted tracks, but still there are some problems in tracks with small radius curves. In this paper, a new method has been presented for increase the lateral resistance. This method is using the lateral supports as numerical and field studies. In this paper, the field and laboratory tests have been conducted by using the single tie pressure test (STPT) and track panel loading test (LTPT). Then, their results were compared with the numerical results. The results of numerical and field tests showed that the lateral stiffness of ballasted tracks significantly increased when there were lateral supports in ballasted tracks. Also, the track structure had a bilinear behavior.Keywords: ballasted railway, Lateral resistance, railway buckling, field and numerical studies
Procedia PDF Downloads 3224041 Joule Self-Heating Effects and Controlling Oxygen Vacancy in La₀.₈Ba₀.₂MnO₃ Ultrathin Films with Nano-Sized Labyrinth Morphology
Authors: Guankai Lin, Wei Tong, Hong Zhu
Abstract:
The electric current induced Joule heating effects have been investigated in La₀.₈Ba₀.₂MnO₃ ultrathin films deposited on LaAlO₃(001) single crystal substrate with smaller lattice constant by using the sol-gel method. By applying moderate bias currents (~ 10 mA), it is found that Joule self-heating simply gives rise to a temperature deviation between the thermostat and the test sample, but the intrinsic ρ(T) relationship measured at a low current (0.1 mA) changes little. However, it is noteworthy that the low-temperature transport behavior degrades from metallic to insulating state after applying higher bias currents ( > 31 mA) in a vacuum. Furthermore, metallic transport can be recovered by placing the degraded film in air. The results clearly suggest that the oxygen vacancy in the La₀.₈Ba₀.₂MnO₃ films is controllable in different atmospheres, particularly with the aid of the Joule self-heating. According to the SEM images, we attribute the controlled oxygen vacancy to the nano-sized labyrinth pattern of the films, where the large surface-to-volume ratio plays a curial role.Keywords: controlling oxygen vacancy, joule self-heating, manganite, sol-gel method
Procedia PDF Downloads 1534040 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements
Authors: K. Sandjak, B. Tiliouine
Abstract:
This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.Keywords: 3-D numerical investigation, asphalt pavements, dual and wide base tires, Infinite elements
Procedia PDF Downloads 2154039 Faceless Women: The Blurred Image of Women in Film on and Off-Screen
Authors: Ana Sofia Torres Pereira
Abstract:
Till this day, women have been underrepresented and stereotyped both in TV and Cinema Screens all around the World. While women have been gaining a different status and finding their own voice in the work place and in society, what we see on-screen is still something different, something gender biased, something that does not show the multifaceted identities a woman might have. But why is this so? Why are we stuck on this shallow vision of women on-screen? According to several cinema industry studies, most film screenwriters in Hollywood are men. Women actually represent a very low percentage of screenwriters. So why is this relevant? Could the underrepresentation of women screenwriters in Hollywood be affecting the way women are written, and as a result, are depicted in film? Films are about stories, about people, and if these stories are continuously told through a man’s gaze, is that helping in the creation of a gender imbalance towards women? On the other hand, one of the reasons given for the low percentage of women screenwriters is: women are said to be better at writing specific genres, like dramas and comedies, and not as good writing thrillers and action films, so, as women seem to be limited in the genres they can write, they are undervalued and underrepresented as screenwriters. It seems the gender bias and stereotype isn’t saved exclusively for women on-screen, but also off-screen and behind the screen. So film appears to be a men’s world, on and off-screen, and since men seem to write the majority of scripts, it might be no wonder that women have been written in a specific way and depicted in a specific way on-screen. Also, since films are a mass communication medium, maybe this over-sexualization and stereotyping on-screen is indoctrinating our society into believing this bias is alive and well, and thus targeting women off-screen as well (ergo, screenwriters). What about at the very begging of film? In the Silent Movies and Early Talkies era, women dominated the screenwriting industry. They wrote every genre, and the majority of scripts were written by women, not men. So what about then? How were women depicted in films then? Did women screenwriters, in an era that was still very harsh on women, use their stories and their power to break stereotypes and show women in a different light, or did they carry on with the stereotype, did they continue it and standardize it? This papers aims to understand how important it is to have more working women screenwriters in order to break stereotypes regarding the image of women on and off-screen. How much can a screenwriter (male or female) influence our gaze on women (on and off-screen)?Keywords: cinema, gender bias, stereotype, women on-screen, women screenwriters
Procedia PDF Downloads 3484038 Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector
Authors: Alibakhsh Kasaeian, Mohammad Sameti, Zahra Noori, Mona Rastgoo Bahambari
Abstract:
Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.Keywords: heat transfer, nanofluid, numerical analysis, trough
Procedia PDF Downloads 3714037 Turbulent Flow in Corrugated Pipes with Helical Grooves
Authors: P. Mendes, H. Stel, R. E. M. Morales
Abstract:
This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated.Keywords: turbulent flow, corrugated pipe, helical, numerical, experimental, friction factor, correlation
Procedia PDF Downloads 4814036 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method
Authors: Kamel Al-Khaled
Abstract:
In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions
Procedia PDF Downloads 5244035 Rapid Method for Low Level 90Sr Determination in Seawater by Liquid Extraction Technique
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of low level 90Sr in seawater has been widely developed for the purpose of environmental monitoring and radiological research because 90Sr is one of the most hazardous radionuclides released from atmospheric during the testing of nuclear weapons, waste discharge from the generation nuclear energy and nuclear accident occurring at power plants. A liquid extraction technique using bis-2-etylhexyl-phosphoric acid to separate and purify yttrium followed by Cherenkov counting using a liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed to monitor 90Sr in the Asia Pacific Ocean. The analytical performance was validated for the accuracy, precision, and trueness criteria. Sr-90 determination in seawater using various low concentrations in a range of 0.01 – 1 Bq/L of 30 liters spiked seawater samples and 0.5 liters of IAEA-RML-2015-01 proficiency test sample was performed for statistical evaluation. The results had a relative bias in the range from 3.41% to 12.28%, which is below accepted relative bias of ± 25% and passed the criteria confirming that our analytical approach for determination of low levels of 90Sr in seawater was acceptable. Moreover, the approach is economical, non-laborious and fast.Keywords: proficiency test, radiation monitoring, seawater, strontium determination
Procedia PDF Downloads 1694034 Examining The Effects of Parenting Style and Parents’ Social Attitudes on Social Development in Early Childhood
Authors: Amber Lim, Ted Ruffman
Abstract:
A vast amount of research evidence indicates that children develop social attitudes that are similar to those of their parents. When using general measures of social attitudes, such as social dominance orientation (SDO), right-wing authoritarianism (RWA), and prejudice, studies show that parents' and children’s attitudes were correlated. However, the mechanisms behind the intergenerational transmission of attitudes remain largely unexplained. Since it was speculated that the origins of RWA could be traced back to one’s relationship with their parents, the aim of this study was to assess how parents’ social attitudes and parenting behavior are related to children’s social development. One line of research suggests that the different ways in which authoritarian and authoritative parents reason with their children may impact Theory of Mind (ToM) development. That is, inductive discipline (e.g., emphasising how the child’s actions affect others) facilitates empathy and ToM development. Conversely, past evidence shows that children have poorer ToM development when parents enforce rules without explanation. Thus, this study addresses the question of how parent behavior plays a role in the gradual acquisition of a ToM and social attitudes. Seventy parents reported their social attitudes, parenting behavior, and their child’s mental state and non-mental state vocabulary. Their children were given ToM and perspective-taking tasks, along with a friend choice task to measure racial bias and anti-fat bias. As hypothesised, parents’ use of inductive reasoning correlated with children’s performance on Theory of Mind tasks. Mothers’ inductive reasoning facilitated children’s acquisition of mental state vocabulary. Parents’ autonomy granting was associated with improved mental state vocabulary. Authoritarian parenting traits such as verbal hostility were linked to children’s racial bias. These findings highlight the importance of parent-child discussion in shaping children’s social understanding.Keywords: parenting style, prejudice, social attitudes, social understanding, theory of mind
Procedia PDF Downloads 824033 Influence of High-Resolution Satellites Attitude Parameters on Image Quality
Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy
Abstract:
One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF
Procedia PDF Downloads 4024032 Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems
Authors: Harendra Singh, Rajesh Pandey
Abstract:
The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems.Keywords: non-linear fractional variational problems, Rayleigh-Ritz method, convergence analysis, error analysis
Procedia PDF Downloads 298