Search results for: leak detector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 470

Search results for: leak detector

320 Detection of Extrusion Blow Molding Defects by Airflow Analysis

Authors: Eva Savy, Anthony Ruiz

Abstract:

In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.

Keywords: extrusion blow molding, signal, sensor, defects, detection

Procedia PDF Downloads 151
319 Emotion Recognition in Video and Images in the Wild

Authors: Faizan Tariq, Moayid Ali Zaidi

Abstract:

Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.

Keywords: face recognition, emotion recognition, deep learning, CNN

Procedia PDF Downloads 187
318 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy

Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini

Abstract:

The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.

Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering

Procedia PDF Downloads 223
317 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya

Abstract:

The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.

Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses

Procedia PDF Downloads 325
316 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors

Authors: Tom Nakotte, Hongmei Luo

Abstract:

Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.

Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots

Procedia PDF Downloads 127
315 A Novel PWM/PFM Controller for PSR Fly-Back Converter Using a New Peak Sensing Technique

Authors: Sanguk Nam, Van Ha Nguyen, Hanjung Song

Abstract:

For low-power applications such as adapters for portable devices and USB chargers, the primary side regulation (PSR) fly-back converter is widely used in lieu of the conventional fly-back converter using opto-coupler because of its simpler structure and lower cost. In the literature, there has been studies focusing on the design of PSR circuit; however, the conventional sensing method in PSR circuit using RC delay has a lower accuracy as compared to the conventional fly-back converter using opto-coupler. In this paper, we propose a novel PWM/PFM controller using new sensing technique for the PSR fly-back converter which can control an accurate output voltage. The conventional PSR circuit can sense the output voltage information from the auxiliary winding to regulate the duty cycle of the clock that control the output voltage. In the sensing signal waveform, there has two transient points at time the voltage equals to Vout+VD and Vout, respectively. In other to sense the output voltage, the PSR circuit must detect the time at which the current of the diode at the output equals to zero. In the conventional PSR flyback-converter, the sensing signal at this time has a non-sharp-negative slope that might cause a difficulty in detecting the output voltage information since a delay of sensing signal or switching clock may exist which brings out an unstable operation of PSR fly-back converter. In this paper instead of detecting output voltage at a non-sharp-negative slope, a sharp-positive slope is used to sense the proper information of the output voltage. The proposed PRS circuit consists of a saw-tooth generator, a summing circuit, a sample and hold circuit and a peak detector. Besides, there is also the start-up circuit which protects the chip from high surge current when the converter is turned on. Additionally, to reduce the standby power loss, a second mode which operates in a low frequency is designed beside the main mode at high frequency. In general, the operation of the proposed PSR circuit can be summarized as following: At the time the output information is sensed from the auxiliary winding, a saw-tooth signal from the saw-tooth generator is generated. Then, both of these signals are summed using a summing circuit. After this process, the slope of the peak of the sensing signal at the time diode current is zero becomes positive and sharp that make the peak easy to detect. The output of the summing circuit then is fed into a peak detector and the sample and hold circuit; hence, the output voltage can be properly sensed. By this way, we can sense more accurate output voltage information and extend margin even circuit is delayed or even there is the existence of noise by using only a simple circuit structure as compared with conventional circuits while the performance can be sufficiently enhanced. Circuit verification was carried out using 0.35μm 700V Magnachip process. The simulation result of sensing signal shows a maximum error of 5mV under various load and line conditions which means the operation of the converter is stable. As compared to the conventional circuit, we achieved very small error only used analog circuits compare with conventional circuits. In this paper, a PWM/PFM controller using a simple and effective sensing method for PSR fly-back converter has been presented in this paper. The circuit structure is simple as compared with the conventional designs. The gained results from simulation confirmed the idea of the design

Keywords: primary side regulation, PSR, sensing technique, peak detector, PWM/PFM control, fly-back converter

Procedia PDF Downloads 338
314 Revealing Single Crystal Quality by Insight Diffraction Imaging Technique

Authors: Thu Nhi Tran Caliste

Abstract:

X-ray Bragg diffraction imaging (“topography”)entered into practical use when Lang designed an “easy” technical setup to characterise the defects / distortions in the high perfection crystals produced for the microelectronics industry. The use of this technique extended to all kind of high quality crystals, and deposited layers, and a series of publications explained, starting from the dynamical theory of diffraction, the contrast of the images of the defects. A quantitative version of “monochromatic topography” known as“Rocking Curve Imaging” (RCI) was implemented, by using synchrotron light and taking advantage of the dramatic improvement of the 2D-detectors and computerised image processing. The rough data is constituted by a number (~300) of images recorded along the diffraction (“rocking”) curve. If the quality of the crystal is such that a one-to-onerelation between a pixel of the detector and a voxel within the crystal can be established (this approximation is very well fulfilled if the local mosaic spread of the voxel is < 1 mradian), a software we developped provides, from the each rocking curve recorded on each of the pixels of the detector, not only the “voxel” integrated intensity (the only data provided by the previous techniques) but also its “mosaic spread” (FWHM) and peak position. We will show, based on many examples, that this new data, never recorded before, open the field to a highly enhanced characterization of the crystal and deposited layers. These examples include the characterization of dislocations and twins occurring during silicon growth, various growth features in Al203, GaNand CdTe (where the diffraction displays the Borrmannanomalous absorption, which leads to a new type of images), and the characterisation of the defects within deposited layers, or their effect on the substrate. We could also observe (due to the very high sensitivity of the setup installed on BM05, which allows revealing these faint effects) that, when dealing with very perfect crystals, the Kato’s interference fringes predicted by dynamical theory are also associated with very small modifications of the local FWHM and peak position (of the order of the µradian). This rather unexpected (at least for us) result appears to be in keeping with preliminary dynamical theory calculations.

Keywords: rocking curve imaging, X-ray diffraction, defect, distortion

Procedia PDF Downloads 131
313 Adaptive CFAR Analysis for Non-Gaussian Distribution

Authors: Bouchemha Amel, Chachoui Takieddine, H. Maalem

Abstract:

Automatic detection of targets in a modern communication system RADAR is based primarily on the concept of adaptive CFAR detector. To have an effective detection, we must minimize the influence of disturbances due to the clutter. The detection algorithm adapts the CFAR detection threshold which is proportional to the average power of the clutter, maintaining a constant probability of false alarm. In this article, we analyze the performance of two variants of adaptive algorithms CA-CFAR and OS-CFAR and we compare the thresholds of these detectors in the marine environment (no-Gaussian) with a Weibull distribution.

Keywords: CFAR, threshold, clutter, distribution, Weibull, detection

Procedia PDF Downloads 589
312 A Simple Olfactometer for Odour and Lateralization Thresholds of Chemical Vapours

Authors: Lena Ernstgård, Aishwarya M. Dwivedi, Johan Lundström, Gunnar Johanson

Abstract:

A simple inexpensive olfactometer was constructed to enable valid measures of detection threshold of low concentrations of vapours of chemicals. The delivery system consists of seven syringe pumps, each connected to a Tedlar bag containing a predefined concentration of the test chemical in the air. The seven pumps are connected to a 8-way mixing valve which in turn connects to a birhinal nose piece. Chemical vapor of known concentration is generated by injection of an appropriate amount of the test chemical into a Tedlar bag with a known volume of clean air. Complete vaporization is assured by gentle heating of the bag from the outside with a heat flow. The six test concentrations are obtained by adding different volumes from the starting bag to six new Tedlar bags with known volumes of clean air. One bag contains clean air only. Thus, six different test concentrations and clean air can easily be tested in series by shifting the valve to new positions. Initial in-line measurement with a photoionization detector showed that the delivery system quickly responded to a shift in valve position. Thus 90% of the desired concentration was reached within 15 seconds. The concentrations in the bags are verified daily by gas chromatography. The stability of the system in terms of chemical concentration is monitored in real time by means of a photo-ionization detector. To determine lateralization thresholds, an additional pump supplying clean air is added to the delivery system in a way so that the nostrils can be separately and interchangeably be exposed to clean air and test chemical. Odor and lateralization thresholds were determined for three aldehydes; acrolein, crotonaldehyde, and hexanal in 20 healthy naïve individuals. Aldehydes generally have a strong odour, and the selected aldehydes are also considered to be irritating to mucous membranes. The median odor thresholds of the three aldehydes were 0.017, 0.0008, and 0.097 ppm, respectively. No lateralization threshold could be identified for acrolein, whereas the medians for crotonaldehyde and hexanal were 0.003 and 0.39 ppm, respectively. In conclusion, we constructed a simple, inexpensive olfactometer that allows for stable and easily measurable concentrations of vapors of the test chemical. Our test with aldehydes demonstrates that the system produces valid detection among volunteers in terms of odour and lateralization thresholds.

Keywords: irritation, odour delivery, olfactometer, smell

Procedia PDF Downloads 216
311 Determination of Four Anions in the Ground Layer of Tomb Murals by Ion Chromatography

Authors: Liping Qiu, Xiaofeng Zhang

Abstract:

The ion chromatography method for the rapid determination of four anions (F⁻、Cl⁻、SO₄²⁻、NO₃⁻) in burial ground poles was optimized. The L₉(₃⁴) orthogonal test was used to determine the optimal parameters of sample pretreatment: accurately weigh 2.000g of sample, add 10mL of ultrapure water, and extract for 40min under the conditions of shaking temperature 40℃ and shaking speed 180 r·min-1. The eluent was 25 mmol/L KOH solution, the analytical column was Ion Pac® AS11-SH (250 mm × 4.0 mm), and the purified filtrate was measured by a conductivity detector. Under this method, the detection limit of each ion is 0.066~0.078mg/kg, the relative standard deviation is 0.86%~2.44% (n=7), and the recovery rate is 94.6~101.9.

Keywords: ion chromatography, tomb, anion (F⁻, Cl⁻, SO₄²⁻, NO₃⁻), environmental protection

Procedia PDF Downloads 102
310 InAs/GaSb Superlattice Photodiode Array ns-Response

Authors: Utpal Das, Sona Das

Abstract:

InAs/GaSb type-II superlattice (T2SL) Mid-wave infrared (MWIR) focal plane arrays (FPAs) have recently seen rapid development. However, in small pixel size large format FPAs, the occurrence of high mesa sidewall surface leakage current is a major constraint necessitating proper surface passivation. A simple pixel isolation technique in InAs/GaSb T2SL detector arrays without the conventional mesa etching has been proposed to isolate the pixels by forming a more resistive higher band gap material from the SL, in the inter-pixel region. Here, a single step femtosecond (fs) laser anneal of the T2SL structure of the inter-pixel T2SL regions, have been used to increase the band gap between the pixels by QW-intermixing and hence increase isolation between the pixels. The p-i-n photodiode structure used here consists of a 506nm, (10 monolayer {ML}) InAs:Si (1x10¹⁸cm⁻³)/(10ML) GaSb SL as the bottom n-contact layer grown on an n-type GaSb substrate. The undoped absorber layer consists of 1.3µm, (10ML)InAs/(10ML)GaSb SL. The top p-contact layer is a 63nm, (10ML)InAs:Be(1x10¹⁸cm⁻³)/(10ML)GaSb T2SL. In order to improve the carrier transport, a 126nm of graded doped (10ML)InAs/(10ML)GaSb SL layer was added between the absorber and each contact layers. A 775nm 150fs-laser at a fluence of ~6mJ/cm² is used to expose the array where the pixel regions are masked by a Ti(200nm)-Au(300nm) cap. Here, in the inter-pixel regions, the p+ layer have been reactive ion etched (RIE) using CH₄+H₂ chemistry and removed before fs-laser exposure. The fs-laser anneal isolation improvement in 200-400μm pixels due to spatially selective quantum well intermixing for a blue shift of ~70meV in the inter-pixel regions is confirmed by FTIR measurements. Dark currents are measured between two adjacent pixels with the Ti(200nm)-Au(300nm) caps used as contacts. The T2SL quality in the active photodiode regions masked by the Ti-Au cap is hardly affected and retains the original quality of the detector. Although, fs-laser anneal of p+ only etched p-i-n T2SL diodes show a reduction in the reverse dark current, no significant improvement in the full RIE-etched mesa structures is noticeable. Hence for a 128x128 array fabrication of 8μm square pixels and 10µm pitch, SU8 polymer isolation after RIE pixel delineation has been used. X-n+ row contacts and Y-p+ column contacts have been used to measure the optical response of the individual pixels. The photo-response of these 8μm and other 200μm pixels under a 2ns optical pulse excitation from an Optical-Parametric-Oscillator (OPO), shows a peak responsivity of ~0.03A/W and 0.2mA/W, respectively, at λ~3.7μm. Temporal response of this detector array is seen to have a fast response ~10ns followed typical slow decay with ringing, attributed to impedance mismatch of the connecting co-axial cables. In conclusion, response times of a few ns have been measured in 8µm pixels of a 128x128 array. Although fs-laser anneal has been found to be useful in increasing the inter-pixel isolation in InAs/GaSb T2SL arrays by QW inter-mixing, it has not been found to be suitable for passivation of full RIE etched mesa structures with vertical walls on InAs/GaSb T2SL.

Keywords: band-gap blue-shift, fs-laser-anneal, InAs/GaSb T2SL, Inter-pixel isolation, ns-Response, photodiode array

Procedia PDF Downloads 152
309 UNIX Source Code Leak: Evaluation and Feasible Solutions

Authors: Gu Dongxing, Li Yuxuan, Nong Tengxiao, Burra Venkata Durga Kumar

Abstract:

Since computers are widely used in business models, more and more companies choose to store important information in computers to improve productivity. However, this information can be compromised in many cases, such as when it is stored locally on the company's computers or when it is transferred between servers and clients. Of these important information leaks, source code leaks are probably the most costly. Because the source code often represents the core technology of the company, especially for the Internet companies, source code leakage may even lead to the company's core products lose market competitiveness, and then lead to the bankruptcy of the company. In recent years, such as Microsoft, AMD and other large companies have occurred source code leakage events, suffered a huge loss. This reveals to us the importance and necessity of preventing source code leakage. This paper aims to find ways to prevent source code leakage based on the direction of operating system, and based on the fact that most companies use Linux or Linux-like system to realize the interconnection between server and client, to discuss how to reduce the possibility of source code leakage during data transmission.

Keywords: data transmission, Linux, source code, operating system

Procedia PDF Downloads 270
308 Assessing Image Quality in Mobile Radiography: A Phantom-Based Evaluation of a New Lightweight Mobile X-Ray Equipment

Authors: May Bazzi, Shafik Tokmaj, Younes Saberi, Mats Geijer, Tony Jurkiewicz, Patrik Sund, Anna Bjällmark

Abstract:

Mobile radiography, employing portable X-ray equipment, has become a routine procedure within hospital settings, with chest X-rays in intensive care units standing out as the most prevalent mobile X-ray examinations. This approach is not limited to hospitals alone, as it extends its benefits to imaging patients in various settings, particularly those too frail to be transported, such as elderly care residents in nursing homes. Moreover, the utility of mobile X-ray isn't confined solely to traditional healthcare recipients; it has proven to be a valuable resource for vulnerable populations, including the homeless, drug users, asylum seekers, and patients with multiple co-morbidities. Mobile X-rays reduce patient stress, minimize costly hospitalizations, and offer cost-effective imaging. While studies confirm its reliability, further research is needed, especially regarding image quality. Recent advancements in lightweight equipment with enhanced battery and detector technology provide the potential for nearly handheld radiography. The main aim of this study was to evaluate a new lightweight mobile X-ray system with two different detectors and compare the image quality with a modern stationary system. Methods: A total of 74 images of the chest (chest anterior-posterior (AP) views and chest lateral views) and pelvic/hip region (AP pelvis views, hip AP views, and hip cross-table lateral views) were acquired on a whole-body phantom (Kyotokagaku, Japan), utilizing varying image parameters. These images were obtained using a stationary system - 18 images (Mediel, Sweden), a mobile X-ray system with a second-generation detector - 28 images (FDR D-EVO II; Fujifilm, Japan) and a mobile X-ray system with a third-generation detector - 28 images (FDR D-EVO III; Fujifilm, Japan). Image quality was assessed by visual grading analysis (VGA), which is a method to measure image quality by assessing the visibility and accurate reproduction of anatomical structures within the images. A total of 33 image criteria were used in the analysis. A panel of two experienced radiologists, two experienced radiographers, and two final-term radiographer students evaluated the image quality on a 5-grade ordinal scale using the software Viewdex 3.0 (Viewer for Digital Evaluation of X-ray images, Sweden). Data were analyzed using visual grading characteristics analysis. The dose was measured by the dose-area product (DAP) reported by the respective systems. Results: The mobile X-ray equipment (both detectors) showed significantly better image quality than the stationary equipment for the pelvis, hip AP and hip cross-table lateral images with AUCVGA-values ranging from 0.64-0.92, while chest images showed mixed results. The number of images rated as having sufficient quality for diagnostic use was significantly higher for mobile X-ray generation 2 and 3 compared with the stationary X-ray system. The DAP values were higher for the stationary compared to the mobile system. Conclusions: The new lightweight radiographic equipment had an image quality at least as good as a fixed system at a lower radiation dose. Future studies should focus on clinical images and consider radiographers' viewpoints for a comprehensive assessment.

Keywords: mobile x-ray, visual grading analysis, radiographer, radiation dose

Procedia PDF Downloads 65
307 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports

Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel

Abstract:

The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.

Keywords: biomechanics, inertial sensors, motion capture, rehabilitation

Procedia PDF Downloads 140
306 Investigation for Pixel-Based Accelerated Aging of Large Area Picosecond Photo-Detectors

Authors: I. Tzoka, V. A. Chirayath, A. Brandt, J. Asaadi, Melvin J. Aviles, Stephen Clarke, Stefan Cwik, Michael R. Foley, Cole J. Hamel, Alexey Lyashenko, Michael J. Minot, Mark A. Popecki, Michael E. Stochaj, S. Shin

Abstract:

Micro-channel plate photo-multiplier tubes (MCP-PMTs) have become ubiquitous and are widely considered potential candidates for next generation High Energy Physics experiments due to their picosecond timing resolution, ability to operate in strong magnetic fields, and low noise rates. A key factor that determines the applicability of MCP-PMTs in their lifetime, especially when they are used in high event rate experiments. We have developed a novel method for the investigation of the aging behavior of an MCP-PMT on an accelerated basis. The method involves exposing a localized region of the MCP-PMT to photons at a high repetition rate. This pixel-based method was inspired by earlier results showing that damage to the photocathode of the MCP-PMT occurs primarily at the site of light exposure and that the surrounding region undergoes minimal damage. One advantage of the pixel-based method is that it allows the dynamics of photo-cathode damage to be studied at multiple locations within the same MCP-PMT under different operating conditions. In this work, we use the pixel-based accelerated lifetime test to investigate the aging behavior of a 20 cm x 20 cm Large Area Picosecond Photo Detector (LAPPD) manufactured by INCOM Inc. at multiple locations within the same device under different operating conditions. We compare the aging behavior of the MCP-PMT obtained from the first lifetime test conducted under high gain conditions to the lifetime obtained at a different gain. Through this work, we aim to correlate the lifetime of the MCP-PMT and the rate of ion feedback, which is a function of the gain of each MCP, and which can also vary from point to point across a large area (400 $cm^2$) MCP. The tests were made possible by the uniqueness of the LAPPD design, which allows independent control of the gain of the chevron stacked MCPs. We will further discuss the implications of our results for optimizing the operating conditions of the detector when used in high event rate experiments.

Keywords: electron multipliers (vacuum), LAPPD, lifetime, micro-channel plate photo-multipliers tubes, photoemission, time-of-flight

Procedia PDF Downloads 178
305 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices

Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das

Abstract:

The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.

Keywords: terahertz, detector, responsivity, topological-semimetals

Procedia PDF Downloads 161
304 Multi-Residue Analysis (GC-ECD) of Some Organochlorine Pesticides in Commercial Broiler Meat Marketed in Shivamogga City, Karnataka State, India

Authors: L. V. Lokesha, Jagadeesh S. Sanganal, Yogesh S. Gowda, Shekhar, N. B. Shridhar, N. Prakash, Prashantkumar Waghe, H. D. Narayanaswamy, Girish V. Kumar

Abstract:

Organochlorine (OC) insecticides are among the most important organotoxins and make a large group of pesticides. Physicochemical properties of these toxins, especially their lipophilicity, facilitate the absorption and storage of these toxins in the meat thus possess public health threat to humans. The presence of these toxins in broiler meat can be a quantitative and qualitative index for the presence of these toxins in animal bodies, which is attributed to Waste water of irrigation after spraying the crops, contaminated animal feeds with pesticides, polluted air are the potential sources of residues in animal products. Fifty broiler meat samples were collected from different retail outlets of Bengaluru city, Karnataka state, in ice cold conditions and later stored under -20°C until analysis. All the samples were subjected to Gas Chromatograph attached to Electron Capture Detector(GC-ECD, VARIAN make) screening and quantification of OC pesticides viz; Alachlor, Aldrin, Alpha-BHC, Beta-BHC, Dieldrin, Delta-BHC, o,p-DDE, p,p-DDE, o,p-DDD, p,p-DDD, o,p-DDT, p,p-DDT, Endosulfan-I, Endosulfan-II, Endosulfan Sulphate and Lindane(all the standards were procured from Merck). Extraction was undertaken by blending fifty grams (g) of meat sample with 50g Sodium Sulphate anahydrous, 120 ml of n-hexane, 120 ml acetone for 15 mins, extract is washed with distilled water and sample moisture is dried by sodium sulphate anahydrous, partitioning is done with 25 ml petroleum ether, 10 ml acetonitrile and 15 ml n-hexane shake vigorously for two minutes, sample clean up was done with florosil column. The reconstituted samples (using n-hexane) (Merck chem) were injected to Gas Chromatograph–Electron Capture Detector(GC-ECD). The present study reveals that, among the fifty chicken samples subjected for analysis, 60% (15/50), 32% (8/50), 28% (7/50), 20% (5/50) and 16% (4/50) of samples contaminated with DDTs, Delta-BHC, Dieldrin, Aldrin and Alachlor respectively. DDT metabolites, Delta-BHC were the most frequently detected OC pesticides. The detected levels of the pesticides were below the levels of MRL(according to Export Council of India notification for fresh poultry meat).

Keywords: accuracy, gas chromatography, meat, pesticide, petroleum ether

Procedia PDF Downloads 327
303 Effect of Leaks in Solid Oxide Electrolysis Cells Tested for Durability under Co-Electrolysis Conditions

Authors: Megha Rao, Søren H. Jensen, Xiufu Sun, Anke Hagen, Mogens B. Mogensen

Abstract:

Solid oxide electrolysis cells have an immense potential in converting CO2 and H2O into syngas during co-electrolysis operation. The produced syngas can be further converted into hydrocarbons. This kind of technology is called power-to-gas or power-to-liquid. To produce hydrocarbons via this route, durability of the cells is still a challenge, which needs to be further investigated in order to improve the cells. In this work, various nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode supported or YSZ electrolyte supported cells, cerium gadolinium oxide (CGO) barrier layer, and an oxygen electrode are investigated for durability under co-electrolysis conditions in both galvanostatic and potentiostatic conditions. While changing the gas on the oxygen electrode, keeping the fuel electrode gas composition constant, a change in the gas concentration arc was observed by impedance spectroscopy. Measurements of open circuit potential revealed the presence of leaks in the setup. It is speculated that the change in concentration impedance may be related to the leaks. Furthermore, the cells were also tested under pressurized conditions to find an inter-play between the leak rate and the pressure. A mathematical modeling together with electrochemical and microscopy analysis is presented.

Keywords: co-electrolysis, durability, leaks, gas concentration arc

Procedia PDF Downloads 148
302 Comprehensive Study of X-Ray Emission by APF Plasma Focus Device

Authors: M. Habibi

Abstract:

The time-resolved studies of soft and hard X-ray were carried out over a wide range of argon pressures by employing an array of eight filtered photo PIN diodes and a scintillation detector, simultaneously. In 50% of the discharges, the soft X-ray is seen to be emitted in short multiple pulses corresponding to different compression, whereas it is a single pulse for hard X-rays corresponding to only the first strong compression. It should be stated that multiple compressions dominantly occur at low pressures and high pressures are mostly in the single compression regime. In 43% of the discharges, at all pressures except for optimum pressure, the first period is characterized by two or more sharp peaks.The X–ray signal intensity during the second and subsequent compressions is much smaller than the first compression.

Keywords: plasma focus device, SXR, HXR, Pin-diode, argon plasma

Procedia PDF Downloads 408
301 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II

Authors: Heerak Banerjee, Sourov Roy

Abstract:

Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.

Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry

Procedia PDF Downloads 127
300 Antibacterial and Antifungal Activities of the Essential Oil of Pulicaria jaubertii Leaves

Authors: Methaq Algabr, Nabil Al-Hajj, Ameerh Jaber, Amtellah Alshotobi, Shaima'a Al-suryhi, Gadah Whaban, Nawal Alshehari

Abstract:

Steam distillation of the essential oil of P. jaubertii was performed using a Clevenger apparatus. Essential oils were analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled to chromatography–mass spectrometry (GC-MS). The major chemical components identified in P. jaubertii essential oil include carvotanacetone (63.975%), 1-methyl-1,2-propanedione (5.887%), 2,5-dimethoxy-para-cymene (3.303%) and ar-curcumene (3.276%). The antimicrobial activity of the essential oil of P. jaubertii was evaluated against all tested microorganisms. P. jaubertii essential oil inhibited all tested microorganisms except Escherichia coli with a minimum inhibitory concentration (MIC) of 5.0 μg/mL against Staphylococcus aureus.

Keywords: Pulicaria jaubertii, essential oil, antimicrobial, Carvotancetone

Procedia PDF Downloads 110
299 Automatic Integrated Inverter Type Smart Device for Safe Kitchen

Authors: K. M. Jananni, R. Nandini

Abstract:

The proposed wireless, inverter type design of a LPG leakage monitoring system aims to provide a smart and safe kitchen. The system detects the LPG gas leak using Nano-sensors and alerts the concerned individual through GSM system. The system uses two sensors, one attached to the chimney and other to the regulator of the LPG cylinder. Upon a leakage being detected, the sensor at the regulator actuates the system to cut off the gas supply immediately using a solenoid control valve. The sensor at the chimney checks for the permissible level of LPG mix in the air and when the level exceeds the threshold, the system sends an automatic SMS to the numbers saved. Further the sensor actuates the mini suction system fixed at the chimney within 20 seconds of a leakage to suck out the gas until the level falls well below the threshold. As a safety measure, an automatic window opening and alarm feature is also incorporated into the system. The key feature of this design is that the system is provided with a special inverter designed to make the device function effectively even during power failures. In this paper, utilization of sensors in the kitchen area is discussed and this gives the proposed architecture for real time field monitoring with a PIC Micro-controller.

Keywords: nano sensors, global system for mobile communication, GSM, micro controller, inverter

Procedia PDF Downloads 473
298 Catalytic Activity Study of Fe, Ti Loaded TUD-1

Authors: Supakorn Tantisriyanurak, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

TUD-1 is a siliceous mesoporous material with a three-dimensional amorphous structure of random, interconnecting pores, large pore size, high surface area (400-1000 m2/g), hydrothermal stability, and tunable porosity. However, the significant disadvantage of the mesoporous silicates is few catalytic active sites. In this work, a series of bimetallic Fe and Ti incorporated into TUD-1 framework is successfully synthesized by sol–gel method. The synthesized Fe,Ti-TUD-1 is characterized by various techniques. To study the catalytic activity of Fe, Ti–TUD-1, phenol hydroxylation was selected as a model reaction. The amounts of residual phenol and oxidation products were determined by high performance liquid chromatography coupled with UV-detector (HPLC-UV).

Keywords: iron, phenol hydroxylation, titanium, TUD-1

Procedia PDF Downloads 258
297 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)

Authors: Salvatore Luongo, Carlo Luongo

Abstract:

This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilities

Keywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification

Procedia PDF Downloads 285
296 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 104
295 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 265
294 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis (PHA) using the What-If Technique

Authors: Lormaine Anne Branzuela, Elysa Largo, Julie Marisol Pagalilauan, Neil Concibido, Monet Concepcion Detras

Abstract:

Energy is a necessity both for the people and the country. The demand for energy is continually increasing, but the supply is not doing the same. The reopening of the Bataan Nuclear Power Plant (BNPP) in the Philippines has been circulating in the media for the current time. The general public has been hesitant in accepting the inclusion of nuclear energy in the Philippine energy mix due to perceived unsafe conditions of the plant. This study evaluated the possible operations of a nuclear power plant, which is of the same type as the BNPP, considering the safety of the workers, the public, and the environment using a Process Hazard Analysis (PHA) method. What-If Technique was utilized to identify the hazards and consequences on the operations of the plant, together with the level of risk it entails. Through the brainstorming sessions of the PHA team, it was found that the most critical system on the plant is the primary system. Possible leakages on pipes and equipment due to weakened seals and welds and blockages on coolant path due to fouling were the most common scenarios identified, which further caused the most critical scenario – radioactive leak through sump contamination, nuclear meltdown, and equipment damage and explosion which could result to multiple injuries and fatalities, and environmental impacts.

Keywords: process safety management, process hazard analysis, what-If technique, nuclear power plant

Procedia PDF Downloads 223
293 Diagnostics via Biophysical Resistotrons

Authors: Matt Vellkorn, Mara Sarinski

Abstract:

The field of advanced diagnostics is a very rapidly changing one. A new technology that has not been fully used yet are resistotrons. A resistotron is a physical device thatis used to detect the presence of low energy alpha particles. It has been used for many years in nuclear physics as an alpha particle detector. Since they are used in nuclear physics, they have to be accurate. They have to be able to differentiate between alpha particles and other types of radiation. The resistotrons are primarily used for safety. They are used in areas where people or animals can get exposed to radiation. A typical example is in the treatment of nuclear waste. As it is with any nuclear physics instrument, a resistotron has to be very accurate and reliable. In the past, the instrument was very expensive because they were made out of copper. Today, they are made out of brass. The main difference is that brass is much less expensive than copper.

Keywords: biosensors, resistotrons, biophysics, diagnostics

Procedia PDF Downloads 122
292 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 310
291 Agreement Across Borders: Theoretical Templates in the Brain of a New Language Learner

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari

Abstract:

Objective: The aim of this study is to investigate how the brain of a new language learner establishes theoretical templates to help understand grammatical structure. Method: The study recruited fourteen typically developing and achieving participants from eleven nationalities (ages between 23 and 30). Pre- and post-tests were administered, and the analysis was psychoneurolinguistically discussed. Results: Outline results show that, in grammar acquisition), the challenge that faces the second language learner is in the establishment of the templates relating to abstract nouns. During the process of grammar acquisition, the earlier, the better and fMRI was found to be the practical detector of brain theoretical templates.

Keywords: template, brain, imaging technique, grammar acquisition

Procedia PDF Downloads 35