Search results for: mine pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2102

Search results for: mine pollution

1952 Analyzing the Water Quality of Settling Pond after Revegetation at Ex-Mining Area

Authors: Iis Diatin, Yani Hadiroseyani, Muhammad Mujahid, Ahmad Teduh, Juang R. Matangaran

Abstract:

One of silica quarry managed by a mining company is located at Sukabumi District of West Java Province Indonesia with an area of approximately 70 hectares. Since 2013 this company stopped the mining activities. The company tries to restore the ecosystem post-mining with rehabilitation activities such as reclamation and revegetation of their ex-mining area. After three years planting the area the trees grown well. Not only planting some tree species but also some cover crop has covered the soil surface. There are two settling ponds located in the middle of the ex-mining area. Those settling pond were built in order to prevent the effect of acid mine drainage. Acid mine drainage (AMD) or the acidic water is created when sulphide minerals are exposed to air and water and through a natural chemical reaction produce sulphuric acid. AMD is the main pollutant at the open pit mining. The objective of the research was to analyze the effect of revegetation on water quality change at the settling pond. The physical and chemical of water quality parameter were measured and analysed at site and at the laboratory. Physical parameter such as temperature, turbidity and total organic matter were analyse. Also heavy metal and some other chemical parameter such as dissolved oxygen, alkalinity, pH, total ammonia nitrogen, nitrate and nitrite were analysed. The result showed that the acidity of first settling pond was higher than that of the second settling pond. Both settling pond water’s contained heavy metal. The turbidity and total organic matter were the parameter of water quality which become better after revegetation.

Keywords: acid mine drainage, ex-mining area, revegetation, settling pond, water quality

Procedia PDF Downloads 303
1951 Indoor Air Pollution: A Major Threat to Human Health

Authors: Pooja Rawat, Rakhi Tyagi

Abstract:

Globally, almost 3 billion people rely on biomass (wood, charcoal, dung and crop residues) and coal as their primary source of domestic energy. Cooking and heating with solid fuels on open fire give rise to major pollutants. Women are primarily affected by these pollutants as they spend most of their time in the house. The WHO World Health Report 2002 estimates that indoor air pollution (IAP) is responsible for 2.7% of the loss of disability adjusted life years (DALYs) worldwide and 3.7% in high mortality developing countries. Indoor air pollution has the potential to not only impact health, but also impact the general economic well-being of the household. Exposure to high level of household pollution lead to acute and chronic respiratory conditions (e.g.: pneumonia, chronic obstructive pulmonary disease, lung cancer and cataract). There has been many strategies for reducing IAP like subsidize cleaner fuel technologies, for example use of kerosene rather than traditional biomass fuels. Another example is development, promotion of 'improved cooking stoves'. India, likely ranks second- distributing over 12 million improved stoves in the first seven years of a national program to develop. IAP should be reduced by understanding the welfare effects of reducing IAP within households and to understanding the most cost effective way to reduce it.

Keywords: open fire, indoor pollution, lung diseases, indoor air pollution

Procedia PDF Downloads 298
1950 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction

Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer

Abstract:

Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.

Keywords: extraction, MOF, ligand, uranium

Procedia PDF Downloads 160
1949 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 157
1948 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air

Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli

Abstract:

Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.

Keywords: air pollution, dust, numerical modeling, urban

Procedia PDF Downloads 187
1947 A Statistical Approach to Air Pollution in Mexico City and It's Impacts on Well-Being

Authors: Ana B. Carrera-Aguilar , Rodrigo T. Sepulveda-Hirose, Diego A. Bernal-Gurrusquieta, Francisco A. Ramirez Casas

Abstract:

In recent years, Mexico City has presented high levels of atmospheric pollution; the city is also an example of inequality and poverty that impact metropolitan areas around the world. This combination of social and economic exclusion, coupled with high levels of pollution evidence the loss of well-being among the population. The effect of air pollution on quality of life is an area of study that has been overlooked. The purpose of this study is to find relations between air quality and quality of life in Mexico City through statistical analysis of a regression model and principal component analysis of several atmospheric contaminants (CO, NO₂, ozone, particulate matter, SO₂) and well-being indexes (HDI, poverty, inequality, life expectancy and health care index). The data correspond to official information (INEGI, SEDEMA, and CEPAL) for 2000-2018. Preliminary results show that the Human Development Index (HDI) is affected by the impacts of pollution, and its indicators are reduced in the presence of contaminants. It is necessary to promote a strong interest in this issue in Mexico City. Otherwise, the problem will not only remain but will worsen affecting those who have less and the population well-being in a generalized way.

Keywords: air quality, Mexico City, quality of life, statistics

Procedia PDF Downloads 144
1946 Spatial Variability of Environmental Parameters and Its Relationship with an Environmental Injustice on the Bike Paths of Santiago, Chile

Authors: Alicia Muñoz, Pedro Oyola, Cristian Henriquez

Abstract:

Pollution in Santiago de Chile has a spatial variability due to different factors, including meteorological parameters and emission sources. Socioenvironmental aspects are also significant for pollution in the canopy layer since it influences the type of edification, vegetal mass proportion and other environmental conditions. This study analyzes spatially urban pollution in Santiago, specifically, from the bike path perspective. Bike paths are located in high traffic zones, as consequence, users are constantly exposed to urban pollution. Measurements were made at the higher polluted hour, three days a week, including three transit regimes, on the most polluted month of the year. The environmental parameters are fine particulate matter (Model 8520, DustTrak Aerosol Monitor, TSI), temperature and relative humidity; it was also considerate urban parameters as sky view factor and vegetal mass. Identification of an environmental injustice will be achieved with a spatial modeling, including all urban factors and environmental mediations with an economic index of population.

Keywords: canopy layer, environmental injustice, spatial modeling, urban pollution

Procedia PDF Downloads 231
1945 Indoor Air Pollution Control Using a Soil Biofilter

Authors: Daisy B. Badilla, Peter A. Gostomski

Abstract:

Abstract: Biofiltration may be used to control indoor air pollution. In biofiltration, microorganisms break down harmful contaminants in air or water, transforming them into non-toxic substances like carbon dioxide, water, and biomass. In this study, the CO₂ production and the elimination capacity (EC) of toluene at inlet concentrations between 20 and 80 ppm were investigated using three biofilters operated separately with soil as bed material. Results showed soil, with its rich microflora taken to full advantage without inoculants and additional nutrients, biodegraded toluene at removal rates comparable to those in other studies at higher concentrations. The amount of CO₂ generated corresponds to the amount of toluene removed, indicating efficient biodegradation and suggesting stable long-term performance at these low concentrations. Although the concentrations in this study differ from typical indoor toluene levels (ppb), the findings suggest that biofiltration could be effective for indoor air pollution control with appropriate design, taking into account biomass growth or biofilm structure, concentration, and gas flow rate.

Keywords: biofiltration, air pollution control, soil, toluene

Procedia PDF Downloads 12
1944 Evaluation of the Environmental Risk from the Co-Deposition of Waste Rock Material and Fly Ash

Authors: A. Mavrikos, N. Petsas, E. Kaltsi, D. Kaliampakos

Abstract:

The lignite-fired power plants in the Western Macedonia Lignite Center produce more than 8 106 t of fly ash per year. Approximately 90% of this quantity is used for restoration-reclamation of exhausted open-cast lignite mines and slope stabilization of the overburden. The purpose of this work is to evaluate the environmental behavior of the mixture of waste rock and fly ash that is being used in the external deposition site of the South Field lignite mine. For this reason, a borehole was made within the site and 86 samples were taken and subjected to chemical analyses and leaching tests. The results showed very limited leaching of trace elements and heavy metals from this mixture. Moreover, when compared to the limit values set for waste acceptable in inert waste landfills, only few excesses were observed, indicating only minor risk for groundwater pollution. However, due to the complexity of both the leaching process and the contaminant pathway, more boreholes and analyses should be made in nearby locations and a systematic groundwater monitoring program should be implemented both downstream and within the external deposition site.

Keywords: co-deposition, fly ash, leaching tests, lignite, waste rock

Procedia PDF Downloads 238
1943 A Global Perspective on Urban Environmental Problems in Developing Countries: The Case of Turkey

Authors: Nükhet Konuk, N. Gamze Turan, Yüksel Ardalı

Abstract:

Cities play a vital role in the social fabric of countries and in national and regional economic growth worldwide; however, the environmental effects of such growth need to be assessed and managed better. The critical and most immediate problems faced by cities of developing countries are the health impacts of urban pollution that derive from inadequate water, sanitation, drainage and solid waste services, poor urban and industrial waste management, and air pollution. As globalization continues, earth's natural processes transform local problems into international issues. The aim of this study is to provide a broad overview of the pollution from urban wastes and emissions in Turkey which is a developing country. It is aimed to underline the significance of reorganizing the institutional tools in a worldwide perspective in order to generate coherent solutions to urban problems, and to enhance urban quality.

Keywords: environmental pollution, developing countries, environmental degradation, urban environmental problems

Procedia PDF Downloads 330
1942 From Sampling to Sustainable Phosphate Recovery from Mine Waste Rock Piles

Authors: Hicham Amar, Mustapha El Ghorfi, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, Mostafa Benzaazoua

Abstract:

Phosphate mine waste rock (PMWR) generated during ore extraction is continuously increasing, resulting in a significant environmental footprint. The main objectives of this study consist of i) elaboration of the sampling strategy of PMWR piles, ii) a mineralogical and chemical characterization of PMWR piles, and iii) 3D block model creation to evaluate the potential valorization of the existing PMWR. Destructive drilling using reverse circulation from 13 drills was used to collect samples for chemical (X-ray fluorescence analysis) and mineralogical assays. The 3D block model was created based on the data set, including chemical data of the realized drills using Datamine RM software. The optical microscopy observations showed that the sandy phosphate from drills in the PMWR piles is characterized by the abundance of carbonate fluorapatite with the presence of calcite, dolomite, and quartz. The mean grade of composite samples was around 19.5±2.7% for P₂O₅. The mean grade of P₂O₅ exhibited an increasing tendency by depth profile from bottom to top of PMWR piles. 3D block model generated with chemical data confirmed the tendency of the mean grades’ variation and may allow a potential selective extraction according to %P₂O₅. The 3D block model of P₂O₅ grade is an efficient sampling approach that confirmed the variation of P₂O₅ grade. This integrated approach for PMWR management will be a helpful tool for decision-making to recover the residual phosphate, adopting the circular economy and sustainability in the phosphate mining industry.

Keywords: 3D modelling, reverse circulation drilling, circular economy, phosphate mine waste rock, sampling

Procedia PDF Downloads 78
1941 Metal Contaminants in River Water and Human Urine after an Episode of Major Pollution by Mining Wastes in the Kasai Province of DR Congo

Authors: Remy Mpulumba Badiambile, Paul Musa Obadia, Malick Useni Mutayo, Jeef Numbi Mukanya, Patient Nkulu Banza, Tony Kayembe Kitenge, Erik Smolders, Jean-François Picron, Vincent Haufroid, Célestin Banza Lubaba Nkulu, Benoit Nemery

Abstract:

Background: In July 2021, the Tshikapa river became heavily polluted by mining wastes from a diamond mine in neighboring Angola, leading to massive killing of fish, as well as disease and even deaths among residents living along the Tshikapa and Kasai rivers, a major contributory of the Congo river. The exact nature of the pollutants was unknown. Methods: In a cross-sectional study conducted in the city of Tshikapa in August 2021, we enrolled by opportunistic sampling 65 residents (11 children < 16y) living alongside the polluted rivers and 65 control residents (5 children) living alongside a non-affected portion of the Kasai river (upstream from the Tshikapa-Kasai confluence). We administered a questionnaire and obtained spot urine samples for measurements of thiocyanate (a metabolite of cyanide) and 26 trace metals (by ICP-MS). Metals (and pH) were also measured in samples of river water. Results: Participants from both groups consumed river water. In the area affected by the pollution, most participants had eaten dead fish. Prevalences of reported health symptoms were higher in the exposed group than among controls: skin rashes (52% vs 0%), diarrhea (40% vs 8%), abdominal pain (8% vs 3%), nausea (3% vs 0%). In polluted water, concentrations [median (range)] were only higher for nickel [(2.2(1.4–3.5)µg/L] and uranium [78(71–91)ng/L] than in non-polluted water [0.8(0.6–1.9)µg/L; 9(7–19)ng/L]. In urine, concentrations [µg/g creatinine, median(IQR)] were significantly higher in the exposed group than in controls for lithium [19.5(12.4–27.3) vs 6.9(5.9–12.1)], thallium [0.41(0.31–0.57) vs 0.19(0.16–0.39)], and uranium [0.026(0.013–0.037)] vs 0.012(0.006–0.024)]. Other elements did not differ between the groups, but levels were higher than reference values for several metals (including manganese, cobalt, nickel, and lead). Urinary thiocyanate concentrations did not differ. Conclusion: This study, after an ecological disaster in the DRC, has documented contamination of river water by nickel and uranium and high urinary levels of some trace metals among affected riverine populations. However, the exact cause of the massive fish kill and disease among residents remains elusive. The capacity to rapidly investigate toxic pollution events must be increased in the area.

Keywords: metal contaminants, river water and human urine, pollution by mining wastes, DR Congo

Procedia PDF Downloads 156
1940 Water Quality of Cengkareng Drain in Maritime Security Perspective

Authors: Febri Ramadhan, Sigid Hariyadi, Niken Tunjung Murti Pratiwi, Budiman Djoko Said

Abstract:

The scope about maritime security copes all of the problems emanating from maritime domain. Those problems can give such threats to national security of the state. One of threats taking place nowadays in maritime domain is about pollution. Pollution coming from many sources may increase water-borne disease risk that can cause the instability of national security. Pollution coming from many sources may increase water-borne disease risk. Hence the pollution makes an improper condition of environments for humans and others biota dwelling in the waters. One of the tools that can determine about pollution is by measuring about the water quality of its waters. In this case, what brings the waste and pollutants is there an activity of tidal waves introducing substances or energy into the natural environment. Cengkareng Drain is one of the water channels which is affected by tidal waves. Cengkareng Drain was become an observation area to examine the relation between water quality and tide waves. This research was conducted monthly from July to November 2015. Sampling of water was conducted every ebb and tide in every observation. Pollution index showed that the level of pollution on Cengkareng drain was moderately polluted, with the score about 7.7-8.6. Based on the results of t-test and analysis of similarity, the characteristic of water quality on rising tide does not significantly differ from the characteristic of water quality on ebbing tide. Therefore, we need a proper management as a means to control the pollutants in order to make good maritime security strategy.

Keywords: maritime security, Cengkareng drain, water quality, tidal waves

Procedia PDF Downloads 216
1939 Using Sea Cucumber for Mitigation of Marine Pollution

Authors: A. Al-Yaqout, A. Al-Alawi, T. Al-Said, E. Al-Enezi, M. Al-Roumi

Abstract:

Kuwait’s marine environment suffers from increased organic pollution. Sea cucumbers play an important role in the marine environment. They create a healthier environment for many types of benthic micro-organisms through their slow movement and feeding mechanism on micro-organisms and organic material. A preliminary study has been conducted in Kuwait Institute for Scientific Research to assess the possibility of using sea cucumbers for mitigation of the coastal pollution. Sediments were collected from locations identified to be heavily loaded with organic pollutants. Ten aquaria glass tanks, 65x 40x 30cm will be supplied with 10 cm height (14 kg) of the sediments added in each tank and filled with 70 L of filtered seawater. Two species were used in this study, Stichopus hermanni, and Holothuria atra. Water and sediment samples were analyzed weekly. The results showed promising possibility for using sea cucumber to lower the organic load in sediments.

Keywords: organic pollution, sea cucumbers, mitigation, Stichopus hermanni, Holothuria atra

Procedia PDF Downloads 313
1938 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments

Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento

Abstract:

Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.

Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic

Procedia PDF Downloads 20
1937 Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity

Authors: Artur Cichowicz

Abstract:

The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events.

Keywords: inter-event time, fluid induced seismicity, mine closure, spectral parameters of seismic source

Procedia PDF Downloads 285
1936 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution

Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong

Abstract:

The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.

Keywords: particulate, air pollution, wireless communication, sensor

Procedia PDF Downloads 367
1935 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 212
1934 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria

Authors: M. Benhamza, M. Touati, M. Aissaoui

Abstract:

The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.

Keywords: Algeria, groundwater, irrigated perimeter, pollution

Procedia PDF Downloads 121
1933 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 343
1932 Adsoption Tests of Two Industrial Dyes by Hydroxyds of Metals

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated sludge, lagoons as biological processes and coagulation-flocculation as a physic-chemical process. These processes are very expensive and a decreasing in efficiency treatment with the increase of the initial pollutants concentration. This is the reason why research has been reoriented towards the use of adsorption process as an alternative solution instead of the other traditional processes. In our study, we have tempted to explore the characteristics of hydroxides of Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: metallic hydroxydes, dyes, purification, adsorption

Procedia PDF Downloads 336
1931 Effects of Air Pollution on Dew Water: A Case Study of Ado-Ekiti, Nigeria

Authors: M. Sanmi Awopetu, Olugbenga Aribisala, Olabisi O. Ologuntoye, S. Olumuyi Akindele

Abstract:

Human existence vis-à-vis its environment is more and more getting a threatened sequel to air pollution occasioned majorly by human coupled with natural activities. Earth is getting warmer; ozone layer is getting depleted, acid rain is being experienced, all as a result of air pollution. This study seeks to investigate the effect of air pollution on dew water. Thirty-one (31) samples of dew water were collected in four locations in Ado- Ekiti, Ekiti State Nigeria. Analytical studies of the dew water samples were carried out to determine the pH, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) in order to determine whether the dew water is polluted or not. There is no documented world standard for dew water quality. However, the standard for normal rain water which is pH between 5.0-5.6 and acid rain pH between 4.0-4.4 was adopted for this study. The pH of dew water samples collected and analyzed ranged between 5.5 and 7.9 in Olokun Ado-Ekiti while other samples fell in between this range. In Government Reserved Area (GRA), Ajilosun and EKSU school area, the pH ranged between 6.4 and 7.9 while EC fell in between 0.0 and 0.9 mS/cm which shows that the observed zones are polluted. Everyone has a role to play in order to reduce the pollutants being released into the atmosphere. There is a need to develop an international standard for dew water quality.

Keywords: dew, air pollution, total dissolved solids, electrical conductivity, Ado-Ekiti

Procedia PDF Downloads 194
1930 Informing Lighting Designs Through a Comprehensive Review of Light Pollution Impacts

Authors: Stephen M. Simmons, Stuart W. Baur, William L. Gillis

Abstract:

In recent years, increasing concern has been shown towards the issue of light pollution, especially with the spread of brighter, more blue-rich LED bulbs. Much research has been conducted in order to study the effects of artificial light at night, and many adverse impacts have been discovered, such as circadian disruption, degradation of the night sky, and interference oftheprocesses and behaviors of plants and animals. Despite a plethora of informationin the literature regarding the numerous illeffects of this type of pollution, there does not appear to be a complete summary of these impacts, including their magnitudes, which would facilitate the balancing of risks and benefits in the design of an exterior lighting system. This paperprovides a comprehensive review of the known impacts of light pollution, divided into four categories - human health, night sky, plants, and animals; additionally, it includes a synopsis of what likely remains unknown at this point in time. This review will attempt to showcase the relative significance of differentimpacts within each category, as well as their sensitivity to changes in lighting specifications (brightness, color temperature, shielding, and mounting height). Methods to be employed in this research include an extensive literature review and the gathering of expert knowledge and opinions. The findings of this review will be used to inform the creation of an optimized lighting design for the Missouri University of Science and Technology campus. It is hoped that future research willexplore the known impacts of light pollution further, as well as search for what still remains to be found regarding the consequencesof artificial light at night.

Keywords: comprehensive review, impacts, light pollution, lighting design, literature review

Procedia PDF Downloads 137
1929 Effects of Spent Dyebath Recycling on Pollution and Cost of Production in a Cotton Textile Industry

Authors: Dinesh Kumar Sharma, Sanjay Sharma

Abstract:

Textile manufacturing industry uses a substantial amount of chemicals not only in the production processes but also in manufacturing the raw materials. Dyes are the most significant raw material which provides colour to the fabric and yarn. Dyes are produced by using a large amount of chemicals both organic and inorganic in nature. Dyes are further classified as Reactive or Vat Dyes which are mostly used in cotton textiles. In the process of application of dyes to the cotton fiber, yarn or fabric, several auxiliary chemicals are also used in the solution called dyebath to improve the absorption of dyes. There is a very little absorption of dyes and auxiliary chemicals and a residual amount of all these substances is released as the spent dye bath effluent. Because of the wide variety of chemicals used in cotton textile dyes, there is always a risk of harmful effects which may not be apparent immediately but may have an irreversible impact in the long term. Colour imparted by the dyes to the water also has an adverse effect on its public acceptability and the potability. This study has been conducted with an objective to assess the feasibility of reuse of the spent dye bath. Studies have been conducted in two independent industries manufacturing dyed cotton yarn and dyed cotton fabric respectively. These have been referred as Unit-I and Unit-II. The studies included assessment of reduction in pollution levels and the economic benefits of such reuse. The study conclusively establishes that the reuse of spent dyebath results in prevention of pollution, reduction in pollution loads and cost of effluent treatment & production. This pollution prevention technique presents a good preposition for pollution prevention in cotton textile industry.

Keywords: dyes, dyebath, reuse, toxic, pollution, costs

Procedia PDF Downloads 393
1928 Response of Subfossile Diatoms, Cladocera, and Chironomidae in Sediments of Small Ponds to Changes in Wastewater Discharges from a Zn–Pb Mine

Authors: Ewa Szarek-Gwiazda, Agata Z. Wojtal, Agnieszka Pociecha, Andrzej Kownacki, Dariusz Ciszewski

Abstract:

Mining of metal ores is one of the largest sources of heavy metals, which deteriorate aquatic systems. The response of organisms to environmental changes can be well recorded in sediments of the affected water bodies and may be reconstructed based on analyses of organisms' remains. The present study aimed at the response of diatoms (Bacillariophyta), Cladocera, and Chironomidae communities to the impact of Zn-Pb mine water discharge recorded in sediment cores of small subsidence ponds on the Chechło River floodplain (Silesia–Krakow Region, southern Poland). We hypothesize various responses of the above groups to high metal concentrations (Cd, Pb, Zn, and Cu). The investigated ponds were formed either during the peak of the ore exploitation (DOWN) or after mining cessation (UP). Currently, the concentrations of dissolved metals (in µg g⁻¹) in water reached up to 0.53 for Cd, 7.3 for Pb, and up to 47.1 for Zn. All the sediment cores from subsidence ponds were heavily polluted with Cd 6.7–612 μg g⁻¹, Pb 0.1–10.2 mg g⁻¹, and Zn 0.5–23.1 mg g⁻¹. Core sediments varied also in respect to pH 5.8-7.1 and concentrations of organic matter (5.7-39.8%). The impact of high metal concentrations was expressed by the occurrence of metal-tolerant taxa like diatoms – Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii; Cladocera – Chydorus sphaericus (dominated in cores from all ponds), and Chironomidae – Chironomus and Cricotopus especially in the DOWN ponds. Statistical analysis exhibited a negative impact of metals on some taxa of diatoms and Cladocera but only on Polypedilum sp. from Chironomidae. The abundance of such diatoms like Gomphonema utae, Staurosirella pinnata, Eunotia bilunaris, and Cladocera like Alona, Chydorus, Graptoleberis, and Pleuroxus decreased with increasing Pb concentration. However, the occurrence or dominance of more sensitive species of diatoms and Cladocera indicates their adaptation to higher metal loads, which was facilitated by neutral pH and slightly alkaline waters. Diatom assemblages were generally resistant to Zn, Pb, Cu, and Cd pollution, as indicated by their large similarity to populations from non-contaminated waters. Comparison with reference objects clearly indicates the dominance of Achnanthidium minutissimum, Staurosira venter, and Fragilaria gracilis in very diverse assemblages of unpolluted waters. The distribution of the Cladocera and Chironomidae taxa depended on the habitat type. The DOWN ponds with stagnant water and overgrown with macrophytes were more suitable for cladocerans (14 taxa, higher diversity) than the UP ponds with river water flowing through their centre and with a small share of macrophytes (8 taxa). The Chironominae, mainly Chironomus and Microspectra, were abundant in cores from the UP ponds with muddy bottoms. Inversely, the density of Orthocladiinae, especially genus Cricotopus, was related to the organic matter content and dominated in cores from the DOWN ponds. The presence of diatoms like Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii, cladocerans: Bosmina longirostris, Chydorus sphaericus, Alona affinis, and A. rectangularis as well as Chironomidae Chironomus sp. (UP ponds) and Psecrotanypus varius (DOWN ponds) indicate the influence of the water trophy on their distribution.

Keywords: Chironomidae, Cladocera, diatoms, metals, Zn-Pb mine, sediment cores, subsidence ponds

Procedia PDF Downloads 77
1927 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 262
1926 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study

Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle

Abstract:

The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.

Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area

Procedia PDF Downloads 118
1925 Adsoption Tests of Two Industrial Dyes by Metallic Hydroxyds

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: Metallic Hydroxydes, industrial dyes, purification, lagunage

Procedia PDF Downloads 466
1924 Earth Observations and Hydrodynamic Modeling to Monitor and Simulate the Oil Pollution in the Gulf of Suez, Red Sea, Egypt

Authors: Islam Abou El-Magd, Elham Ali, Moahmed Zakzouk, Nesreen Khairy, Naglaa Zanaty

Abstract:

Maine environment and coastal zone are wealthy with natural resources that contribute to the local economy of Egypt. The Gulf of Suez and Red Sea area accommodates diverse human activities that contribute to the local economy, including oil exploration and production, touristic activities, export and import harbors, etc, however, it is always under the threat of pollution due to human interaction and activities. This research aimed at integrating in-situ measurements and remotely sensed data with hydrodynamic model to map and simulate the oil pollution. High-resolution satellite sensors including Sentinel 2 and Plantlab were functioned to trace the oil pollution. Spectral band ratio of band 4 (infrared) over band 3 (red) underpinned the mapping of the point source pollution from the oil industrial estates. This ratio is supporting the absorption windows detected in the hyperspectral profiles. ASD in-situ hyperspectral device was used to measure experimentally the oil pollution in the marine environment. The experiment used to measure water behavior in three cases a) clear water without oil, b) water covered with raw oil, and c) water after a while from throwing the raw oil. The spectral curve is clearly identified absorption windows for oil pollution, particularly at 600-700nm. MIKE 21 model was applied to simulate the dispersion of the oil contamination and create scenarios for crises management. The model requires precise data preparation of the bathymetry, tides, waves, atmospheric parameters, which partially obtained from online modeled data and other from historical in-situ stations. The simulation enabled to project the movement of the oil spill and could create a warning system for mitigation. Details of the research results will be described in the paper.

Keywords: oil pollution, remote sensing, modelling, Red Sea, Egypt

Procedia PDF Downloads 347
1923 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria

Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah

Abstract:

Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.

Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria

Procedia PDF Downloads 71