Search results for: integration features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6307

Search results for: integration features

6157 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix

Authors: Yoonjung An, Yongtae Park

Abstract:

Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.

Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design

Procedia PDF Downloads 638
6156 New Approaches for the Handwritten Digit Image Features Extraction for Recognition

Authors: U. Ravi Babu, Mohd Mastan

Abstract:

The present paper proposes a novel approach for handwritten digit recognition system. The present paper extract digit image features based on distance measure and derives an algorithm to classify the digit images. The distance measure can be performing on the thinned image. Thinning is the one of the preprocessing technique in image processing. The present paper mainly concentrated on an extraction of features from digit image for effective recognition of the numeral. To find the effectiveness of the proposed method tested on MNIST database, CENPARMI, CEDAR, and newly collected data. The proposed method is implemented on more than one lakh digit images and it gets good comparative recognition results. The percentage of the recognition is achieved about 97.32%.

Keywords: handwritten digit recognition, distance measure, MNIST database, image features

Procedia PDF Downloads 460
6155 BERT-Based Chinese Coreference Resolution

Authors: Li Xiaoge, Wang Chaodong

Abstract:

We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.

Keywords: BERT, coreference resolution, deep learning, nature language processing

Procedia PDF Downloads 215
6154 Integration from Laboratory to Industrialization for Hybrid Printed Electronics

Authors: Ahmed Moulay, Mariia Zhuldybina, Mirko Torres, Mike Rozel, Ngoc Duc Trinh, Chloé Bois

Abstract:

Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes.

Keywords: flat bed screen-printing, hybrid printed electronics, integration, large-scale production, roll-to-roll printing, rotary screen printing

Procedia PDF Downloads 175
6153 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.

Keywords: feature selection, LIWC, machine learning, politics

Procedia PDF Downloads 381
6152 An Ontology for Semantic Enrichment of RFID Systems

Authors: Haitham S. Hamza, Mohamed Maher, Shourok Alaa, Aya Khattab, Hadeal Ismail, Kamilia Hosny

Abstract:

Radio Frequency Identification (RFID) has become a key technology in the margining concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems that are developed by different vendors and use various data formats. This heterogeneity poses a real challenge in developing large-scale IoT systems with RFID as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning. The usage of the proposed ontology is explained through a simple scenario in the health care domain.

Keywords: RFID, semantic technology, ontology, sparql query language, heterogeneity

Procedia PDF Downloads 468
6151 Narratives in Science as Covert Prestige Indicators

Authors: Zinaida Shelkovnikova

Abstract:

The language in science is changing and meets the demands of the society. We shall argue that in the varied modern world there are important reasons for the integration of narratives into scientific discourse. As far as nowadays scientists are faced with extremely prompt science development and progress; modern scientific society lives in the conditions of tough competition. The integration of narratives into scientific discourse is thus a good way to prompt scientific experience to different audiences and to express covert prestige of the discourse. Narratives also form the identity of the persuasive narrator. Using the narrative approach to the scientific discourse analysis we reveal the sociocultural diversity of the scientists. If you want to attract audience’s attention to your scientific research, narratives should be integrated into your scientific discourse. Those who understand this consistent pattern are considered the leading scientists. Taking into account that it is prestigious to be renowned, celebrated in science, it is a covert prestige to write narratives in science. We define a science narrative as the intentional, consequent, coherent, event discourse or a discourse fragment, which contains the author creativity, in some cases intrigue, and gives mostly qualitative information (compared with quantitative data) in order to provide maximum understanding of the research. Science narratives also allow the effective argumentation and consequently construct the identity of the persuasive narrator. However, skills of creating appropriate scientific discourse reflect the level of prestige. In order to teach postgraduate students to be successful in English scientific writing and to be prestigious in the scientific society, we have defined the science narrative and outlined its main features and characteristics. Narratives contribute to audience’s involvement with the narrator and his/her narration. In general, the way in which a narrative is performed may result in (limited or greater) contact with the audience. To gain these aim authors use emotional fictional elements; descriptive elements: adjectives; adverbs; comparisons and so on; author’s evaluative elements. Thus, the features of science narrativity are the following: descriptive tools; authors evaluation; qualitative information exceeds the quantitative data; facts take the event status; understandability; accessibility; creativity; logics; intrigue; esthetic nature; fiction. To conclude, narratives function covert prestige of the scientific discourse and shape the identity of the persuasive scientist.

Keywords: covert prestige, narrativity, scientific discourse, scientific narrative

Procedia PDF Downloads 398
6150 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur

Abstract:

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Keywords: process planning, scheduling, due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 373
6149 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
6148 Analysis of the Brazilian Trade Balance in Relation to Mercosur: A Comparison between the Period 1989-1994 and 1994-2012

Authors: Luciana Aparecida Bastos, Tatiana Diair L. F. Rosa, Jesus Creapldi

Abstract:

The idea of Latin American integration occurred from the ideals of Simón Bolívar that, in 1824, called the Ibero-American nations to Amphictyonic Congress of Panama, on June 22, 1826, where he would defend the importance of Latin American unity. However, this congress was frustrating and the idea of Bolívar went no further. It was only after the European Union to start the process, driven by the end of World War II that the subject returned to emerge in Latin America. Thus, in 1960, supported by the European integration process, started in 1957 with the excellent result of the ECSC - European Coal and Steel Community, a result of the Customs Union of the BENELUX (integration between Belgium, the Netherlands and Luxembourg) in 1948, was created in Latin America, LAFTA - Latin American Free Trade Association, in 1960. In 1980, LAFTA was replaced by LAAI- Latin American Association, both with the same goal: to integrate Latin America, it´s economy and its trade. Most researchers in this period agree that the regional market would be expanded through the integration. The creation of one or more economic blocs in the region would provide the union of Latin American countries through a fusion of common interests and by their geographical proximity, which would try to develop common projects to promote mutual growth and economic development, tariff reductions, promotion of increased trade between, among many other goals set together. Thus, taking into account Mercosur, the main Latin-American block, created in 1994, the aim of this paper is to make a brief analysis of the trade balance performance of Brazil (larger economy of the block) in Mercosur in the periods: 1989-1994 and 1994-2012. The choice of this period was because the objective is to compare the period before and after the integration of Brazil in Mercosur. The methodologies used were the literature review and descriptive statistics. The results showed that after the integration of Brazil in Mercosur, the exports and imports grew within the bloc and the country turned out to become the leading importer of other economies of Mercosur after integration, that is, Brazil, after integration to Mercosur, was largely responsible for promoting the expansion of regional trade through the import of products from other members of the block.

Keywords: Brazil, mercosur, integration, trade balance, comparison

Procedia PDF Downloads 323
6147 Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method

Authors: Ramayanam Suresh, A. Nagaraja Rao, B. Eswara Reddy

Abstract:

Texture features of mammogram images are useful for finding masses or cancer cases in mammography, which have been used by radiologists. Textures are greatly succeeded for segmented images rather than normal images. It is necessary to perform segmentation for exclusive specification of cancer and non-cancer regions separately. Region of interest (ROI) is most commonly used technique for mammogram segmentation. Limitation of this method is that it is unable to explore segmentation for large collection of mammogram images. Therefore, this paper is proposed multi-ROI segmentation for addressing the above limitation. It supports greatly in finding the best texture features of mammogram images. Experimental study demonstrates the effectiveness of proposed work using benchmarked images.

Keywords: texture features, region of interest, multi-ROI segmentation, benchmarked images

Procedia PDF Downloads 305
6146 Monitoring Blood Pressure Using Regression Techniques

Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim

Abstract:

Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.

Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring

Procedia PDF Downloads 160
6145 The Association of Cone-Shaped Epiphysis and Poland Syndrome: A Case Report

Authors: Mohammad Alqattan, Tala Alkhunani, Reema Al, Aldawish, Felwa Almurshard, Abdullah Alzahrani

Abstract:

: Poland’s Syndrome is a congenital anomaly with two clinical features : unilateral agenesis of the pectoralis major and ipsilateral hand symbrachydactyly. Case presentation: We report a rare case of bilateral Poland’s syndrome with several unique features. Discussion: Poland’s syndrome is thought to be due to a vascular insult to the subclavian axis around the 6th week of gestation. Our patient has multiple rare and unique features of Poland’s syndrome. Conclusion: To our best knowledge, for the first time in the literature we associate Poland’s syndrome with cone-shaped epiphysis of the metacarpals of all fingers. Bilaterality, cleft hand deformity, and dextrocardia, were also rare features in our patient.

Keywords: Poland's syndrome, cleft hand deformity, bilaterality, dextrocardia, cone-shaped epiphysis

Procedia PDF Downloads 126
6144 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 544
6143 Comparative Analysis of Feature Extraction and Classification Techniques

Authors: R. L. Ujjwal, Abhishek Jain

Abstract:

In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.

Keywords: computer vision, age group, face detection

Procedia PDF Downloads 367
6142 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework

Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai

Abstract:

A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.

Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model

Procedia PDF Downloads 454
6141 Integration of a Self-Cooling Photobioreactor to Building Envelop

Authors: Amin Mirabbasi

Abstract:

This review focuses on the integration of self-cooling photobioreactors into building envelopes as an approach to sustainable architecture. We emphasize the urgency for eco-friendly design advancements and explore the incorporation of plants, particularly microalgae photobioreactors, into building facades. This entails a discussion of the building envelope's components and definition, challenges posed by algal technology in architecture, and adaptations for varied structures such as skyscrapers, residences, and townhouses. We further evaluate the influence of geographic factors, with a spotlight on warm and temperate regions like Western Australia. Concluding, we analyse the cost-effectiveness and practicality of this integration, focusing on its potential application in the upcoming Harry Butler Science Centre building. Through comprehensive literature scrutiny, we aim to shed light on the prospects and obstacles of embedding self-cooling photobioreactors in pursuit of an eco-aware architectural future.

Keywords: microalgae photobioreactors, building envelope, sustainable architecture, eco-friendly design advancements.

Procedia PDF Downloads 62
6140 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 334
6139 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 493
6138 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 486
6137 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System

Authors: M. L. Anitha, K. A. Radhakrishna Rao

Abstract:

With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.

Keywords: biometrics, hand geometry features, inner knuckle print, recognition

Procedia PDF Downloads 218
6136 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 333
6135 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor

Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh

Abstract:

Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.

Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging

Procedia PDF Downloads 258
6134 The Effects of an Immigration Policy on the Economic Integration of Migrants and on Natives’ Attitudes: The Case of Syrian Refugees in Turkey

Authors: S. Zeynep Siretioglu Girgin, Gizem Turna Cebeci

Abstract:

Turkey’s immigration policy is a controversial issue considering its legal, economic, social, and political and human rights dimensions. Formulation of an immigration policy goes hand in hand with political processes, where natives’ attitudes play a significant role. On the other hand, as was the case in Turkey, radical changes made in immigration policy or policies lacking transparency may cause severe reactions by the host society. The underlying discussion paper aims to analyze quantitatively the effects of the existing ‘open door’ immigration policy on the economic integration of Syrian refugees in Turkey, and on the perception of the native population of refugees. For the analysis, semi-structured in-depth interviews and focus group interviews have been conducted. After the introduction, a literature review is provided, followed by theoretical background on the explanation of natives’ attitudes towards immigrants. In the next section, a qualitative analysis of natives’ attitudes towards Syrian refugees is presented with the subtopics of (i) awareness, general opinions and expectations, (ii) open-door policy and management of the migration process, (iii) perception of positive and negative impacts of immigration, (iv) economic integration, and (v) cultural similarity. Results indicate that, natives concurrently have social, economic and security concerns regarding refugees, while difficulties regarding security and economic integration of refugees stand out. Socio-economic characteristics of the respondents, such as the educational level and employment status, are not sufficient to explain the overall attitudes towards refugees, while they can be used to explain the awareness of the respondents and the priority of the concerns felt.

Keywords: economic integration, immigration policy, integration policies, migrants, natives’ sentiments, perception, Syrian refugees, Turkey

Procedia PDF Downloads 354
6133 An Integrated Supply Chain Management to Manufacturing Industries

Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song

Abstract:

Manufacturers have been exploring innovative strategies to achieve and sustain competitive advantages as they face a new era of intensive global competition. Such strategy is known as Supply Chain Management (SCM), which has gained a tremendous amount of attention from both researchers and practitioners over the last decade. Supply chain management (SCM) is considered as the most popular operating strategy for improving organizational competitiveness in the twenty-first century. It has attracted a lot of attention recently due to its role involving all of the activities in industrial organizations, ranging from raw material procurement to final product delivery to customers. Well-designed supply chain systems can substantially improve efficiency and product quality, and eventually enhance customer satisfaction and profitability. In this paper, a manufacturing engineering perspective on supply chain integration is presented. Research issues discussed include the product and process design for the supply chain, design evaluation of manufacturing in the supply chain, agent-based techniques for supply chain integration, intelligent information for sharing across the supply chain, and a development of standards for product, process, and production data exchange to facilitate electronic commerce. The objective is to provide guidelines and references for manufacturing engineers and researchers interested in supply chain integration.

Keywords: supply chain, supply chain management, supply chain integration, manufacturing industries

Procedia PDF Downloads 348
6132 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 356
6131 Leveraging Quality Metrics in Voting Model Based Thread Retrieval

Authors: Atefeh Heydari, Mohammadali Tavakoli, Zuriati Ismail, Naomie Salim

Abstract:

Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly.

Keywords: content quality, forum search, thread retrieval, voting techniques

Procedia PDF Downloads 211
6130 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 480
6129 A Comprehensive Overview of Solar and Vertical Axis Wind Turbine Integration Micro-Grid

Authors: Adnan Kedir Jarso, Mesfin Megra Rorisa, Haftom Gebreslassie Gebregwergis, Frie Ayalew Yimam, Seada Hussen Adem

Abstract:

A microgrid is a small-scale power grid that can operate independently or in conjunction with the main power grid. It is a promising solution for providing reliable and sustainable energy to remote areas. The integration of solar and vertical axis wind turbines (VAWTs) in a microgrid can provide a stable and efficient source of renewable energy. This paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid. The paper discusses the design, operation, and control of a microgrid that integrates solar and VAWTs. The paper also examines the performance of the microgrid in terms of efficiency, reliability, and cost-effectiveness. The paper highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper concludes that the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper recommends further research to optimize the design and operation of a microgrid that integrates solar and VAWTs. The paper also recommends the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs. In conclusion, the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid and highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper recommends further research and the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs.

Keywords: hybrid generation, intermittent power, optimization, photovoltaic, vertical axis wind turbine

Procedia PDF Downloads 94
6128 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education

Authors: Felix Golla

Abstract:

In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.

Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies

Procedia PDF Downloads 68