Search results for: multi-objective particle swarm optimization
4603 Non-Differentiable Mond-Weir Type Symmetric Duality under Generalized Invexity
Authors: Jai Prakash Verma, Khushboo Verma
Abstract:
In the present paper, a pair of Mond-Weir type non-differentiable multiobjective second-order programming problems, involving two kernel functions, where each of the objective functions contains support function, is formulated. We prove weak, strong and converse duality theorem for the second-order symmetric dual programs under η-pseudoinvexity conditions.Keywords: non-differentiable multiobjective programming, second-order symmetric duality, efficiency, support function, eta-pseudoinvexity
Procedia PDF Downloads 2494602 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 4194601 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator
Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi
Abstract:
With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.Keywords: offshore wind generator, PMSM, PSO optimization, design optimization
Procedia PDF Downloads 1564600 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm
Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan
Abstract:
With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization
Procedia PDF Downloads 3284599 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm
Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei
Abstract:
This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network
Procedia PDF Downloads 6694598 An Efficient Process Analysis and Control Method for Tire Mixing Operation
Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park
Abstract:
Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process
Procedia PDF Downloads 2664597 Water Quality Trading with Equitable Total Maximum Daily Loads
Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) strategies usually intend to find economical policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.Keywords: waste load allocation (WLA), water quality trading (WQT), total maximum daily loads (TMDLs), Haraz River, multi objective particle swarm optimization (MOPSO), equity
Procedia PDF Downloads 3944596 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems
Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi
Abstract:
The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm
Procedia PDF Downloads 1784595 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture
Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk
Abstract:
Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization
Procedia PDF Downloads 3794594 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves
Authors: Reza Abbasi, Ahmad Hamidi Benam
Abstract:
Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm
Procedia PDF Downloads 2344593 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System
Authors: A. S. Walkey, N. P. Patidar
Abstract:
It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices
Procedia PDF Downloads 5074592 Clustering Based Level Set Evaluation for Low Contrast Images
Authors: Bikshalu Kalagadda, Srikanth Rangu
Abstract:
The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization
Procedia PDF Downloads 3524591 Software Verification of Systematic Resampling for Optimization of Particle Filters
Authors: Osiris Terry, Kenneth Hopkinson, Laura Humphrey
Abstract:
Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one.Keywords: SPARK, software verification, resampling, systematic resampling, particle filter, tracking
Procedia PDF Downloads 844590 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer
Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali
Abstract:
Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design
Procedia PDF Downloads 1884589 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images
Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat
Abstract:
The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.Keywords: image segmentation, clustering, GUI, 2D MRI
Procedia PDF Downloads 3774588 Solving the Economic Load Dispatch Problem Using Differential Evolution
Authors: Alaa Sheta
Abstract:
Economic Load Dispatch (ELD) is one of the vital optimization problems in power system planning. Solving the ELD problems mean finding the best mixture of power unit outputs of all members of the power system network such that the total fuel cost is minimized while sustaining operation requirements limits satisfied across the entire dispatch phases. Many optimization techniques were proposed to solve this problem. A famous one is the Quadratic Programming (QP). QP is a very simple and fast method but it still suffer many problem as gradient methods that might trapped at local minimum solutions and cannot handle complex nonlinear functions. Numbers of metaheuristic algorithms were used to solve this problem such as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). In this paper, another meta-heuristic search algorithm named Differential Evolution (DE) is used to solve the ELD problem in power systems planning. The practicality of the proposed DE based algorithm is verified for three and six power generator system test cases. The gained results are compared to existing results based on QP, GAs and PSO. The developed results show that differential evolution is superior in obtaining a combination of power loads that fulfill the problem constraints and minimize the total fuel cost. DE found to be fast in converging to the optimal power generation loads and capable of handling the non-linearity of ELD problem. The proposed DE solution is able to minimize the cost of generated power, minimize the total power loss in the transmission and maximize the reliability of the power provided to the customers.Keywords: economic load dispatch, power systems, optimization, differential evolution
Procedia PDF Downloads 2834587 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile
Authors: Vahid Rashtchi, Ashkan Pirooz
Abstract:
This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile
Procedia PDF Downloads 6064586 An Online Priority-Configuration Algorithm for Obstacle Avoidance of the Unmanned Air Vehicles Swarm
Authors: Lihua Zhu, Jianfeng Du, Yu Wang, Zhiqiang Wu
Abstract:
Collision avoidance problems of a swarm of unmanned air vehicles (UAVs) flying in an obstacle-laden environment are investigated in this paper. Given that the UAV swarm needs to adapt to the obstacle distribution in dynamic operation, a priority configuration is designed to guide the UAVs to pass through the obstacles in turn. Based on the collision cone approach and the prediction of the collision time, a collision evaluation model is established to judge the urgency of the imminent collision of each UAV, and the evaluation result is used to assign the priority of each UAV to further instruct them going through the obstacles in descending order. At last, the simulation results provide the promising validation in terms of the efficiency and scalability of the proposed approach.Keywords: UAV swarm, collision avoidance, complex environment, online priority design
Procedia PDF Downloads 2154585 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 2144584 Growth Performance and Critical Supersaturation of Heterogeneous Condensation for High Concentration of Insoluble Sub-Micron Particles
Abstract:
Measuring the growth performance and critical supersaturation of particle group have a high reference value for constructing a supersaturated water vapor environment that can improve the removal efficiency of the high-concentration particle group. The critical supersaturation and the variation of the growth performance with supersaturation for high-concentration particles were measured by a flow cloud chamber. Findings suggest that the influence of particle concentration on the growth performance will reduce with the increase of supersaturation. Reducing residence time and increasing particle concentration have similar effects on the growth performance of the high-concentration particle group. Increasing particle concentration and shortening residence time will increase the critical supersaturation of the particle group. The critical supersaturation required to activate a high-concentration particle group is lower than that of the single-particle when the minimum particle size in the particle group is the same as that of a single particle.Keywords: sub-micron particles, heterogeneous condensation, critical supersaturation, nucleation
Procedia PDF Downloads 1574583 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage
Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao
Abstract:
Particles exhausted from cars have an adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.Keywords: dispersion, idling conditions, particle concentration, residential underground garage
Procedia PDF Downloads 5514582 Parameter Estimation of Induction Motors by PSO Algorithm
Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad
Abstract:
After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method
Procedia PDF Downloads 6354581 Parameter Identification Analysis in the Design of Rock Fill Dams
Authors: G. Shahzadi, A. Soulaimani
Abstract:
This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS
Procedia PDF Downloads 1464580 Density-based Denoising of Point Cloud
Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng
Abstract:
Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation
Procedia PDF Downloads 3464579 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System
Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian
Abstract:
In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.Keywords: dispatching, solar ingot, simulation, flexsim
Procedia PDF Downloads 3014578 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 984577 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes
Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão
Abstract:
The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.Keywords: eddy current separation, particle size, numerical simulation, metal recovery
Procedia PDF Downloads 914576 A Comparative Study on a Tilt-Integral-Derivative Controller with Proportional-Integral-Derivative Controller for a Pacemaker
Authors: Aysan Esgandanian, Sabalan Daneshvar
Abstract:
The study is done to determine the comparison between proportional-integral-derivative controller (PID controller) and tilt-integral-derivative (TID controller) for cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The controller offers good adaption of heart to the physiological needs of the patient. The parameters of the both controllers are tuned by particle swarm optimization (PSO) algorithm which uses the integral of time square error as a fitness function to be minimized. Simulation results are performed on the developed cardiovascular system of humans and results demonstrate that the TID controller produces superior control performance than PID controllers. In this paper, all simulations were performed in Matlab.Keywords: integral of time square error, pacemaker systems, proportional-integral-derivative controller, PSO algorithm, tilt-integral-derivative controller
Procedia PDF Downloads 4634575 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization
Procedia PDF Downloads 4394574 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System
Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar
Abstract:
The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.Keywords: genetic algorithm, energy, exergy, PVT module, optimization
Procedia PDF Downloads 606