Search results for: inlet stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3730

Search results for: inlet stability

3580 Competition, Stability, and Economic Growth: A Causality Approach

Authors: Mahvish Anwaar

Abstract:

Research Question: In this paper, we explore the causal relationship between banking competition, banking stability, and economic growth. Research Findings: The unbalanced panel data starting from 2000 to 2018 is collected to analyze the causality among banking competition, banking stability, and economic growth. The main focus of the study is to check the direction of causality among selected variables. The results of the study support the demand following, supply leading, feedback, and neutrality hypothesis conditional to different measures of banking competition, banking stability, and economic growth. Theoretical Implication: Jayakumar, Pradhan, Dash, Maradana, and Gaurav (2018) proposed a theoretical model of the causal relationship between banking competition, banking stability, and economic growth by using different indicators. So, we empirically test the proposed indicators in our study. This study makes a contribution to the literature by showing the defined relationship between developing and developed countries. Policy Implications: The study covers various policy implications regarding investors to analyze how to properly manage their finances, and government agencies will take help from the present study to find the best and most suitable policies by examining how the economy can grow concerning its finances.

Keywords: competition, stability, economic growth, vector auto-regression, granger causality

Procedia PDF Downloads 58
3579 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia

Authors: Abdelhafid Zenati, Mohamed Tadjine

Abstract:

The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.

Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space

Procedia PDF Downloads 249
3578 The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song Yan Li, Zihan Gu, Li Shaopeng

Abstract:

In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, foam life, foam scanning

Procedia PDF Downloads 146
3577 Optimization of Effecting Parameters for the Removal of H₂S Gas in Self Priming Venturi Scrubber Using Response Surface Methodology

Authors: Manisha Bal, B. C. Meikap

Abstract:

Highly toxic and corrosive gas H₂S is recognized as one of the hazardous air pollutants which has significant effect on the human health. Abatement of H₂S gas from the air is very necessary. H₂S gas is mainly released from the industries like paper and leather industry as well as during the production of crude oil, during wastewater treatment, etc. But the emission of H₂S gas in high concentration may cause immediate death while at lower concentrations can cause various respiratory problems. In the present study, self priming venturi scrubber is used to remove the H₂S gas from the air. Response surface methodology with central composite design has been chosen to observe the effect of process parameters on the removal efficiency of H₂S. Experiments were conducted by varying the throat gas velocity, liquid level in outer cylinder, and inlet H₂S concentration. ANOVA test confirmed the significant effect of parameters on the removal efficiency. A quadratic equation has been obtained which predicts the removal efficiency very well. The suitability of the developed model has been judged by the higher R² square value which obtained from the regression analysis. From the investigation, it was found that the throat gas velocity has most significant effect and inlet concentration of H₂S has less effect on H₂S removal efficiency.

Keywords: desulfurization, pollution control, response surface methodology, venturi scrubber

Procedia PDF Downloads 130
3576 Fortification of Concentrated Milk Protein Beverages with Soy Proteins: Impact of Divalent Cations and Heating Treatment on the Physical Stability

Authors: Yichao Liang, Biye Chen, Xiang Li, Steven R. Dimler

Abstract:

This study investigated the effects of adding calcium and magnesium chloride on heat and storage stability of milk protein concentrate-soy protein isolate (8:2 respectively) mixtures containing 10% w/w total protein subjected to the in-container sterilization (115 °C x 15 min). The particle size does not change when emulsions are heated at pH between 6.7 and 7.3 irrespective of the mixed protein ratio. Increasing concentration of divalent cation salts resulted in an increase in protein particle size, dry sediment formation and sediment height and a decrease in pH, heat stability and hydration in milk protein concentrate-soy protein isolate mixtures solutions on sterilization at 115°C. Fortification of divalent cation salts in milk protein concentrate-soy protein isolate mixture solutions resulted in an accelerated protein sedimentation and two unique sediment regions during accelerated storage stability testing. Moreover, the heat stability decreased upon sterilization at 115°C, with addition of MgCl₂ causing a greater increase in sedimentation velocity and compressibility than CaCl₂. Increasing pH value of protein milk concentrate-soy protein isolate mixtures solutions from 6.7 to 7.2 resulted in an increase in viscosity following the heat treatment. The study demonstrated that the type and concentration of divalent cation salts used strongly impact heat and storage stability of milk protein concentrate-soy protein isolate mixture nutritional beverages.

Keywords: divalent cation salts, heat stability, milk protein concentrate, soy protein isolate, storage stability

Procedia PDF Downloads 324
3575 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran

Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour

Abstract:

Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.

Keywords: wellbore stability, movement, stress, instability

Procedia PDF Downloads 201
3574 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control

Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi

Abstract:

In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.

Keywords: impedance control, control system, robots, interaction

Procedia PDF Downloads 424
3573 The Effect of Ambient Temperature on the Performance of the Simple and Modified Cycle Gas Turbine Plants

Authors: Ogbe E. E., Ossia. C. V., Saturday. E. G., Ezekwe M. C.

Abstract:

The disparity in power output between a simple and a modified gas turbine plant is noticeable when the gas turbine functions under local environmental conditions that deviate from the standard ISO specifications. Extensive research and literature have demonstrated a well-known direct correlation between ambient temperature and the power output of a gas turbine plant. In this study, the Omotosho gas turbine plant was modified into three different configurations. The reason for the modification is to improve its performance and reduce the fuel consumption and emission rate. Aspen Hysys software was used to simulate both the simple (Omotosho) and the three modified gas turbine plants. The input parameters considered include ambient temperature, air mass flow rate, fuel mass flow rate, water mass flow rate, turbine inlet temperature, compressor efficiency, and turbine efficiency, while the output parameters considered are thermal efficiency, specific fuel consumption, heat rate, emission rate, compressor power, turbine power and power output. The three modified gas turbine power plants incorporate an inlet air cooling system and a heat recovery steam generator. The variations between the modifications are due to additional components or enhancements alongside the inlet air cooling system and heat recovery steam generator incorporated; the first modification has an additional turbine, the second modification has an additional combustion chamber, and the third modification has an additional turbine and combustion chamber. This paper clearly shows ambient temperature effects on both the simple and three modified gas turbine plants. for every 10-degree kelvin increase in ambient temperature, there is an approximate reduction of 3977 kW, 4795 kW, 4681 kW, and 4793 kW of the power output for the simple gas turbine, first, second, and third modifications, respectively. Also, for every 10-degree kelvin increase in temperature, there is a thermal efficiency decrease of 1.22%, 1.45%, 1.43%, and 1.44% for the simple gas turbine, first, second, and third modifications respectively. Low ambient temperature will help save fuel; looking at the high price of fuel presently in Nigeria for every 10 degrees kelvin increase in temperature, there is a specific fuel consumption increase of 0.0074 kg/kWh, 0.0051 kg/kWh, 0.0061 kg/kWh, and 0.0057 kg/kWh for the simple gas turbine, first, second, and third modifications respectively. These findings will aid in accurately evaluating local power generating plants, particularly in hotter regions, for installing gas turbine inlet air cooling (GTIAC) systems.

Keywords: Aspen HYSYS software, Brayton Cycle, modified gas turbine, power plant, simple gas turbine, thermal efficiency.

Procedia PDF Downloads 24
3572 Comparison of the Oxidative Stability of Chinese Vegetable Oils during Repeated Deep-Frying of French Fries

Authors: TranThi Ly, Ligang Yang, Hechun Liu, Dengfeng Xu, Haiteng Zhou, Shaokang Wang, Shiqing Chen, Guiju Sun

Abstract:

This study aims to evaluate the oxidative stability of Chinese vegetable oils during repeated deep-frying. For frying media, palm oil (PO), sunflower oil (SFO), soybean oil (SBO), and canola oil (CO) were used. French fries were fried in oils heated to 180 ± 50℃. The temperature was kept constant during the eight h of the frying process. The oil quality was measured according to the fatty acid (FA) content, trans fatty acid (TFA) compounds, and chemical properties such as peroxide value (PV), acid value (AV), anisidine value (AnV), and malondialdehyde (MDA). Additionally, the sensory characteristics such as color, flavor, greasiness, crispiness, and overall acceptability of the French fries were assessed. Results showed that the PV, AV, AnV, MDA, and TFA content of SFO, CO, and SBO significantly increased in conjunction with prolonged frying time. During the deep-frying process, the SBO showed the lowest oxidative stability at all indices, while PO retained oxidative stability and generated the lowest level of TFA. The French fries fried in PO also offered better sensory properties than the other oils. Therefore, results regarding oxidative stability and sensory attributes suggested that among the examined vegetable oils, PO appeared to be the best oil for frying food products.

Keywords: vegetable oils, French fries, oxidative stability, sensory properties, frying oil

Procedia PDF Downloads 112
3571 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis

Procedia PDF Downloads 417
3570 Modeling of the Effect of Explosives, Geological and Geotechnical Parameters on the Stability of Rock Masses Case of Marrakech: Agadir Highway, Morocco

Authors: Taoufik Benchelha, Toufik Remmal, Rachid El Hamdouni, Hamou Mansouri, Houssein Ejjaouani, Halima Jounaid, Said Benchelha

Abstract:

During the earthworks for the construction of Marrakech-Agadir highway in southern Morocco, which crosses mountainous areas of the High Western Atlas, the main problem faced is the stability of the slopes. Indeed, the use of explosives as a means of excavation associated with the geological structure of the terrain encountered can trigger major ruptures and cause damage which depends on the intrinsic characteristics of the rock mass. The study consists of a geological and geotechnical analysis of several unstable zones located along the route, mobilizing millions of cubic meters of rock, with deduction of the parameters influencing slope stability. From this analysis, a predictive model for rock mass stability is carried out, based on a statistic method of logistic regression, in order to predict the geomechanical behavior of the rock slopes constrained by earthworks.

Keywords: explosive, logistic regression, rock mass, slope stability

Procedia PDF Downloads 370
3569 Predicting Mixing Patterns of Overflows from a Square Manhole

Authors: Modupe O. Jimoh

Abstract:

During manhole overflows, its contents pollute the immediate environment. Understanding the pollutant transfer characteristics between manhole’s incoming sewer and the overflow is therefore of great importance. A square manhole with sides 388 mm by 388 mm and height 700 mm with an overflow facility was used in the laboratory to carry out overflow concentration measurements. Two scenarios were investigated using three flow rates. The first scenario corresponded to when the exit of the pipe becomes blocked and the only exit for the flow is the manhole. The second scenario is when there is an overflow in combination with a pipe exit. The temporal concentration measurements showed that the peak concentration of pollutants in the flow was attenuated between the inlet and the overflow. A deconvolution software was used to predict the Residence time distribution (RTD) and consequently the Cumulative Residence time distribution (CRTD). The CRTDs suggest that complete mixing is occurring between the pipe inlet and the overflow, like what is obtained in a low surcharged manhole. The results also suggest that an instantaneous stirred tank reactor model can describe the mixing characteristics.

Keywords: CRTDs, instantaneous stirred tank reactor model, overflow, square manholes, surcharge, temporal concentration profiles

Procedia PDF Downloads 136
3568 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study

Authors: Maria Santana, Jose Estaire

Abstract:

Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.

Keywords: industrial wastes, landfill, leachate tests, stability

Procedia PDF Downloads 192
3567 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell

Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan

Abstract:

In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.

Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell

Procedia PDF Downloads 203
3566 Studies on the Physicochemical Properties of Biolubricants Obtained from Vegetable Oils and Their Oxidative Stability

Authors: Expedito J. S. Parente Jr., Italo C. Rios, Joao Paulo C. Marques, Rosana M. A. Saboya, F. Murilo T. Luna, Célio L. Cavalcante Jr.

Abstract:

Increasing constraints of environmental regulation around the world have led to higher demand for biodegradable products. Vegetable oils present some properties that may favor their use as biolubricants; however, there are others, such as resistance to oxidation and pour point, which affect possible commercial applications. In this study, the physicochemical properties of biolubricants synthesized from different vegetable oils were evaluated and compared with petroleum-based lubricant and pure vegetable oil. Chemical modifications applied to the original vegetable oil improved their oxidative stability and pour point significantly. The addition of commercial antioxidants to the bio-based lubricants was evaluated, yielding values of oxidative stability close to those of mineral basestock oil.

Keywords: biolubricant, vegetable oil, oxidative stability, pour point, antioxidants

Procedia PDF Downloads 308
3565 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques

Authors: Praveen Battula

Abstract:

Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.

Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics

Procedia PDF Downloads 445
3564 A New Approach in a Problem of a Supersonic Panel Flutter

Authors: M. V. Belubekyan, S. R. Martirosyan

Abstract:

On the example of an elastic rectangular plate streamlined by a supersonic gas flow, we have investigated the phenomenon of divergence and of panel flatter of the overrunning of the gas flow at a free edge under assumption of the presence of concentrated inertial masses and moments at the free edge. We applied a new approach of finding of solution of these problems, which was developed based on the algorithm for an analytical solution finding. This algorithm is easy to use for theoretical studies for the wides circle of nonconservative problems of linear elastic stability. We have established the relation between the characteristics of natural vibrations of the plate and velocity of the streamlining gas flow, which enables one to draw some conclusions on the stability of disturbed motion of the plate depending on the parameters of the system plate-flow. Its solution shows that either the divergence or the localized divergence and the flutter instability are possible. The regions of the stability and instability in space of parameters of the problem are identified. We have investigated the dynamic behavior of the disturbed motion of the panel near the boundaries of region of the stability. The safe and dangerous boundaries of region of the stability are found. The transition through safe boundary of the region of the stability leads to the divergence or localized divergence arising in the vicinity of free edge of the rectangular plate. The transition through dangerous boundary of the region of the stability leads to the panel flutter. The deformations arising at the flutter are more dangerous to the skin of the modern aircrafts and rockets resulting to the loss of the strength and appearance of the fatigue cracks.

Keywords: stability, elastic plate, divergence, localized divergence, supersonic panels flutter

Procedia PDF Downloads 458
3563 Study on Stability and Wear in a Total Hip Prostheses

Authors: Virgil Florescu, Lucian Capitanu

Abstract:

The studies performed by the author and presented here focus mainly on the FE simulation of some relevant phenomena related to stability of orthopedic implants, especially those components of Total Hip Prostheses. The objectives are to study the mechanisms of achieving stability of acetabular prosthetic components and the influence of some characteristic parameters, to evaluate the effect of femoral stem fixation modality on the stability of prosthetic component and to predict long-term behavior, to analyze a critical phenomena which influence the loading transfer mechanism through artificial joints and could lead to aseptic loosening – the wear of joint frictional surfaces. After a theoretical background an application is made considering only three activities: normal walking, stair ascending and stair descending. For each activity, this function is maximized in a different locations: if for normal walking the maxima is in the superior-posterior part of the acetabular cup, for stair descending this maxim value could be located rather in the superior-anterior part, for stair ascending being even closer to the central area of the cup.

Keywords: THA, acetabular stability, FEM simulation, stresses and displacements, wear tests, wear simulation

Procedia PDF Downloads 267
3562 Core Stability Index for Healthy Young Sri Lankan Population

Authors: V. M. B. K. T. Malwanage, S. Samita

Abstract:

Core stability is one of the major determinants that contribute to preventing injuries, enhance performance, and improve quality of life of the human. Endurance of the four major muscle groups of the central ‘core’ of the human body is identified as the most reliable determinant of core stability amongst the other numerous causes which contribute to readily make one’s core stability. This study aimed to develop a ‘Core Stability Index’ to confer a single value for an individual’s core stability based on the four endurance test scores. Since it is possible that at least some of the test scores are not independent, possibility of constructing a single index using the multivariate method exploratory factor analysis was investigated in the study. The study sample was consisted of 400 healthy young individuals with the mean age of 23.74 ± 1.51 years and mean BMI (Body Mass Index) of 21.1 ± 4.18. The correlation analysis revealed highly significant (P < 0.0001) correlations between test scores and thus construction an index using these highly inter related test scores using the technique factor analysis was justified. The mean values of all test scores were significantly different between males and females (P < 0.0001), and therefore two separate core stability indices were constructed for the two gender groups. Moreover, having eigen values 3.103 and 2.305 for males and females respectively, indicated one factor exists for all four test scores and thus a single factor based index was constructed. The 95% reference intervals constructed using the index scores were -1.64 to 2.00 and -1.56 to 2.29 for males and females respectively. These intervals can effectively be used to diagnose those who need improvement in core stability. The practitioners should find that with a single value measure, they could be more consistent among themselves.

Keywords: construction of indices, endurance test scores, muscle endurance, quality of life

Procedia PDF Downloads 160
3561 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients

Authors: Khaled M. EL-Naggar

Abstract:

Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.

Keywords: optimization, estimation, synchronous, machine, crow search

Procedia PDF Downloads 133
3560 Condition for Plasma Instability and Stability Approaches

Authors: Ratna Sen

Abstract:

As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations.

Keywords: jello, magnetic field configuration, MHD approximation, energy principle

Procedia PDF Downloads 435
3559 Analysis of Waterjet Propulsion System for an Amphibious Vehicle

Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian

Abstract:

This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.

Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion

Procedia PDF Downloads 221
3558 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle

Authors: Rasikh Tariq, Fatima Z. Benarab

Abstract:

Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported.  Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.

Keywords: HMX, maisotsenko cycle, mathematical modeling, numerical simulation, parametric study

Procedia PDF Downloads 145
3557 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings

Authors: Amira Amamou, Mnaouar Chouchane

Abstract:

This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.

Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations

Procedia PDF Downloads 404
3556 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion

Procedia PDF Downloads 207
3555 Magneto-Solutal Convection in Newtonian Fluid Layer with Modulated Gravity

Authors: Om Prakash Keshri, Anand Kumar, Vinod K. Gupta

Abstract:

In the present study, the effect of gravity modulation on the onset of convection in viscous fluid layer under the influence of induced magnetic field, salted from above on the boundaries, has been investigated. Linear and nonlinear stability analysis has been performed. A linear stability analysis is performed to show that the gravity modulation can significantly affect the stability limits of the system. A method based on small amplitude of the modulation is used to compute the critical value of Rayleigh number and wave number. The effect of Smith number, salute Rayleigh number and magnetic Prandtl number on the stability of the system is investigated.

Keywords: viscous fluid, induced magnetic field, gravity modulation, salute convection

Procedia PDF Downloads 188
3554 Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability

Authors: G. Khamooshian, A. Abbasimoshaei

Abstract:

Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined.

Keywords: excavation, soil effects, nailing, hole analyzing

Procedia PDF Downloads 174
3553 Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)

Authors: Ahmed Al-Saadi, Ali Hassanpour, Tariq Mahmud

Abstract:

The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient.

Keywords: aerodynamics, RANS, sport utility vehicle, turbulent flow

Procedia PDF Downloads 311
3552 Changes in Postural Stability after Coordination Exercise

Authors: Ivan Struhár, Martin Sebera, Lenka Dovrtělová

Abstract:

The aim of this study was to find out if the special type of exercise with elastic cord can improve the level of postural stability. The exercise programme was conducted twice a week for 3 months. The participants were randomly divided into an experimental group and a control group. The electronic balance board was used for testing of postural stability. All participants trained for 18 hours at the time of experiment without any special form of coordination programme. The experimental group performed 90 minutes plus of coordination exercise. The result showed that differences between pre-test and post-test occurred in the experimental group. It was used the nonparametric Wilcoxon t-test for paired samples (p=0.012; the significance level 95%). We calculated effect size by Cohen´s d. In the experimental group d is 1.96 which indicates a large effect. In the control group d is 0.04 which confirms no significant improvement.

Keywords: balance board, balance training, coordination, stability

Procedia PDF Downloads 388
3551 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 511