Search results for: inoculated
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 224

Search results for: inoculated

74 Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth

Authors: Kiran Nawaz, Waheed Anwar, Sehrish Iftikhar, Muhammad Nasir Subhani, Ahmad Ali Shahid

Abstract:

Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity.

Keywords: rhizobacteria, chili, phytophthora, root rot

Procedia PDF Downloads 232
73 Boosting the Agrophysiological Performance of Chickpea Crop (Cicer Arietinum L.) Under Low-P Soil Conditions with the Co-application of Bacterial Consortium (Phosphate Solubilizing Bacteria and Rhizobium) and P-Fertilizers (RP and TSP Forms)

Authors: Rym Saidi, Pape Alioune Ndiaye, Ibnyasser Ammar, Zineb Rchiad, Khalid Daoui, Issam Kadmiri Meftahi, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide and plays a significant role in humans’ dietary consumption. Alongside nitrogen (N), low phosphorus (P) availability within agricultural soils is one of the major factors limiting chickpea growth and productivity. The combined application of beneficial bacterial inoculants and Rock P-fertilizer could boost chickpea performance and productivity, increasing P-utilization efficiency and minimizing nutrient losses under P-deficiency conditions. A greenhouse experiment was conducted to evaluate the response of chickpeas to two P-fertilizer forms (RP and TSP) under N2-fixer and P-solubilizer consortium inoculation to improve biological N fixation and P nutrition under P-deficient conditions. Under inoculation, chickpea chlorophyll content and chlorophyll fluorescence (RP+I and TSP+I) were increased compared to uninoculated treatments. The RP+I treatment increased both shoot and root dry weights by 48,80% and 72,68%, respectively, compared to the uninoculated RP fertilized control. Indeed, the bacterial consortium contributed to enhancing root morphological traits (e.g., root volume, surface area, and diameter) of all inoculated treatments versus the uninoculated treatments. Furthermore, soil available P and root inorganic P were significantly improved in RP+I by 162,84% and 73,24%, respectively, compared to uninoculated RP control. Our research outcomes suggest that the co-inoculation of chickpeas with N2-fixing, and P-solubilizing bacteria improves biomass yield and nutrient uptake. Eventually, enhancing chickpea agrophysiological performance, especially in restricted P-availability conditions.

Keywords: chickpea, consortium, beneficial bacterial inoculants, phosphorus deficiency, rock p-fertilizer, nutrient uptake

Procedia PDF Downloads 28
72 Citrobacter Braakii, a New Plant Pathogen, Causal Agent of Walnut Decline

Authors: Mohammadreza Hajialigol, Nargues Falahi Charkhabi, Fatemeh Shahryari, Saadat Sarikhani

Abstract:

BACKGROUND AND OBJECTIVES Walnut canker is characterized by brown to blackish roundish blotches on the trunks and main branches, necrosis of inner bark and bleeding with dark brown to black-colored exudates. The present study aimed to identify the causative agents of walnut decline by their phenotypic features, approval of pathogenicity, the partial sequencing of the housekeeping genes in Razavi Khorasan. MATERIAL AND METHODS Ten Symptomatic samples were collected from walnut orchards of Razavi Khorasan in 2019. Pathogenicity of all isolated strains was carried out on walnut immature fruits cv. ‘Hartley’ and young green twigs of cv. ‘Chandler’. All pathogenic strains were subjected to physiological, morphological and biochemical tests. 16S rRNA and housekeeping genes (fusA, leuS, and pyrG) were partially amplified and sequenced. RESULTS Eight strains were able to cause necrosis and a dark-colored region in the mesocarp of immature walnut fruits, and three representative strains caused necrosis on young inoculated twigs. Strains utilized starch, however, did not utilized esculin, Tween 20, Tween 80, and gelatin. The partial 16S rRNA gene sequence of strain KH7 indicated 99.63 % similarity to that of Citrobacter braakii ATCC5113T. The phylogenetic analyses based on the partial sequencing of three housekeeping genes, fusA (633 bp), pyrG (305), and leuS (640 bp), demonstrated that strains KH1, KH3, and KH7 belong to C. braakii species in a monophyletic clade with high bootstrap support. CONCLUSION To the best of our knowledge, this is the first report of C. braakii as a new plant pathogen which cause walnut decline. Identification of bacteria associated with walnut decline will eventually improve our understanding of the etiology of the disease and may result in improved management techniques for control.

Keywords: emerging pathogens, Iran, juglans regia, MLSA

Procedia PDF Downloads 60
71 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.

Authors: Madhalasa Iyer

Abstract:

The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.

Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast

Procedia PDF Downloads 84
70 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid

Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal

Abstract:

The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.

Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC

Procedia PDF Downloads 131
69 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone

Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma

Abstract:

Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.

Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes

Procedia PDF Downloads 141
68 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains

Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*

Abstract:

Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.

Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy

Procedia PDF Downloads 112
67 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense

Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah

Abstract:

Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.

Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq

Procedia PDF Downloads 238
66 Arbuscular Mycorrhizal Symbiosis in Trema orientalis: Effect of a Naturally-Occurring Symbiosis Receptor Kinase Mutant Allele

Authors: Yuda Purwana Roswanjaya, Wouter Kohlen, Rene Geurts

Abstract:

The Trema genus represents a group of fast-growing tropical tree species within the Cannabaceae. Interestingly, five species nested in this lineage -known as Parasponia- can establish rhizobium nitrogen-fixing root nodules, similar to those found in legumes. Parasponia and legumes use a conserved genetic network to control root nodule formation, among which are genes also essential for mycorrhizal symbiosis (the so-called common symbiotic pathway). However, Trema species lost several genes that function exclusively in nodulation, suggesting a loss-of the nodulation trait in Trema. Strikingly, in a Trema orientalis population found in Malaysian Borneo we identified a truncated SYMBIOSIS RECEPTOR KINASE (SYMRK) mutant allele lacking a large portion of the c-terminal kinase domain. In legumes this gene is essential for nodulation and mycorrhization. This raises the question whether Trema orientalis can still be mycorrhized. To answer this question, we established quantitative mycorrhization assay for Parasponia andersonii and Trema orientalis. Plants were grown in closed pots on half strength Hoagland medium containing 20 µM potassium phosphate in sterilized sand and inoculated with 125 spores of Rhizopagus irregularis (Agronutrion-DAOM197198). Mycorrhization efficiency was determined by analyzing the frequency of mycorrhiza (%F), the intensity of the mycorrhizal colonization (%M) and the arbuscule abundance (%A) in the root system. Trema orientalis RG33 can be mycorrhized, though with lower efficiency compared to Parasponia andersonii. From this we conclude that a functional SYMRK kinase domain is not essential for Trema orientalis mycorrhization. In ongoing experiments, we aim to investigate the role of SYMRK in Parasponia andersonii mycorrhization and nodulation. For this two Parasponia andersonii symrk CRISPR-Cas9 mutant alleles were created. One mimicking the TorSYMRKRG33 allele by deletion of exon 13-15, and a full Parasponia andersonii SYMRK knockout.

Keywords: endomycorrhization, Parasponia andersonii, symbiosis receptor kinase (SYMRK), Trema orientalis

Procedia PDF Downloads 135
65 Post-Application Effects of Selected Management Strategies to the Citrus Nematode (Tylenchulus semipenetrans) Population Densities

Authors: Phatu William Mashela, Pontsho Edmund Tseke, Kgabo Martha Pofu

Abstract:

‘Inconsistent results’ in nematode suppression post-application of botanical-based products created credibility concerns. Relative to untreated control, sampling for nematodes post-application of botanical-based products suggested significant increases in nematode population densities. ‘Inconsistent results’ were confirmed in Tylenchulus semipenetrans on Citrus jambhiri seedlings when sampling was carried out at 120 days post-application of a granular Nemarioc-AG phytonematicide. The objective of this study was to determine post-application effects of untreated control, Nemarioc-AG phytonematicide and aldicarb to T. semipenetrans population densities on C. jambhiri seedlings. Two hundred and ten seedlings were each inoculated with 10000 T. semipenetrans eggs and second-stage juveniles (J2) in plastic pots containing 2700 ml growing mixture. A week after inoculation, seedlings were equally split and subjected to once-off treatment of 2 g aldicarb, 2 g Nemarioc-AG phytonematicide and untreated control. Five seedlings from each group were randomly placed on greenhouse benches to serve as a sampling block, with a total of 14 blocks. The entire block was sampled weekly and assessed for final nematode population density (Pf). After the final assessment, post-regression of untreated Pf to increasing sampling intervals exhibited positive quadratic relations, with the model explaining 90% associations, with optimum Pf of 13804 eggs and J2 at six weeks post-application. In contrast, treated Pf and increasing sampling interval exhibited negative quadratic relations, with the model explaining 95% and 92% associations in phytonematicide and aldicarb, respectively. In the phytonematicide, Pf was 974 eggs and J2, whereas that in aldicarb was 2205 eggs and J2 at six weeks. In conclusion, temporal cyclic nematode population growth provided an empirically-based explanation of ‘inconsistent results’ in nematode suppression post-application of the two nematode management strategies.

Keywords: nematode management, residual effect, slow decline of citrus, the citrus nematode

Procedia PDF Downloads 223
64 Microbial Load, Prevalence and Antibiotic Resistance of Microflora Isolated from the Ghanaian Paper Currency Note: A Potential Health Threat

Authors: Simon Nyarko

Abstract:

This study examined the microbial flora contamination of the Ghanaian paper currency notes and antibiotic resistance in Ejura Municipal, Ashanti Region, Ghana. This is a descriptive cross-sectional study designed to assess the profile of microflora contamination of the Ghanaian paper currency notes and antibiotic-resistant in the Ejura Municipality. The research was conducted in Ejura, a town in the Ejura Sekyeredumase Municipal of the Ashanti region of Ghana. 70 paper currency notes which were freshly collected from the bank, consisting of 15 pieces of GH ¢1, GH ¢2, and GH ¢5, 10 pieces of GH ¢10 and GH ¢20, and 5 pieces of GH ¢50, were randomly sampled from people by exchanging their money in usage with those freshly secured from the bank. The surfaces of each GH¢ note were gently swabbed and sent to the lab immediately in sterile Zip Bags and sealed, and tenfold serial dilution was inoculated on plate count agar (PCA), MacConkey agar (MCA), mannitol salt agar (MSA), and deoxycholate citrate agar (DCA). For bacterial identification, the study used appropriate laboratory and biochemical tests. The data was analyzed using SPSS-IBM version 20.0. It was found that 95.2 % of the 70 GH¢ notes tested positive for one or more bacterial isolates. On each GH¢ note, mean counts on PCA ranged from 3.0 cfu/ml ×105 to 4.8 cfu/ml ×105. Of 124 bacteria isolated. 36 (29.03 %), 32 (25.81%), 16 (12.90 %), 20 (16.13%), 13 (10.48 %), and 7 (5.66 %) were from GH¢1, GH¢2, GH¢10, GH¢5, GH¢20, and GH¢50, respectively. Bacterial isolates were Escherichia coli (25.81%), Staphylococcus aureus (18.55%), coagulase-negative Staphylococcus (15.32%), Klebsiella species (12.10%), Salmonella species (9.68%), Shigella species (8.06%), Pseudomonas aeruginosa (7.26%), and Proteus species (3.23%). Meat shops, commercial drivers, canteens, grocery stores, and vegetable shops contributed 25.81 %, 20.16 %, 19.35 %, 17.74 %, and 16.94 % of GH¢ notes, respectively. There was 100% resistance of the isolates to Erythromycin (ERY), and Cotrimoxazole (COT). Amikacin (AMK) was the most effective among the antibiotics as 75% of the isolates were susceptible to it. This study has demonstrated that the Ghanaian paper currency notes are heavily contaminated with potentially pathogenic bacteria that are highly resistant to the most widely used antibiotics and are a threat to public health.

Keywords: microflora, antibiotic resistance, staphylococcus aureus, culture media, multi-drug resistance

Procedia PDF Downloads 80
63 Fungal Profile and Antifungal Susceptibility Patterns among Symptomatic Pediatrics Patients Attending Aboozar Children’s Hospital, Ahvaz, Iran

Authors: Nasrin Amirrajab, Yasaman Razavi Ghahfarokhi, Zahra Tootak, Maryam Hadian, Fatemeh Abooali Shamshiri

Abstract:

Urinary tract infections (UTIs) have been reported in children with nephrotic syndrome. However, the only causes for the infection reported to date are bacteria, but not many prior reported occurrences of fungi or yeast as causative organisms. Hence, the present study aimed to describe the epidemiology of urinary tract fungal infections in a tertiary care pediatric. A single-center cross-sectional study was conducted at the nephrology ward of Aboozar Pediatric Hospital between March 21, 2021, and April 28, 2022. Urine was collected aseptically from children, inoculated onto culture media, and incubated at 37 °C for 18–48 hours. Yeast was identified following standard procedures. Antifungal susceptibility testing was determined by the disk diffusion method according to the CLSI guideline. Descriptive statistics and logistical regressions were used to estimate the crude ratio with a 95% confidence interval. P-value < 0.05 was considered significant. Among 68 individuals referred to the mycology lab, the result of direct examination and culture of all patients approved for C.albicans. Of these, 38 individuals (55.8%) were male, and 30 (44.2%) were female. The patients' age ranges were between one month and an 18-year-old. In the study of infection intensity, the patients were classified into three levels such as few (73.5%), moderate (20.6%), and many (5.9%). In the present study, all the patients were sensitive to Posaconazole. Also, the eagle effect was found in Amphotericin B, Voriconazole, and Fluconazole with frequencies of 91.7%, 91.7%, and 83%, respectively. In addition, just 8.3% of isolates were resistant to Itraconazole. It has not shown resistance in other mentioned medicine. The patients showed an intermediate response to Itraconazole (91.7%), Fluconazole (17%), Voriconazole (8.3%), and Amphotericin B (8.3%). There is a high prevalence of yeast infections in children with suspected UTIs. Also, boys are more likely to get yeast infections, and the severity of the infection is higher than girls. The present study demonstrated the importance of diagnosing and selecting the appropriate drug for urinary tract fungal infections in hospitalized children.

Keywords: urinary tract infections, children, fungal infections, yeast, antifungal susceptibility

Procedia PDF Downloads 68
62 Microbial Effects of Iron Elution from Hematite into Seawater Mediated via Dissolved Organic Matter

Authors: Apichaya Aneksampant, Xuefei Tu, Masami Fukushima, Mitsuo Yamamoto

Abstract:

The restoration of seaweed beds recovery has been developed using a fertilization technique for supplying dissolved iron to barren coastal areas. The fertilizer is composed of iron oxides as a source of iron and compost as humic substance (HS) source, which can serve as chelator of iron to stabilize the dissolved species under oxic seawater condition. However, elution mechanisms of iron from iron oxide surfaces have not sufficiently elucidated. In particular, roles of microbial activities in the elution of iron from the fertilizer are not sufficiently understood. In the present study, a fertilizer (iron oxide/compost = 1/1, v/v) was incubated in a water tank at Mashike coast, Hokkaido Japan. Microorganisms in the 6-month fertilizer were isolated and identified as Exiguobacterium oxidotolerans sp. (T-2-2). The identified bacteria were inoculated to perform iron elution test in a postgate B medium, prepared in artificial seawater. Hematite was used as a model iron oxide and anthraquinone-2,7-disolfonate (AQDS) as a model for HSs. The elution test performed in presence and absence of bacteria inoculation. ICP-AES was used to analyze total iron and a colorimetric technique using ferrozine employed for the determination of ferrous ion. During the incubation period, sample contained hematite and T-2-2 in both presence and absence of AQDS continuously showed the iron elution and reached at the highest concentration after 9 days of incubation and then slightly decrease to stabilize within 20 days. Comparison to the sample without T-2-2, trace amount of iron was observed, suggesting that iron elution to seawater can be attributed to bacterial activities. The levels of total organic carbon (TOC) in the culture solution with hematite decreased. This may be to the adsorption of organic compound, AQDS, to hematite surfaces. The decrease in UV-vis absorption of AQDS in the culture solution also support the results of TOC that AQDS was adsorbed to hematite surfaces. AQDS can enhance the iron elution, while the adsorption of organic matter suppresses the iron elution from hematite.

Keywords: anthraquinone-2, 7-disolfonate, barren ground, E.oxidotolerans sp., hematite, humic substances, iron elution

Procedia PDF Downloads 356
61 Reduction of the Cellular Infectivity of SARS-CoV-2 by a Mucoadhesive Nasal Spray

Authors: Adam M. Pitz, Gillian L. Phillipson, Jayant E. Khanolkar, Andrew M. Middleton

Abstract:

New emerging evidence suggests that the nose is the predominant route for entry of the SARS-CoV-2 virus into the host. A virucidal suspension test (conforming in principle to the European Standard EN14476) was conducted to determine whether a commercial liquid gel intranasal spray containing 1% of the mucoadhesive hydroxypropyl methylcellulose (HPMC) could inhibit the cellular infectivity of the SARS-CoV-2 coronavirus. Virus was added to the test product samples and to controls in a 1:8 ratio and mixed with one part bovine serum albumin as an interfering substance. The test samples were pre-equilibrated to 34 ± 2°C (representing the temperature of the nasopharynx) with the temperature maintained at 34 ± 2°C for virus contact times of 1, 5 and 10 minutes. Neutralized aliquots were inoculated onto host cells (Vero E6 cells, ATCC CRL-1586). The host cells were then incubated at 36 ± 2°C for a period of 7 days. The residual infectious virus in both test and controls was detected by viral-induced cytopathic effect. The 50% tissue culture infective dose per mL (TCID50/mL) was determined using the Spearman-Karber method with results reported as the reduction of the virus titer due to treatment with test product, expressed as log10. The controls confirmed the validity of the results with no cytotoxicity or viral interference observed in the neutralized test product samples. The HPMC formulation reduced SARS-CoV-2 titer, expressed as log10TCID50, by 2.30 ( ± 0.17), 2.60 ( ± 0.19), and 3.88 ( ± 0.19) with the respective contact times of 1, 5 and 10 minutes. The results demonstrate that this 1% HPMC gel formulation can reduce the cellular infectivity of the SARS-CoV-2 virus with an increasing viral inhibition observed with increasing exposure time. This 1% HMPC gel is well tolerated and can reside, when delivered via nasal spray, for up to one hour in the nasal cavity. We conclude that this intranasal gel spray with 1% HPMC repeat-dosed every few hours may offer an effective preventive or early intervention solution to limit the transmission and impact of the SARS-CoV-2 coronavirus.

Keywords: hydroxypropyl methylcellulose, mucoadhesive nasal spray, respiratory viruses, SARS-CoV-2

Procedia PDF Downloads 110
60 White-Rot Hymenomycetes as Oil Palm Log Treatments: Accelerating Biodegradation of Basal Stem Rot-Affected Oil Palm Stumps

Authors: Yuvarani Naidu, Yasmeen Siddiqui, Mohd Yusof Rafii , Abu Seman Idris

Abstract:

Sustainability of oil palm production in Southeast Asia, especially in Indonesia and Malaysia, is jeopardized by Ganoderma boninense, the fungus which causes basal stem rot (BSR) in oil palm. The root contact with unattended infected debris left in the plantations during replanting is known to be the primary source of inoculum. Abiding by the law, potentially effective technique of managing Ganoderma infected oil palm debris is deemed necessary because of the zero-burning policy in Malaysian oil palm plantations. White-rot hymenomycetes antagonistic to Ganoderma sp were selected to test their efficacy as log treatments in degrading Ganoderma infected oil palm logs and to minimize the survival of Ganoderma inoculum. Decay rate in terms of mass loss was significantly higher after the application of solid-state cultivation (SSC) of Trametes lactinea FBW (64% ±1.2), followed by Pycnoporus sanguineus FBR (55% ±1.7) in infected log block tissues, after 10 months of treatments. The degradation pattern was clearly distinguished between the treated and non-treated log blocks with the developed SSC formulations. The control infected log blocks showed the highest, whereas infected log blocks treated with either P. sanguineus FBR or T. lactinea FBW SSC formulations exhibited statistically lowest number of Ganoderma spp. recovery on Ganoderma Selective Medium (GSM), after 8 months of treatment. Out of that, the lowest recovery of Ganoderma spp. was reported in infected log blocks inoculated with the strain T. lactinea FBW (21% ± 0.9) followed by P. sanguineus FBR (33% ± 2.2), after 8 months, Further, no recovery of Ganoderma was noticeable, 10 months after treatment applications in log blocks treated with both of the formulations. This is the first nursery-base study to substantiate the initial colonization of white-rot hymenomycetes on oil palm log blocks previously infected with BSR pathogen, G. boninense. The present study has indicated that log blocks treatment with white-rot hymenomycetes significantly affected the mass loss of diseased and healthy log block tissues. This study provides a basis of biotechnological approaches inefficient degradation of oil palm-generated crop debris, under natural conditions with an ultimate aim of reducing the Ganoderma inoculum under heavy BSR infection pressure in eco-friendly manner.

Keywords: basal stem rot disease, ganoderma boninense, oil palm, white-rot fungi

Procedia PDF Downloads 180
59 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2

Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim

Abstract:

Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.

Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici

Procedia PDF Downloads 122
58 Biosynthesized Selenium Nanoparticles to Rescue Coccidiosis-mediated Oxidative Stress, Apoptosis and Inflammation in the Jejunum Of Mice

Authors: Esam Mohammed Al-shaebi

Abstract:

One of the most crucial approaches for treating human diseases, particularly parasite infections, is nanomedicine. One of the most significant protozoan diseases that impact farm and domestic animals is coccidiosis. While, amprolium is one of the traditional anticoccidial medication, the advent of drug-resistant strains of Eimeria necessitates the development of novel treatments. The goal of the current investigation was to determine whether biosynthesized selenium nanoparticles (Bio-SeNPs) using Azadirachta indica leaves extract might treat mice with Eimeria papillata infection in the jejunal tissue. Five groups of seven mice each were used, as follows: Group 1: Non-infected-non-treated (negative control). Group 2: Non-infected treated group with Bio-SeNPs (0.5 mg/kg of body weight). Groups 3-5 were orally inoculated with 1×103 sporulated oocysts of E. papillata. Group 3: Infected-non-treated (positive control). Group 4: Infected and treated group with Bio-SeNPs (0.5 mg/kg). Group 5: Infected and treated group with the Amprolium. Groups 4 and 5 daily received oral administration (for 5 days) of Bio-SeNPs and anticoccidial medication, respectively, after infection. Bio-SeNPs caused a considerable reduction in oocyst output in mice feces (97.21%). This was also accompanied by a significant reduction in the number of developmental parasitic stages in the jejunal tissues. Glutathione reduced (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were dramatically reduced by the Eimeria parasite, whereas, nitric oxide (NO) and malonaldehyde (MDA) levels were markedly elevated. The amount of goblet cells and MUC2 gene expression were used as apoptotic indicators, and both were considerably downregulated by infection. However, infection markedly increased the expression of inflammatory cytokines (IL-6 and TNF-α) and the apoptotic genes (Caspase-3 and BCL2). Bio-SeNPs were administrated to mice to drastically lower body weight, oxidative stress, and inflammatory and apoptotic indicators in the jejunal tissue. Our research thus showed the involvement of Bio-SeNPs in protecting mice with E. papillata infections against jejunal damage.

Keywords: coccidiosis, nanoparticles, azadirachta indica, oxidative stress

Procedia PDF Downloads 65
57 Recirculated Sedimentation Method to Control Contamination for Algal Biomass Production

Authors: Ismail S. Bostanci, Ebru Akkaya

Abstract:

Microalgae-derived biodiesel, fertilizer or industrial chemicals' production with wastewater has great potential. Especially water from a municipal wastewater treatment plant is a very important nutrient source for biofuel production. Microalgae biomass production in open ponds system is lower cost culture systems. There are many hurdles for commercial algal biomass production in large scale. One of the important technical bottlenecks for microalgae production in open system is culture contamination. The algae culture contaminants can generally be described as invading organisms which could cause pond crash. These invading organisms can be competitors, parasites, and predators. Contamination is unavoidable in open systems. Potential contaminant organisms are already inoculated if wastewater is utilized for algal biomass cultivation. Especially, it is important to control contaminants to retain in acceptable level in order to reach true potential of algal biofuel production. There are several contamination management methods in algae industry, ranging from mechanical, chemical, biological and growth condition change applications. However, none of them are accepted as a suitable contamination control method. This experiment describes an innovative contamination control method, 'Recirculated Sedimentation Method', to manage contamination to avoid pond cash. The method can be used for the production of algal biofuel, fertilizer etc. and algal wastewater treatment. To evaluate the performance of the method on algal culture, an experiment was conducted for 90 days at a lab-scale raceway (60 L) reactor with the use of non-sterilized and non-filtered wastewater (secondary effluent and centrate of anaerobic digestion). The application of the method provided the following; removing contaminants (predators and diatoms) and other debris from reactor without discharging the culture (with microscopic evidence), increasing raceway tank’s suspended solids holding capacity (770 mg L-1), increasing ammonium removal rate (29.83 mg L-1 d-1), decreasing algal and microbial biofilm formation on inner walls of reactor, washing out generated nitrifier from reactor to prevent ammonium consumption.

Keywords: contamination control, microalgae culture contamination, pond crash, predator control

Procedia PDF Downloads 179
56 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 323
55 Microbial Pathogens Associated with Banded Sugar Ants (Camponotus consobrinus) in Calabar, Nigeria

Authors: Ofonime Ogba, Augustine Akpan

Abstract:

Objectives and Goals: The study was aimed at determining pathogenic microbial carriage on the external body parts of Camponotus consobrinus which is also known as the banded sugar ant because of its liking for sugar and sweet food. The level of pathogenic microbial carriage of Camponotus consobrinus in association to the environment in which they have been collected is not known. Methods: The ants were purposively collected from four locations including the kitchens, bedroom of various homes, food shops, and bakeries. The sample collection took place within the hours of 6:30 pm to 11:00 pm. The ants were trapped in transparent plastic containers of which sugar, pineapple peels, sugar cane and soft drinks were used as bait. The ants were removed with a sterile spatula and put in 10mls of peptone water in sterile universal bottles. The containers were vigorously shaken to wash the external surface of the ant. It was left overnight and transported to the Microbiology Laboratory, University of Calabar Teaching Hospital for analysis. The overnight peptone broths were inoculated on Chocolate agar, Blood agar, Cystine Lactose Electrolyte-Deficient agar (CLED) and Sabouraud dextrose agar. Incubation was done aerobically and in a carbon dioxide jar for 24 to 48 hours at 37°C. Isolates were identified based on colonial characteristics, Gram staining, and biochemical tests. Results: Out of the 250 Camponotus consobrinus caught for the study, 90(36.0%) were caught in the kitchen, 75(30.0%) in the bedrooms 40(16.0%) in the bakery while 45(18.0%) were caught in the shops. A total of 82.0% prevalence of different microbial isolates was associated with the ants. The kitchen had the highest number of isolates 75(36.6%) followed by the bedroom 55(26.8%) while the bakery recorded the lowest number of isolates 35(17.1%). The profile of micro-organisms associated with Camponotus consobrinus was Escherichia coli 73(30.0%), Morganella morganii 45(18.0%), Candida species 25(10.0%), Serratia marcescens 10(4.0%) and Citrobacter freundii 10(4.0%). Conclusion: Most of the Camponotus consobrinus examined in the four locations harboured potential pathogens. The presence of ants in homes and shops can facilitate the propagation and spread of pathogenic microorganisms. Therefore, the development of basic preventive measures and the control of ants must be taken seriously.

Keywords: Camponotus consobrinus, potential pathogens, microbial isolates, spread

Procedia PDF Downloads 138
54 Optimization of Culture Conditions of Paecilomyces tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx mori

Authors: Sunghee Nam

Abstract:

Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and from ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc. have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores.

Keywords: optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi silkworm larva, bombyx mori

Procedia PDF Downloads 227
53 A Comparative Study: Comparison of Two Different Fluorescent Stains -Auramine and Rhodamine- with Ehrlich-Ziehl-Neelsen, Kinyoun Staining, and Culture in the Determination of Acid Resistant Bacilli

Authors: Recep Keşli, Hayriye Tokay, Cengiz Demir, İsmail Ceyhan

Abstract:

Objective: In many countries, tuberculosis (TB) is still one of the most important diseases. Tuberculosis is among top 10 causes of death worldwide. The early diagnosis of active tuberculosis still depends on the presence of acid resistant bacilli (ARB) in stained smears. In this study, we aimed to investigate the diagnostic performances of Erlich Ziehl Neelsen (EZN), Kinyoun and two different fluorescent stains. Methods: The specimens were obtained from the patients who applied to Chest Diseases Departments of Ankara Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, and Afyon Kocatepe University, ANS Research and Practice Hospital. The study was carried out in the Medical Microbiology Laboratory, School of Medicine, Afyon Kocatepe University. All the non-sterile specimens were homogenized and decontaminated according to the EUCAST instructions. Samples were inoculated onto the Löwenstein-Jensen agars (bio-Merieux Marcy l'Etoile, France) and then incubated at 37˚C, for 40 days. Four smears were prepared from each specimen. Slides were stained with commercial EZN (BD, Sparks, USA), Kinyoun (SALUBRIS Istanbul, Turkey), Auramine (SALUBRIS Istanbul, Turkey) and Rhodamine (SALUBRIS Istanbul, Turkey) kit. While EZN and Kinyoun stainings were examined by light microscope, Auramine and Rhodamine slides were examined by fluorescence microscopy. Results: A total of 158 respiratory system samples (sputum, broncho alveolar lavage fluid…etc) were enrolled into the study. A hundred and two of the samples that processed were found as culture positive. The sensitivity, specificity, positive predictive, and negative predictive values were detected as 100%, 67.5%, 73.5%, and 100% for EZN, 100%, 70.9%, 77.4%, and 100% for Kinyoun, 100%,77.8%, 84.3%, 100% for Auramine, and 100%, 80% , 86.3%, and 100% for Rhodamine respectively. Conclusions: According to our study auramine and rhodamine staining methods showed the best diagnostic performance among the four investigated staining methods. In conclusion, the fluorochrome staining method may be accepted as the most reliable, rapid and useful method for diagnosis of the mycobacterial infections truly.

Keywords: acid resistant bacilli (ARB), auramine, Ehrlich-Ziehl-Neelsen (EZN), Kinyoun, Rhodamine

Procedia PDF Downloads 238
52 Transcriptome Sequencing of the Spleens Reveals Genes Involved in Antiviral Response in Chickens Infected with Castv

Authors: Sajewicz-Krukowska Joanna, Domańska-Blicharz Katarzyna, Tarasiuk Karolina, Marzec-Kotarska Barbara

Abstract:

Astroviral infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as decreased egg production, breeding disorders, poor weight gain, and even increased mortality. Commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for "white chicks syndrome" associated with increased embryo/chick mortality. The CAstV-mediated pathogenesis in chicken occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding gene expression changes in the chicken's spleen in response to CAstV infection. We aimed to investigate the molecular background triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of 5 birds each. One group was inoculated with CAstV, and the other was used as the negative control. On 4th dpi, spleen samples were collected and immediately frozen at -70°C for RNA isolation. We analysed transcriptional profiles of the chickens' spleens at the 4th day following infection using RNA-seq to establish differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative real-time PCR (qRT-PCR). A total of 31959 transcripts were identified in response to CAstV infection. Eventually 45 DEGs (p-value<0.05; Log2Foldchange>1)were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on 4 genes (IFIT5, OASL, RASD1, DDX60) confirmed RNAseq results. Top differentially expressed genes belonged to novel putative IFN-induced CAstV restriction factors. Most of the DEGs were associated with RIG-I–like signalling pathway or, more generally, with an innate antiviral response(upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, IFI6, and downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, YWHAB). The study provided a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proved the cell cycle in the spleen and immune signalling in chickens were predominantly affected upon CAstV infection.

Keywords: chicken astrovirus, CastV, RNA-seq, transcriptome, spleen

Procedia PDF Downloads 123
51 Polypropylene Matrix Enriched With Silver Nanoparticles From Banana Peel Extract For Antimicrobial Control Of E. coli and S. epidermidis To Maintain Fresh Food

Authors: Michail Milas, Aikaterini Dafni Tegiou, Nickolas Rigopoulos, Eustathios Giaouris, Zaharias Loannou

Abstract:

Nanotechnology, a relatively new scientific field, addresses the manipulation of nanoscale materials and devices, which are governed by unique properties, and is applied in a wide range of industries, including food packaging. The incorporation of nanoparticles into polymer matrices used for food packaging is a field that is highly researched today. One such combination is silver nanoparticles with polypropylene. In the present study, the synthesis of the silver nanoparticles was carried out by a natural method. In particular, a ripe banana peel extract was used. This method is superior to others as it stands out for its environmental friendliness, high efficiency and low-cost requirement. In particular, a 1.75 mM AgNO₃ silver nitrate solution was used, as well as a BPE concentration of 1.7% v/v, an incubation period of 48 hours at 70°C and a pH of 4.3 and after its preparation, the polypropylene films were soaked in it. For the PP films, random PP spheres were melted at 170-190°C into molds with 0.8cm diameter. This polymer was chosen as it is suitable for plastic parts and reusable plastic containers of various types that are intended to come into contact with food without compromising its quality and safety. The antimicrobial test against Escherichia coli DFSNB1 and Staphylococcus epidermidis DFSNB4 was performed on the films. It appeared that the films with silver nanoparticles had a reduction, at least 100 times, compared to those without silver nanoparticles, in both strains. The limit of detection is the lower limit of the vertical error lines in the presence of nanoparticles, which is 3.11. The main reasons that led to the adsorption of nanoparticles are the porous nature of polypropylene and the adsorption capacity of nanoparticles on the surface of the films due to hydrophobic-hydrophilic forces. The most significant parameters that contributed to the results of the experiment include the following: the stage of ripening of the banana during the preparation of the plant extract, the temperature and residence time of the nanoparticle solution in the oven, the residence time of the polypropylene films in the nanoparticle solution, the number of nanoparticles inoculated on the films and, finally, the time these stayed in the refrigerator so that they could dry and be ready for antimicrobial treatment.

Keywords: antimicrobial control, banana peel extract, E. coli, natural synthesis, microbe, plant extract, polypropylene films, S.epidermidis, silver nano, random pp

Procedia PDF Downloads 144
50 Effect of Plant Growth Promoting Rhizobacteria on the Germination and Early Growth of Onion (Allium cepa)

Authors: Dragana R. Stamenov, Simonida S. Djuric, Timea Hajnal Jafari

Abstract:

Plant growth promoting rhizobacteria (PGPR) are a heterogeneous group of bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, enhancing the growth of the plant either directly and/or indirectly. Increased crop productivity associated with the presence of PGPR has been observed in a broad range of plant species, such as raspberry, chickpeas, legumes, cucumber, eggplant, pea, pepper, radish, tobacco, tomato, lettuce, carrot, corn, cotton, millet, bean, cocoa, etc. However, until now there has not been much research about influences of the PGPR on the growth and yield of onion. Onion (Allium cepa L.), of the Liliaceae family, is a species of great economic importance, widely cultivated all over the world. The aim of this research was to examine the influence of plant growth promoting bacteria Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, Bacillus subtillis and Azotobacter sp. on the seed germination and early growth of onion (Allium cepa). PGPR Azotobacter sp., Bacillus subtilis, Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, from the collection of the Faculty of Agriculture, Novi Sad, Serbia, were used as inoculants. The number of cells in 1 ml of the inoculum was 10⁸ CFU/ml. The control variant was not inoculated. The effect of PGPR on seed germination and hypocotyls length of Allium cepa was evaluated in controlled conditions, on filter paper in the dark at 22°C, while effect on the plant length and mass in semicontrol conditions, in 10 l volume vegetative pots. Seed treated with fungicide and untreated seed were used. After seven days the percentage of germination was determined. After seven and fourteen days hypocotil length was measured. Fourteen days after germination, length and mass of plants were measured. Application of Pseudomonas sp. Dragana and Kiš and Bacillus subtillis had a negative effect on onion seed germination, while the use of Azotobacter sp. gave positive results. On average, application of all investigated inoculants had a positive effect on the measured parameters of plant growth. Azotobacter sp. had the greatest effect on the hypocotyls length, length and mass of the plant. In average, better results were achieved with untreated seeds in compare with treated. Results of this study have shown that PGPR can be used in the production of onion.

Keywords: germination, length, mass, microorganisms, onion

Procedia PDF Downloads 205
49 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 289
48 Anticancer Activity of Milk Fat Rich in Conjugated Linoleic Acid Against Ehrlich Ascites Carcinoma Cells in Female Swiss Albino Mice

Authors: Diea Gamal Abo El-Hassan, Salwa Ahmed Aly, Abdelrahman Mahmoud Abdelgwad

Abstract:

The major conjugated linoleic acid (CLA) isomers have anticancer effect, especially breast cancer cells, inhibits cell growth and induces cell death. Also, CLA has several health benefits in vivo, including antiatherogenesis, antiobesity, and modulation of immune function. The present study aimed to assess the safety and anticancer effects of milk fat CLA against in vivo Ehrlich ascites carcinoma (EAC) in female Swiss albino mice. This was based on acute toxicity study, detection of the tumor growth, life span of EAC bearing hosts, and simultaneous alterations in the hematological, biochemical, and histopathological profiles. Materials and Methods: One hundred and fifty adult female mice were equally divided into five groups. Groups (1-2) were normal controls, and Groups (3-5) were tumor transplanted mice (TTM) inoculated intraperitoneally with EAC cells (2×106 /0.2 mL). Group (3) was (TTM positive control). Group (4) TTM fed orally on balanced diet supplemented with milk fat CLA (40 mg CLA/kg body weight). Group (5) TTM fed orally on balanced diet supplemented with the same level of CLA 28 days before tumor cells inoculation. Blood samples and specimens from liver and kidney were collected from each group. The effect of milk fat CLA on the growth of tumor, life span of TTM, and simultaneous alterations in the hematological, biochemical, and histopathological profiles were examined. Results: For CLA treated TTM, significant decrease in tumor weight, ascetic volume, viable Ehrlich cells accompanied with increase in life span were observed. Hematological and biochemical profiles reverted to more or less normal levels and histopathology showed minimal effects. Conclusion: The present study proved the safety and anticancer efficiency of milk fat CLA and provides a scientific basis for its medicinal use as anticancer attributable to the additive or synergistic effects of its isomers.

Keywords: anticancer activity, conjugated linoleic acid, Ehrlich ascites carcinoma, % increase in life span, mean survival time, tumor transplanted mice.

Procedia PDF Downloads 63
47 Molecular Implication of Interaction of Human Enteric Pathogens with Phylloplane of Tomato

Authors: Shilpi, Indu Gaur, Neha Bhadauria, Susmita Goswami, Prabir K. Paul

Abstract:

Cultivation and consumption of organically grown fruits and vegetables have increased by several folds. However, the presence of Human Enteric Pathogens on the surface of organically grown vegetables causing Gastro-intestinal diseases, are most likely due to contaminated water and fecal matter of farm animals. Human Enteric Pathogens are adapted to colonize the human gut, and also colonize plant surface. Microbes on plant surface communicate with each other to establish quorum sensing. The cross talk study is important because the enteric pathogens on phylloplane have been reported to mask the beneficial resident bacteria of plant. In the present study, HEPs and bacterial colonizers were identified using 16s rRNA sequencing. Microbial colonization patterns after interaction between Human Enteric Pathogens and natural bacterial residents on tomato phylloplane was studied. Tomato plants raised under aseptic conditions were inoculated with a mixture of Serratia fonticola and Klebsiella pneumoniae. The molecules involved in cross-talk between Human Enteric Pathogens and regular bacterial colonizers were isolated and identified using molecular techniques and HPLC. The colonization pattern was studied by leaf imprint method after 48 hours of incubation. The associated protein-protein interaction in the host cytoplasm was studied by use of crosslinkers. From treated leaves the crosstalk molecules and interaction proteins were separated on 1D SDS-PAGE and analyzed by MALDI-TOF-TOF analysis. The study is critical in understanding the molecular aspects of HEP’s adaption to phylloplane. The study revealed human enteric pathogens aggressively interact among themselves and resident bacteria. HEPs induced establishment of a signaling cascade through protein-protein interaction in the host cytoplasm. The study revealed that the adaptation of Human Enteric Pathogens on phylloplane of Solanum lycopersicum involves the establishment of complex molecular interaction between the microbe and the host including microbe-microbe interaction leading to an establishment of quorum sensing. The outcome will help in minimizing the HEP load on fresh farm produce, thereby curtailing incidences of food-borne diseases.

Keywords: crosslinkers, human enteric pathogens (HEPs), phylloplane, quorum sensing

Procedia PDF Downloads 248
46 In vitro Susceptibility of Isolated Shigella flexneri and Shigella dysenteriae to the Ethanolic Extracts of Trachyspermum ammi and Peganum harmala

Authors: Ibrahim Siddig Hamid, Ikram Mohamed Eltayeb

Abstract:

Trachyspermum ammi belongs to the family Apiaceae, is used traditionally for the treatment of gastrointestinal ailments, lack of appetite and bronchial problems as well used as antiseptic, antimicrobial, antipyretic, febrifugal and in the treatment of typhoid fever. Peganum harmala belongs to the family Zygophyllaceae it has been reported to have an antibacterial activity and used to treat depression and recurring fevers. It also used to kill algae, bacteria, intestinal parasites and molds. In Sudan, the combination of two plants are traditionally used for the treatment of bacillary dysentery. Bacillary dysentery is caused by one or more types of Shigella species bacteria mainly Shigella dysenteri and shigella flexneri. Bacillary dysentery is mainly found in hot countries like Sudan with poor hygiene and sanitation. Bacillary dysentery causes sudden onset of high fever and chills, abdominal pain, cramps and bloating, urgency to pass stool, weight loss, and dehydration and if left untreated it can lead to serious complications including delirium, convulsions and coma. A serious infection like this can be fatal within 24 hours. The objective of this study is to investigate the in vitro susceptibility of Sh. flexneri and Sh. dysenteriae to the T. ammi and P. harmala. T. ammi and P. harmala were extracted by 96% ethanol using Soxhlet apparatus. The antimicrobial activity of the extracts was investigated according to the disc diffusion method. The discs were prepared by soaking sterilized filter paper discs in 20 microliter of serially diluted solutions of each plant extract with the concentrations (100, 50, 25, 12.5, 6.25mg/dl) then placing them on Muller Hinton Agar plates that were inoculated with bacterial suspension separately, the plates were incubated for 24 hours at 37c and the minimum inhibitory concentration of the extract which was the least concentration of the extract to inhibit fungal growth was determined. The results showed the high antimicrobial activity of T. ammi extract with an average diameter zone ranging from 18-20 mm and its minimum inhibitory concentration was found to be 25 mg/ml against the two shigella species. P. harmala extract was found to have slight antibacterial effect against the two bacteria. This result justified the Sudanese traditional use of Trachyspermum ammi plant for the treatment of bacillary dysentery.

Keywords: harmala, peganum, shigella, trachyspermum

Procedia PDF Downloads 209
45 Inhibitory Action of Fatty Acid Salts against Cladosporium cladosporioides and Dermatophagoides farinae

Authors: Yui Okuno, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Introduction: Fungus and mite are known as allergens that cause an allergic disease for example asthma bronchiale and allergic rhinitis. Cladosporium cladosporioides is one of the most often detected fungi in the indoor environment and causes pollution and deterioration. Dermatophagoides farinae is major mite allergens indoors. Therefore, the creation of antifungal agents with high safety and the antifungal effect is required. Fatty acid salts are known that have antibacterial activities. This report describes the effects of fatty acid salts against Cladosporium cladosporioides NBRC 30314 and Dermatophagoides farinae. Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. The antifungal method, the spore suspension (3.0×104 spores/mL) was mixed with a sample of fatty acid potassium (final concentration of 175 mM). Samples were counted at 0, 10, 60, 180 min by plating (100 µL) on PDA. Fungal colonies were counted after incubation for 3 days at 30 °C. The MIC (minimum inhibitory concentration) against the fungi was determined by the two-fold dilution method. Each fatty acid salts were inoculated separately with 400 µL of C. cladosporioides at 3.0 × 104 spores/mL. The mixtures were incubated at the respective temperature for each organism for 10 min. The tubes were then contacted with the fungi incubated at 30 °C for 7 days and examined for growth of spores on PDA. The acaricidal method, twenty D. farinae adult females were used and each adult was covered completely with 2 µL fatty acid potassium for 1 min. The adults were then dried with filter paper. The filter paper was folded and fixed by two clips and kept at 25 °C and 64 % RH. Mortalities were determained 48 h after treatment under the microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that C8K, C10K, C12K, C14K was effective to decrease survival rate (4 log unit) of the fatty acids potassium incubated time for 10 min against C. cladosporioides. C18:3K was effective to decrease 4 log unit of the fatty acids potassium incubated time for 60 min. Especially, C12K was the highest antifungal activity and the MIC of C12K was 0.7 mM. On the other hand, the fatty acids potassium showed no acaricidal effects against D. farinae. The activity of D. farinae was not adversely affected after 48 hours. These results indicate that C12K has high antifungal activity against C. cladosporioides and suggest the fatty acid potassium will be used as an antifungal agent.

Keywords: fatty acid salts, antifungal effects, acaricidal effects, Cladosporium cladosporioides, Dermatophagoides farinae

Procedia PDF Downloads 247