Search results for: metal oxide solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8503

Search results for: metal oxide solution

8353 Synthesis and Characterization of Polypyrrole-Coated Non-Conducting Cellulosic Substrate and Modified by Copper Oxide

Authors: A. Hamam, D. Oukil, A. Dib, L. Makhloufi

Abstract:

The aim of this work is to synthesize modified Polypyrrole films (PPy) containing nanoparticles of copper oxides onto a non conducting cellulosic substrate. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is carried out using FeCl3 as an oxidant and Pyrrole as monomer. Different parameters were optimized (monomer concentration, duration of the experiment, nature of supporting electrolyte, temperature, etc.) in order to obtain films with different thickness and different morphologies. Thickness and topography of different PPy deposits were estimated by a profilometer apparatus. The electrochemical reactivity of the obtained electrodes were tested by cyclic voltammetry technique (CV) and electrochemical impedance spectroscopy (EIS). Secondly, the modification of the PPy film surface by incorporation of copper oxide nanonoparticles is conducted by applying a galvanostatic procedure from CuCl2 solution. Surface characterization has been carried out using scanning microscope (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis showed the presence of the copper oxide nanoparticles (CuO) in the polymer films with dimensions less than 50 nm.

Keywords: polypyrrole, modified electrode, cellulosic substrate, copper oxide

Procedia PDF Downloads 432
8352 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 343
8351 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 112
8350 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification

Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel

Abstract:

Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.

Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable

Procedia PDF Downloads 83
8349 Simulation of High Performance Nanoscale Partially Depleted SOI n-MOSFET Transistors

Authors: Fatima Zohra Rahou, A. Guen Bouazza, B. Bouazza

Abstract:

Invention of transistor is the foundation of electronics industry. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been the key for the development of nanoelectronics technology. In the first part of this manuscript, we present a new generation of MOSFET transistors based on SOI (Silicon-On-Insulator) technology. It is a partially depleted Silicon-On-Insulator (PD SOI MOSFET) transistor simulated by using SILVACO software. This work was completed by the presentation of some results concerning the influence of parameters variation (channel length L and gate oxide thickness Tox) on our PDSOI n-MOSFET structure on its drain current and kink effect.

Keywords: SOI technology, PDSOI MOSFET, FDSOI MOSFET, kink effect

Procedia PDF Downloads 233
8348 The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water

Authors: Mohamed A. Deyab, Ahmed E. Awadallah

Abstract:

Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand.

Keywords: hydrogen production, Mg, wastewater, ionic liquid

Procedia PDF Downloads 135
8347 The Transport of Coexisting Nanoscale Zinc Oxide Particles, Cu(Ⅱ) and Cr(Ⅵ) Ions in Simulated Landfill Leachate

Authors: Xiaoyu Li, Wenchuan Ding, Yujia Yia

Abstract:

As the nanoscale zinc oxide particles (nano-ZnO) accumulate in the landfill, nano-ZnO will enter the landfill leachate and come into contact with the heavy metal ions in leachate, which will change their transport process in the landfill and, furthermore, affect each other's environmental fate and toxicity. In this study, we explored the transport of co-existing nano-ZnO, Cu(II) and Cr(VI) ions by column experiments under different stages of landfill leachate conditions (flow rate, pH, ionic strength, humic acid). The results show that Cu(II) inhibits the transport of nano-ZnO in the quartz sand column by increasing the surface potential of nano-ZnO, and nano-ZnO increases the retention of Cu(II) in the quartz sand column by adsorbing Cu(II) ions. Cr(VI) promotes the transport of nano-ZnO in the quartz sand column by neutralizing the surface potential of the nano-ZnO which reduces electrostatic attraction between nZnO and quartz sand, but the nano-ZnO has no effect on the transport of Cr(VI). The nature of landfill leachates such as flow rate, pH, ionic strength (IS) and humic acid (HA) has a certain effect on the transport of coexisting nano-ZnO and heavy metal ions. For leachate containing Cu(II) and Cr(VI) ions, at the initial stage of landfilling, the pH of leachate is acidic, ionic strength value is high, the humic acid concentration is low, and the transportability of nano-ZnO is weak. As the landfill age increased, the pH value in the leachate gradually increases, when the ions are raised to alkaline, these ions are trending to precipitated or adsorbed to the solid wastes in landfill, which resulting in low IS value of leachate. At the same time, more refractory organic matter gradually increases such as HA, which provides repulsive steric effects, so the nano-ZnO is more likely to migrate. Overall, the Cr(VI) can promote the transport of nano-ZnO more than Cu(II).

Keywords: heavy metal ions, landfill leachate, nano-ZnO, transport

Procedia PDF Downloads 117
8346 Technique for Online Condition Monitoring of Surge Arresters

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.

Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current

Procedia PDF Downloads 43
8345 Nanostructured Fluorine Doped Zinc Oxide Thin Films Deposited by Ultrasonic Spray Pyrolisys Technique: Effect of Starting Solution Composition and Substrate Temperature on the Physical Characteristics

Authors: Esmeralda Chávez Vargas, M. de la L. Olvera, A. Maldonado

Abstract:

The doping it is believed as follows, at high concentration fluorine in ZnO: F films is incorporated to the lattice by substitution of O-2 ions by F-1 ions; at middle fluorine concentrations, F ions may form interstitials, whereas for low concentrations it is increased the carriers and mobility could be explained by the surface passivation effect of fluorine. ZnO:F thin films were deposited on sodocalcic glass substratesat 425 °C , 450°C, 475 during 8, 12, 15 min from a 0.2 M solution. Doping concentration in the starting solutions was varied, namely, [F]/[F+Zn] = 0, 5, 15, 30, 45, 60, and 90 at. %; solvent composition was varied as well, 100:100; 50:50; 100:50(acetic acid: water: methanol ratios, in volume). In this work it is reported the characterization results of fluorine doped zinc oxide (ZnO:F) thin films deposited by the ultrasonic spray pyrolysis technique, using zinc acetate and ammonium fluorine as Zn an F precursors, respectively. The effect of varying the fluorine concentration in the starting solutions, the solvent composition, and the ageing time of the starting solutions, on the electrical resistivity, optical transmittance, structure and surface morphology was analyzed. In order to have a quantitative evaluation of the ZnO:F thin films for its application as transparent electrodes, the Figure of Merit was estimated from the Haacke´s formula. After a thoroughly study, it can be found that optimal conditions for the deposition of transparent and conductive ZnO:F thin films on sodocalcic substrates, were as follows; substrate temperature: solution molar concentration 0.2, doping concentration in the starting solution of [F]/[Zn]= 60 at. %, (water content)/(acetic acid) in starting solution: [H2O/ CH3OH]= 50:50, substrate temperature: 450 °C. The effects of aging of the starting solution has also been analyzed thoroughly and it has been found a dramatic effect on the electric resistivity of the material, aged by 40 days, show an electrical resitivity as low as 120 Ω/□, with a transmittance around 80% in the visible range. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane). Therefore, F introduction in lattice is by the substitution of O-2 ions by F-1 ions. The results show that ZnO:F thin films are potentially adequate for application as transparent conductive oxide in thin film solar cells.

Keywords: TCOs, transparent electrodes, ultrasonic spray pyrolysis, zinc oxide, ZnO:F

Procedia PDF Downloads 481
8344 One-Pot Synthesis and Characterization of Magnesium Oxide Nanoparticles Prepared by Calliandra Calothyrsus Leaf Extract

Authors: Indah Kurniawaty, Yoki Yulizar, Haryo Satriya Oktaviano, Adam Kusuma Rianto

Abstract:

Magnesium oxide nanoparticles (MgO NP) were successfully synthesized in this study using a one-pot green synthesis mediated by Calliandra Calothyrsus leaf extract (CLE). CLE was prepared by maceration of the leaf using methanol with a ratio of 1:5 for 7 days. Secondary metabolites in CLE, such as alkaloids and flavonoids, served as a weak base provider and capping agent in the formation of MgO NP. CLE Fourier Transform Infra-Red (FTIR) spectra peak at 3255, 1600, 1384, 1205, 1041, and 667 cm-1 showing the presence of vibrations O-H stretching, N-H bending, C-C stretching, C-N stretching and N-H wagging. During the experiment, different CLE volumes and calcined temperatures were used, resulting in a variety of structures. Energy Dispersive X-ray Spectrometer (EDS) and FTIR were used to characterize metal oxide particles. MgO diffraction pattern at 2θ of 36.9°; 42.9°; 62.2°; 74.6°; and 78.5° which can be assigned to crystal planes (111), (200), (220), (311), and (222), respectively. Scanning Electron Microscopy (SEM) was used to characterize the surface morphology. The morphology ranged from sphere to flower-like resulting in crystallite sizes of 28, 23, 12, and 9 nm.

Keywords: MgO, nanoparticle, calliandra calothyrsus, green-synthesis

Procedia PDF Downloads 59
8343 Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts

Authors: Silviya Todorova, Anton Naydenov, Ralitsa Velinova, Alexander Larin

Abstract:

Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion.

Keywords: methane combustion, palladium, Co-Ce, Ni-Ce

Procedia PDF Downloads 163
8342 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.

Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties

Procedia PDF Downloads 59
8341 Zinc Oxide Nanowires: Device Fabrication and Optical Properties

Authors: Igori Wallace

Abstract:

Zinc oxide (ZnO) nanowires with hexagonal structure were successfully synthesized by the chemical bath deposition technique. The obtained nanowires were characterized by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The SEM micrographs revealed the morphology of ZnO nanowires with the diameter between 170.3 and 481nm and showed that the normal pH of the bath solution, 8.1 is the optimized value to form ZnO nanowires with the hexagonal shape. The compositional (EDX) analysis revealed the elemental compositions of samples and confirmed the presence of Zn and O.

Keywords: crystallite, chemical bath deposition technique, hexagonal, morphology, nanowire

Procedia PDF Downloads 288
8340 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 292
8339 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application

Authors: Zeinab Sanaee, Hossein Jafaripour

Abstract:

Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.

Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery

Procedia PDF Downloads 68
8338 Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier

Authors: Jolanta Pulit-Prociak, Olga Dlugosz, Marcin Banach

Abstract:

The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.

Keywords: nanomaterials, zinc oxide, drug delivery system, toxicity

Procedia PDF Downloads 169
8337 Fabrication and Characterization of Cadmium Sulfide Nanowires on Aluminum Oxide Template

Authors: Malik Imran Afzal

Abstract:

Cadmium supplied nanowires have unique electrical and optical properties and applications. To obtain cadmium supplied nanowires with regular and good aspect ratio, they can be synthesized by template synthesis method. Porous anodized aluminum oxide is the most promising template with regular hexagonal shapes. Their aspect ratio can be controlled by controlling the pores’ depth and diameter which greatly depend on anodization voltage and temperature of the electrolyte. In this research, high purity aluminium was used to prepare nanotemplates at 5-6°C in 1M phosphoric acid and cadmium supplied was deposited electrochemically using a co-solution of thiourea, cadmium acetate and ammonium acetate. pH was maintained at 11 in a heat bath at 75°C with the help of aqueous ammonia solution. Both porous anodized alumina and cadmium supplied nanowires were characterized suing SEM. A good quality Nanowires were obtained in bunches with reasonably high aspect ratio.

Keywords: bunches, electrodeposition, hexagonal, thiourea

Procedia PDF Downloads 308
8336 CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties

Authors: M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutebakh, M. S. Aida, N. Attaf

Abstract:

CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: Copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.

Keywords: thin films, cuprous oxide, spray pyrolysis, precursor solution

Procedia PDF Downloads 291
8335 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.

Keywords: heavy metal, orchard, pollution and monitoring, sediment

Procedia PDF Downloads 369
8334 Use of Microbial Fuel Cell for Metal Recovery from Wastewater

Authors: Surajbhan Sevda

Abstract:

Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.

Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity

Procedia PDF Downloads 196
8333 Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater

Authors: W. E. Igwegbe, B. C. Okoro, J. C. Osuagwu

Abstract:

The study was aimed at assessing the effectiveness of reducing the concentrations of heavy metals in waste water using Pawpaw (Carica papaya) wood as a bio-sorbent. The heavy metals considered include; zinc, cadmium, lead, copper, iron, selenium, nickel, and manganese. The physiochemical properties of carica papaya stem were studied. The experimental sample was obtained from a felled trunk of matured pawpaw tree. Waste water for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of ph, contact time and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the carica papaya stem biomass. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating waste water.

Keywords: biomass, bio-sorption, Carica papaya, heavy metal, wastewater

Procedia PDF Downloads 351
8332 Corrosion Inhibition of AA2024 Alloy with Graphene Oxide Derivative: Electrochemical and Surface Analysis

Authors: Nisrine Benzbiria, Abderrahmane Thoume, Mustapha Zertoubi

Abstract:

The goal of this research is to investigate the corrosion inhibition potential of functionalized graphene oxide (GO) with oxime derivative on AA2024-T3 surface in synthetic seawater. The utilization of functionalized graphene oxide is creating a category of corrosion inhibitors known as organically modified nanomaterials. In our work, the functionalization of GO by chalcone oxime enables graphene oxide to have enhanced water solubility and a good corrosion mitigation capacity. Fourier-transform infrared (FT-IR) spectroscopy was utilized to evaluate the main functional groups of the inhibitor. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP) showed that the inhibitor acts as a mixed-type inhibitor. The inhibitory efficiency (IE) improved as the concentration increased to a value of 96% after one hour of exposure to a medium containing 60 mg/L ppm of the inhibitor. According to thermodynamic calculations, the adsorption of the inhibitor on the AA2024-T3 surface in 3% NaCl followed the Langmuir isotherm. The formation of a barrier layer was further confirmed by surface analysis. The protective film prevented the alloy dissolution and limited the accessibility of attacking ions, as evinced by solution analysis techniques.

Keywords: AA2024-T3, NaCl, electrochemical methods, FT-IR, SEM/AFM, DFT, MC simulation

Procedia PDF Downloads 38
8331 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66

Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri

Abstract:

Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.

Keywords: heteropoly acid, graphene oxide, MOF, tetracycline

Procedia PDF Downloads 105
8330 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)

Authors: M. Kessi

Abstract:

We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.

Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force

Procedia PDF Downloads 161
8329 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior

Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh

Abstract:

Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.

Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density

Procedia PDF Downloads 288
8328 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 36
8327 Preparation and Characterization of Dendrimer-Encapsulated Ytterbium Nanoparticles to Produce a New Nano-Radio Pharmaceutical

Authors: Aghaei Amirkhizi Navideh, Sadjadi Soodeh Sadat, Moghaddam Banaem Leila, Athari Allaf Mitra, Johari Daha Fariba

Abstract:

Dendrimers are good candidates for preparing metal nanoparticles because they can structurally and chemically well-defined templates and robust stabilizers. Poly amidoamine (PAMAM) dendrimer-based multifunctional cancer therapeutic conjugates have been designed and synthesized in pharmaceutical industry. In addition, encapsulated nanoparticle surfaces are accessible to substrates so that catalytic reactions can be carried out. For preparation of dendimer-metal nanocomposite, a dendrimer solution containing an average of 55 Yb+3 ions per dendrimer was prepared. Prior to reduction, the pH of this solution was adjusted to 7.5 using NaOH. NaBH4 was used to reduce the dendrimer-encapsulated Yb+3 to the zerovalent metal. The pH of the resulting solution was then adjusted to 3, using HClO4, to decompose excess BH4-. The UV-Vis absorption spectra of the mixture were recorded to ensure the formation of Yb-G5-NH2 complex. High-resolution electron microscopy (HRTEM) and size distribution results provide additional information about dendimer-metal nanocomposite shape, size, and size distribution of the particles. The resulting mixture was irradiated in Tehran Research Reactor 2h and neutron fluxes were 3×1011 n/cm2.Sec and the specific activity was 7MBq. Radiochemical and chemical and radionuclide quality control testes were carried. Gamma Spectroscopy and High-performance Liquid Chromatography HPLC, Thin-Layer Chromatography TLC were recorded. The injection of resulting solution to solid tumor in mice shows that it could be resized the tumor. The studies about solid tumors and nano composites show that ytterbium encapsulated-dendrimer radiopharmaceutical could be introduced as a new therapeutic for the treatment of solid tumors.

Keywords: nano-radio pharmaceutical, ytterbium, PAMAM, dendrimers

Procedia PDF Downloads 484
8326 Comparative Evaluation of Kinetic Model of Chromium and Lead Uptake from Aqueous Solution by Activated Balanitesaegyptiaca Seeds

Authors: Mohammed Umar Manko

Abstract:

A series of batch experiments were conducted in order to investigate the feasibility of Balanitesaegyptiaca seeds based activated carbon as compared with industrial activated carbon for the removal of chromium and lead ions from aqueous solution by the adsorption process within 30 to 150 minutes contact time. The activated samples were prepared using zinc chloride and tetraoxophophate(VI) acid. The results obtained showed that the activated carbon of Balanitesaegyptiaca seeds studied had relatively high adsorption capacities for these heavy metal ions compared with industrial Activated Carbon. The percentage removal of Cr (VI) and lead (II) ions by the three activated carbon samples were 64%, 70% and 71%; 60%, 66% and 60% respectively. Adsorption equilibrium was established in 90 minutes for the heavy metal ions. The equilibrium data fitted the pseudo second order out of the pseudo first, pseudo second, Elovich ,Natarajan and Khalaf models tested. The investigation also showed that the adsorbents can effectively remove metal ions from similar wastewater and aqueous media.

Keywords: activated carbon, pseudo second order, chromium, lead, Elovich model

Procedia PDF Downloads 303
8325 Analysis of Contact Width and Contact Stress of Three-Layer Corrugated Metal Gasket

Authors: I. Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi, Oke Oktavianty, Didik Nurhadiyanto

Abstract:

Contact width and contact stress are important parameters related to the leakage behavior of corrugated metal gasket. In this study, contact width and contact stress of three-layer corrugated metal gasket are investigated due to the modulus of elasticity and thickness of surface layer for 2 type gasket (0-MPa and 400-MPa mode). A finite element method was employed to develop simulation solution to analysis the effect of each parameter. The result indicated that lowering the modulus of elasticity ratio of surface layer will result in better contact width but the average contact stresses are smaller. When the modulus of elasticity ratio is held constant with thickness ratio increase, its contact width has an increscent trend otherwise the average contact stress has decreased trend.

Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation

Procedia PDF Downloads 298
8324 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications

Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer

Abstract:

Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.

Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors

Procedia PDF Downloads 64