Search results for: multivariate logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3804

Search results for: multivariate logistic regression

3654 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR

Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.

Abstract:

We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.

Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME

Procedia PDF Downloads 392
3653 A Cohort and Empirical Based Multivariate Mortality Model

Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong

Abstract:

This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.

Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management

Procedia PDF Downloads 51
3652 Introduction of Robust Multivariate Process Capability Indices

Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian

Abstract:

Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.

Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control

Procedia PDF Downloads 281
3651 Suicidal Ideation and Associated Factors among Students Aged 13-15 Years in Association of Southeast Asian Nations (ASEAN) Member States, 2007-2014

Authors: Karl Peltzer, Supa Pengpid

Abstract:

Introduction: The aim of this study was to assess suicidal ideation and associated factors in school-going adolescents in the Association of Southeast Asian Nations (ASEAN) Member States. Methods: The analysis included 30284 school children aged 13-15 years from seven ASEAN that participated in the cross-sectional Global School-based Student Health Survey (GSHS) between 2007 and 2013. Results: The overall prevalence of suicidal ideation across seven ASEAN countries (excluding Brunei) was 12.3%, significantly higher in girls (15.1%) than boys (9.3%). Among eight ASEAN countries with the highest prevalence of suicidal ideation was in the Philippines (17.0%) and Vietnam (16.9%) and the lowest in Myanmar (1.1%) and Indonesia (4.2%). In multivariate logistic regression analysis, female gender, older age (14 or 15 years), living in a low income or lower middle income country, having no friends, loneliness, bullying victimization, having been in a physical fight in the past 12 months, lack of parental or guardian support, tobacco use and having a history of ever got drunk were associated with suicidal ideatiion. Conclusion: Different rates of suicidal ideation were observed in ASEAN member states. Several risk factors for suicidal ideation were identified which can help guide preventive efforts.

Keywords: adolesents, ASEAN, correlates, suicidal behaviour

Procedia PDF Downloads 268
3650 Factors Associated with Condom Breakage among Female Sex Workers: Evidence from Behavioral Tracking Survey in Thane District of Maharashtra, India

Authors: Sukhvinder Kaur, Jayanta Bora, Ashok Agarwal, Sangeeta Kaul

Abstract:

Background: HIV and STI transmission can be prevented if condoms are used properly, but condom tear may lead to infections even if are used consistently. Studies reveal high rates of condom breakage among Female Sex Workers (FSWs). USAID PHFI-PIPPSE is piloting a prevention model among high risk groups at Thane district of Maharashtra, India by implementing prevention and advocacy efforts for such risk behaviors. The current analysis highlights the correlates of condom breakage among FSWs from Thane. Method: A Behavioral Tracking Survey was conducted in 2014-15 among 503 FSWs through probability-based two stage random sampling from 3,660 FSWs at 100 hotspots, to understand levels of high risk behaviors, awareness and exposure to prevention programs. Bi-variate and multivariate-logistic regression methods used to assess the association of condom breakage while having sex with age, STI occurrence, anal sex with clients and alcohol consumption. Only self-reported STIs (Genital sore/ulcer, yellowish/ greenish discharge from vagina with/without foul smell, lower abdominal pain without diarrhea/dysentery or menses) were considered. Major Findings: Results depicted FSWs who reported condom breakage while having sex with any type of partner (paying clients, non-paying partners and other than main partner husband/boyfriend) had significantly high number of STIs (42.3% vs 16.9 %, P, 0.000) and had started sexual relationship in <16 years of age (31.0% vs 16.4 %, P, 0.000). Multivariate analysis after controlling the age at sex, knowledge about HIV and literacy, highlighted significantly higher odds of condom breakage among FSWs who have reported currently suffering with STI [AOR 2.91, 95% CI 1.75 - 4.83; P, 0.000]; who had anal sex with their paying client [AOR 2.59, 95% CI 1.59 - 4.19; P, 0.000]; and who consumed alcohol in the last 12 months [AOR 1.89, 95% CI 1.01 - 3.53; P, 0.047]. Conclusion: Risky behavior like anal sex with paying clients and impact of alcohol while having sex are main factors for condom breakage among young sex workers; and condom breakage leads to STIs. Hence, program interventions should address measures for prevention of condom breakage for HIV/STI prevention.

Keywords: female sex workers, condom breakage, anal sex, young sex workers

Procedia PDF Downloads 258
3649 Private and Public Health Sector Difference on Client Satisfaction: Results from Secondary Data Analysis in Sindh, Pakistan

Authors: Wajiha Javed, Arsalan Jabbar, Nelofer Mehboob, Muhammad Tafseer, Zahid Memon

Abstract:

Introduction: Researchers globally have strived to explore diverse factors that augment the continuation and uptake of family planning methods. Clients’ satisfaction is one of the core determinants facilitating continuation of family planning methods. There is a major debate yet scanty evidence to contrast public and private sectors with respect to client satisfaction. The objective of this study is to compare quality-of-care provided by public and private sectors of Pakistan through a client satisfaction lens. Methods: We used Pakistan Demographic Heath Survey 2012-13 dataset (Sindh province) on a total of 3133 Married Women of Reproductive Age (MWRA) aged 15-49 years. Source of family planning (public/private sector) was the main exposure variable. Outcome variable was client satisfaction judged by ten different dimensions of client satisfaction. Means and standard deviations were calculated for continuous variable while for categorical variable frequencies and percentages were computed. For univariate analysis, Chi-square/Fisher Exact test was used to find an association between clients’ satisfaction in public and private sectors. Ten different multivariate models were made. Variables were checked for multi-collinearity, confounding, and interaction, and then advanced logistic regression was used to explore the relationship between client satisfaction and dependent outcome after adjusting for all known confounding factors and results are presented as OR and AOR (95% CI). Results: Multivariate analyses showed that clients were less satisfied in contraceptive provision from private sector as compared to public sector (AOR 0.92,95% CI 0.63-1.68) even though the result was not statistically significant. Clients were more satisfied from private sector as compared to the public sector with respect to other determinants of quality-of-care (follow-up care (AOR 3.29, 95% CI 1.95-5.55), infection prevention (AOR 2.41, 95% CI 1.60-3.62), counseling services (AOR 2.01, 95% CI 1.27-3.18, timely treatment (AOR 3.37, 95% CI 2.20-5.15), attitude of staff (AOR 2.23, 95% CI 1.50-3.33), punctuality of staff (AOR 2.28, 95% CI 1.92-4.13), timely referring (AOR 2.34, 95% CI 1.63-3.35), staff cooperation (AOR 1.75, 95% CI 1.22-2.51) and complications handling (AOR 2.27, 95% CI 1.56-3.29).

Keywords: client satisfaction, family planning, public private partnership, quality of care

Procedia PDF Downloads 417
3648 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia

Authors: Atikah Nurhayati, Asep A. Handaka

Abstract:

Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.

Keywords: fishery, food security, logistic, supply chain

Procedia PDF Downloads 239
3647 Role of P53, KI67 and Cyclin a Immunohistochemical Assay in Predicting Wilms’ Tumor Mortality

Authors: Ahmed Atwa, Ashraf Hafez, Mohamed Abdelhameed, Adel Nabeeh, Mohamed Dawaba, Tamer Helmy

Abstract:

Introduction and Objective: Tumour staging and grading do not usually reflect the future behavior of Wilms' tumor (WT) regarding mortality. Therefore, in this study, P53, Ki67 and cyclin A immunohistochemistry were used in a trial to predict WT cancer-specific survival (CSS). Methods: In this nonconcurrent cohort study, patients' archived data, including age at presentation, gender, history, clinical examination and radiological investigations, were retrieved then the patients were reviewed at the outpatient clinic of a tertiary care center by history-taking, clinical examination and radiological investigations to detect the oncological outcome. Cases that received preoperative chemotherapy or died due to causes other than WT were excluded. Formalin-fixed, paraffin-embedded specimens obtained from the previously preserved blocks at the pathology laboratory were taken on positively charged slides for IHC with p53, Ki67 and cyclin A. All specimens were examined by an experienced histopathologist devoted to the urological practice and blinded to the patient's clinical findings. P53 and cyclin A staining were scored as 0 (no nuclear staining),1 (<10% nuclear staining), 2 (10-50% nuclear staining) and 3 (>50% nuclear staining). Ki67 proliferation index (PI) was graded as low, borderline and high. Results: Of the 75 cases, 40 (53.3%) were males and 35 (46.7%) were females, and the median age was 36 months (2-216). With a mean follow-up of 78.6±31 months, cancer-specific mortality (CSM) occurred in 15 (20%) and 11 (14.7%) patients, respectively. Kaplan-Meier curve was used for survival analysis, and groups were compared using the Log-rank test. Multivariate logistic regression and Cox regression were not used because only one variable (cyclin A) had shown statistical significance (P=.02), whereas the other significant factor (residual tumor) had few cases. Conclusions: Cyclin A IHC should be considered as a marker for the prediction of WT CSS. Prospective studies with a larger sample size are needed.

Keywords: wilms’ tumour, nephroblastoma, urology, survival

Procedia PDF Downloads 63
3646 Genetic and Non-Genetic Factors Affecting the Response to Clopidogrel Therapy

Authors: Snezana Mugosa, Zoran Todorovic, Zoran Bukumiric, Ivan Radosavljevic, Natasa Djordjevic

Abstract:

Introduction: Various studies have shown that the frequency of clopidogrel resistance ranges from 4-40%. The aim of this study was to provide in depth analysis of genetic and non-genetic factors that influence clopidogrel resistance in cardiology patients. Methods: We have conducted a prospective study in 200 hospitalized patients hospitalized at Cardiology Centre of the Clinical Centre of Montenegro. CYP2C19 genetic testing was conducted, and the PREDICT score was calculated in 102 out of 200 patients treated with clopidogrel in order to determine the influence of genetic and non-genetic factors on outcomes of interest. Adverse cardiovascular events and adverse reactions to clopidogrel were assessed during 12 months follow up period. Results: PREDICT score and CYP2C19 enzymatic activity were found to be statistically significant predictors of expressing lack of therapeutic efficacy of clopidogrel by multivariate logistic regression, without multicollinearity or interaction between the predictors (p = 0.002 and 0.009, respectively). Conclusions: Pharmacogenetics analyses that were done in the Montenegrin population of patients for the first time suggest that these analyses can predict patient response to the certain therapy. Stepwise approach could be used in assessing the clopidogrel resistance in cardiology patients, combining the PREDICT score, platelet aggregation test, and genetic testing for CYP2C19 polymorphism.

Keywords: clopidogrel, pharmacogenetics, pharmacotherapy, PREDICT score

Procedia PDF Downloads 348
3645 Modelling the Impacts of Geophysical Parameters on Deforestation and Forest Degradation in Pre and Post Ban Logging Periods in Hindu Kush Himalayas

Authors: Alam Zeb, Glen W. Armstrong, Muhammad Qasim

Abstract:

Loss of forest cover is one of the most important land cover changes and has been of great concern to policy makers. This study quantified forest cover changes over pre logging ban (1973-1993) and post logging ban (1993-2015) to examine the role of geophysical factors and spatial attributes of land in the two periods. We show that despite a complete ban on green felling, forest cover decreased by 28% and mostly converted to rangeland. Nevertheless, the logging ban was completely effective in controlling agriculture expansion. The binary logistic regression revealed that the south facing aspects at low elevation witnessed more deforestation in the pre-ban period compared to post-ban. Opposite to deforestation, forest degradation was more prominent on the northern aspects at higher elevation during the policy period. Agriculture expansion was widespread in the low elevation flat areas with gentle slope, while during the policy period agriculture contraction in the form of regeneration was observed on the low elevation areas of north facing slopes. All proximity variables, except distance to administrative boundary, showed a similar trend across the two periods and were important explanatory variables in understanding forest and agriculture expansion. The changes in determinants of forest and agriculture expansion and contraction over the two periods might be attributed to the influence of policy and a general decrease in resource availability.

Keywords: forest conservation , wood harvesting ban, logistic regression, deforestation, forest degradation, agriculture expansion, Chitral, Pakistan

Procedia PDF Downloads 228
3644 Prevalence and Associated Factors of Attention Deficit Hyperactivity Disorder among Children Age 6 to 17 Years Old Living in Girja District, Oromia Regional State, Rural Ethiopia: Community Based Cross-Sectional Study

Authors: Hirbaye Mokona, Abebaw Gebeyehu, Aemro Zerihun

Abstract:

Introduction: Attention deficit hyperactivity disorder is serious public health problem affecting millions of children throughout the world. Method: A cross-sectional study conducted from May to June 2015 among children age 6 to 17 years living in rural area of Girja district. Multi-stage cluster sampling technique was used to select 1302 study participants. Disruptive Behavior Disorder rating scale was used to collect the data. Data were coded, entered and cleaned by Epi-Data version 3.1 and analyzed by SPSS version 20. Logistic regression analysis was used and Variables that have P-values less than 0.05 on multivariable logistic regression was considered as statistically significant. Results: Prevalence of Attention deficit hyperactivity disorder (ADHD) among children age 6 to 17 years was 7.3%. Being male [AOR=1.81, 95%CI: (1.13, 2.91)]; living with single parent [AOR=5.0, 95%CI: (2.35, 10.65)]; child birth order/rank [AOR=2.35, 95%CI: (1.30, 4.25)]; low family socio-economic status [AOR= 2.43, 95%CI: (1.29, 4.59)]; maternal alcohol/khat use during pregnancy [AOR=3.14, 95%CI: (1.37, 7.37)] and complication at delivery [AOR=3.56, 95%CI: (1.19, 10.64)] were more likely to develop Attention deficit hyperactivity disorder. Conclusion: In this study, the prevalence of Attention deficit hyperactivity disorder was similar with worldwide prevalence. Prevention and early management of its modifiable risk factors should be carryout alongside increasing community awareness.

Keywords: attention deficit hyperactivity disorder, ADHD, associated factors, children, prevalence

Procedia PDF Downloads 186
3643 A Non-parametric Clustering Approach for Multivariate Geostatistical Data

Authors: Francky Fouedjio

Abstract:

Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.

Keywords: clustering, geostatistics, multivariate data, non-parametric

Procedia PDF Downloads 476
3642 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 345
3641 Teachers’ Intention to Leave: Educational Policies as External Stress Factor

Authors: A. Myrzabekova, D. Nurmukhamed, K. Nurumov, A. Zhulbarissova

Abstract:

It is widely believed that stress can affect teachers’ intention to change the workplace. While existing research primarily focuses on the intrinsic sources of stress stemming from the school climate, the current attempt analyzes educational policies as one of the determinants of teacher’s intention to leave schools. In this respect, Kazakhstan presents a unique case since the country endorsed several educational policies which directly impacted teaching and administrative practices within schools. Using Teaching and Learning International Survey 2018 (TALIS) data with the country specific questionnaire, we construct a statistical measure of stress caused by the implementation of educational policies and test its impact on teacher’s intention to leave through the logistic regression. In addition, we control for sociodemographic, professional, and students related covariates while considering the intrinsic dimension of stress stemming from the school climate. Overall, our results suggest that stress caused by the educational policies has a statistically significant positive effect on teachers’ intentions to transfer between schools. Both policy makers and educational scholars could find these results beneficial. For the former careful planning and addressing the negative effects of the educational policies is critical for the sustainability of the educational process. For the latter, accounting for exogenous sources of stress can lead to a more complete understanding of why teachers decide to change their schools.

Keywords: educational policies, Kazakhstani teachers, logistic regression factor analysis, sustainability education TALIS, teacher turnover intention, work stress

Procedia PDF Downloads 108
3640 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data

Authors: Rana Rimawi, Ayman Baklizi

Abstract:

Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.

Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation

Procedia PDF Downloads 196
3639 A Hybrid Adomian Decomposition Method in the Solution of Logistic Abelian Ordinary Differential and Its Comparism with Some Standard Numerical Scheme

Authors: F. J. Adeyeye, D. Eni, K. M. Okedoye

Abstract:

In this paper we present a Hybrid of Adomian decomposition method (ADM). This is the substitution of a One-step method of Taylor’s series approximation of orders I and II, into the nonlinear part of Adomian decomposition method resulting in a convergent series scheme. This scheme is applied to solve some Logistic problems represented as Abelian differential equation and the results are compared with the actual solution and Runge-kutta of order IV in order to ascertain the accuracy and efficiency of the scheme. The findings shows that the scheme is efficient enough to solve logistic problems considered in this paper.

Keywords: Adomian decomposition method, nonlinear part, one-step method, Taylor series approximation, hybrid of Adomian polynomial, logistic problem, Malthusian parameter, Verhulst Model

Procedia PDF Downloads 398
3638 Research of the Factors Affecting the Administrative Capacity of Enterprises in the Logistic Sector of Bulgaria

Authors: R. Kenova, K. Anguelov, R. Nikolova

Abstract:

The human factor plays a major role in boosting the competitive capacity of logistic enterprises. This is of particular importance when it comes to logistic companies. On the one hand they should be strictly compliant with legislation; on the other hand, they should be competitive in terms of pricing and of delivery timelines. Moreover, their policies should allow them to be as flexible as possible. All these circumstances are reason for very serious challenges for the qualification, motivation and experience of the human resources, working in logistic companies or in logistic departments of trade and industrial enterprises. The geographic place of Bulgaria puts it in position of a country with some specific competitive advantages in the goods transport from Europe to Asia and back. Along with it, there is a number of logistic companies, that operate in this sphere in Bulgaria. In the current paper, the authors aim to establish the condition of the administrative capacity and human resources in the logistic companies and logistic departments of trade and industrial companies in Bulgaria in order to propose some guidelines for improving of their effectiveness. Due to independent empirical research, conducted in Bulgarian logistic, trade and industrial enterprises, the authors investigate both the impact degree and the interdependence of various factors that characterize the administrative capacity. The study is conducted with a prepared questionnaire, in format of direct interview with the respondents. The volume of the poll is 50 respondents, representatives of: general managers of industrial or trade enterprises; logistic managers of industrial or trade enterprises; general managers of forwarding companies – either with own or with hired transport; experts from Bulgarian association of logistics; logistic lobbyist and scientists of the relevant area. The data are gathered for 3 months, then arranged by a specialized software program and analyzed by preset criteria. Based on the results of this methodological toolbox, it can be claimed that there is a correlation between the individual criteria. Also, a commitment between the administrative capacity and other factors that determine the competitiveness of the studied companies is established. In this paper, the authors present results of the empirical research that concerns the number and the workload in the logistic departments of the enterprises. Also, what is commented is the experience, related to logistic processes management and human resources competence. Moreover, the overload level of the logistic specialists is analyzed as one of the main threats for making mistakes and losing clients. The paper stands behind the thesis that there is indispensability of forming an effective and efficient administrative capacity, based on the number, qualification, experience and motivation of the staff in the logistic companies. The paper ends with recommendations about the qualification and experience of the specialists in logistic departments; providing effective and efficient administrative capacity in the logistic departments; interdependence of the human factor and the other factors that influence the enterprise competitiveness.

Keywords: administrative capacity, human resources, logistic competitiveness, staff qualification

Procedia PDF Downloads 150
3637 Trajectories of Depression Anxiety and Stress among Breast Cancer Patients: Assessment at First Year of Diagnosis

Authors: Jyoti Srivastava, Sandhya S. Kaushik, Mallika Tewari, Hari S. Shukla

Abstract:

Little information is available about the development of psychological well being over time among women who have been undergoing treatment for breast cancer. The aim of this study was to identify the trajectories of depression anxiety and stress among women with early-stage breast cancer. Of the 48 Indian women with newly diagnosed early-stage breast cancer recruited from surgical oncology unit, 39 completed an interview and were assessed for depression anxiety and stress (Depression Anxiety Stress Scale-DASS 21) before their first course of chemotherapy (baseline) and follow up interviews at 3, 6 and 9 months thereafter. Growth mixture modeling was used to identify distinct trajectories of Depression Anxiety and Stress symptoms. Logistic Regression analysis was used to evaluate the characteristics of women in distinct groups. Most women showed mild to moderate level of depression and anxiety (68%) while normal to mild level of stress (71%). But one in 11 women was chronically anxious (9%) and depressed (9%). Young age, having a partner, shorter education and receiving chemotherapy but not radiotherapy might characterize women whose psychological symptoms remain strong nine months after diagnosis. By looking beyond the mean, it was found that several socio-demographic and treatment factors characterized the women whose depression, anxiety and stress level remained severe even nine months after diagnosis. The results suggest that support provided to cancer patients should have a special focus on a relatively small group of patient most in need.

Keywords: psychological well being, growth mixture modeling, logistic regression analysis, socio-demographic factors

Procedia PDF Downloads 146
3636 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
3635 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker

Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro

Abstract:

Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.

Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor

Procedia PDF Downloads 255
3634 Organic Farming Profitability: Evidence from South Korea

Authors: Saem Lee, Thanh Nguyen, Hio-Jung Shin, Thomas Koellner

Abstract:

Land-use management has an influence on the provision of ecosystem service in dynamic, agricultural landscapes. Agricultural land use is important for maintaining the productivity and sustainability of agricultural ecosystems. However, in Korea, intensive farming activities in this highland agricultural zone, the upper stream of Soyang has led to contaminated soil caused by over-use pesticides and fertilizers. This has led to decrease in water and soil quality, which has consequences for ecosystem services and human wellbeing. Conventional farming has still high percentage in this area and there is no special measure to prevent low water quality caused by farming activities. Therefore, the adoption of environmentally friendly farming has been considered one of the alternatives that lead to improved water quality and increase in biomass production. Concurrently, farm households with environmentally friendly farming have occupied still low rates. Therefore, our research involved a farm household survey spanning conventional farming, the farm in transition and organic farming in Soyang watershed. Another purpose of our research was to compare economic advantage of the farmers adopting environmentally friendly farming and non-adaptors and to investigate the different factors by logistic regression analysis with socio-economic and benefit-cost ratio variables. The results found that farmers with environmentally friendly farming tended to be younger than conventional farming and farmer in transition. They are similar in terms of gender which was predominately male. Farmers with environmentally friendly farming were more educated and had less farming experience than conventional farming and farmer in transition. Based on the benefit-cost analysis, total costs that farm in transition farmers spent for one year are about two times as much as the sum of costs in environmentally friendly farming. The benefit of organic farmers was assessed with 2,800 KRW per household per year. In logistic regression, the factors having statistical significance are subsidy and district, residence period and benefit-cost ratio. And district and residence period have the negative impact on the practice of environmentally friendly farming techniques. The results of our research make a valuable contribution to provide important information to describe Korean policy-making for agricultural and water management and to consider potential approaches to policy that would substantiate ways beneficial for sustainable resource management.

Keywords: organic farming, logistic regression, profitability, agricultural land-use

Procedia PDF Downloads 401
3633 Farmers’ Access to Agricultural Extension Services Delivery Systems: Evidence from a Field Study in India

Authors: Ankit Nagar, Dinesh Kumar Nauriyal, Sukhpal Singh

Abstract:

This paper examines the key determinants of farmers’ access to agricultural extension services, sources of agricultural extension services preferred and accessed by the farmers. An ordered logistic regression model was used to analyse the data of the 360 sample households based on a primary survey conducted in western Uttar Pradesh, India. The study finds that farmers' decision to engage in the agricultural extension programme is significantly influenced by factors such as education level, gender, farming experience, social group, group membership, farm size, credit access, awareness about the extension scheme, farmers' perception, and distance from extension sources. The most intriguing finding of this study is that the progressive farmers, which have long been regarded as a major source of knowledge diffusion, are the most distrusted sources of information as they are suspected of withholding vital information from potential beneficiaries. The positive relationship between farm size and ‘Access’ underlines that the extension services should revisit their strategies for targeting more marginal and small farmers constituting over 85 percent of the agricultural households by incorporating their priorities in their outreach programs. The study suggests that marginal and small farmers' productive potential could still be greatly augmented by the appropriate technology, advisory services, guidance, and improved market access. Also, the perception of poor quality of the public extension services can be corrected by initiatives aimed at building up extension workers' capacity.

Keywords: agriculture, access, extension services, ordered logistic regression

Procedia PDF Downloads 213
3632 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 151
3631 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 45
3630 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 168
3629 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 116
3628 Exploring the Factors Affecting the Presence of Farmers’ Markets in Rural British Columbia

Authors: Amirmohsen Behjat, Aleck Ostry, Christina Miewald, Bernie Pauly

Abstract:

Farmers’ Markets have become one of the important healthy food suppliers in both rural communities and urban settings. Farmers’ markets are evolving and their number has rapidly increased in the past decade. Despite this drastic increase, the distribution of the farmers’ markets is not even across different areas. The main goal of this study is to explore the socioeconomic, geographic, and demographic variables which affect the establishment of farmers’ market in rural communities in British Columbia (BC). Thus, the data on available farmers’ markets in rural areas were collected from BC Association of Farmers’ Markets and spatially joined to BC map at Dissemination Area (DA) level using ArcGIS software to link the farmers’ market to the respective communities that they serve. Then, in order to investigate this issue and understand which rural communities farmer’ markets tend to operate, a binary logistic regression analysis was performed with the availability of farmer’ markets at DA-level as dependent variable and Deprivation Index (DI), Metro Influence Zone (MIZ) and population as independent variables. The results indicated that DI and MIZ variables are not statistically significant whereas the population is the only which had a significant contribution in predicting the availability of farmers’ markets in rural BC. Moreover, this study found that farmers’ markets usually do not operate in rural food deserts where other healthy food providers such as supermarkets and grocery stores are non-existent. In conclusion, the presence of farmers markets is not associated with socioeconomic and geographic characteristics of rural communities in BC, but farmers’ markets tend to operate in more populated rural communities in BC.

Keywords: farmers’ markets, socioeconomic and demographic variables, metro influence zone, logistic regression, ArcGIS

Procedia PDF Downloads 187
3627 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 128
3626 Multidimensional Poverty and Child Cognitive Development

Authors: Bidyadhar Dehury, Sanjay Kumar Mohanty

Abstract:

According to the Right to Education Act of India, education is the fundamental right of all children of age group 6-14 year irrespective of their status. Using the unit level data from India Human Development Survey (IHDS), we tried to understand the inter-relationship between the level of poverty and the academic performance of the children aged 8-11 years. The level of multidimensional poverty is measured using five dimensions and 10 indicators using Alkire-Foster approach. The weighted deprivation score was obtained by giving equal weight to each dimension and indicators within the dimension. The weighted deprivation score varies from 0 to 1 and grouped into four categories as non-poor, vulnerable, multidimensional poor and sever multidimensional poor. The academic performance index was measured using three variables reading skills, math skills and writing skills using PCA. The bivariate and multivariate analysis was used in the analysis. The outcome variable was ordinal. So the predicted probabilities were calculated using the ordinal logistic regression. The predicted probabilities of good academic performance index was 0.202 if the child was sever multidimensional poor, 0.235 if the child was multidimensional poor, 0.264 if the child was vulnerable, and 0.316 if the child was non-poor. Hence, if the level of poverty among the children decreases from sever multidimensional poor to non-poor, the probability of good academic performance increases.

Keywords: multidimensional poverty, academic performance index, reading skills, math skills, writing skills, India

Procedia PDF Downloads 589
3625 Impact of Diabetes Mellitus Type 2 on Clinical In-Stent Restenosis in First Elective Percutaneous Coronary Intervention Patients

Authors: Leonard Simoni, Ilir Alimehmeti, Ervina Shirka, Endri Hasimi, Ndricim Kallashi, Verona Beka, Suerta Kabili, Artan Goda

Abstract:

Background: Diabetes Mellitus type 2, small vessel calibre, stented length of vessel, complex lesion morphology, and prior bypass surgery have resulted risk factors for In-Stent Restenosis (ISR). However, there are some contradictory results about body mass index (BMI) as a risk factor for ISR. Purpose: We want to identify clinical, lesional and procedural factors that can predict clinical ISR in our patients. Methods: Were enrolled 759 patients who underwent first-time elective PCI with Bare Metal Stents (BMS) from September 2011 to December 2013 in our Department of Cardiology and followed them for at least 1.5 years with a median of 862 days (2 years and 4 months). Only the patients re-admitted with ischemic heart disease underwent control coronary angiography but no routine angiographic control was performed. Patients were categorized in ISR and non-ISR groups and compared between them. Multivariate analysis - Binary Logistic Regression: Forward Conditional Method was used to identify independent predictive risk factors. P was considered statistically significant when <0.05. Results: ISR compared to non-ISR individuals had a significantly lower BMI (25.7±3.3 vs. 26.9±3.7, p=0.004), higher risk anatomy (LM + 3-vessel CAD) (23% vs. 14%, p=0.03), higher number of stents/person used (2.1±1.1 vs. 1.75±0.96, p=0.004), greater length of stents/person used (39.3±21.6 vs. 33.3±18.5, p=0.01), and a lower use of clopidogrel and ASA (together) (95% vs. 99%, p=0.012). They also had a higher, although not statistically significant, prevalence of Diabetes Mellitus (42% vs. 32%, p=0.072) and a greater number of treated vessels (1.36±0.5 vs. 1.26±0.5, p=0.08). In the multivariate analysis, Diabetes Mellitus type 2 and multiple stents used were independent predictors risk factors for In-Stent Restenosis, OR 1.66 [1.03-2.68], p=0.039, and OR 1.44 [1.16-1.78,] p=0.001, respectively. On the other side higher BMI and use of clopidogrel and ASA together resulted protective factors OR 0.88 [0.81-0.95], p=0.001 and OR 0.2 [0.06-0.72] p=0.013, respectively. Conclusion: Diabetes Mellitus and multiple stents are strong predictive risk factors, whereas the use of clopidogrel and ASA together are protective factors for clinical In-Stent Restenosis. Paradoxically High BMI is a protective factor for In-stent Restenosis, probably related to a larger diameter of vessels and consequently a larger diameter of stents implanted in these patients. Further studies are needed to clarify this finding.

Keywords: body mass index, diabetes mellitus, in-stent restenosis, percutaneous coronary intervention

Procedia PDF Downloads 209