Search results for: fabric engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3527

Search results for: fabric engineering

3377 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 166
3376 Investigation of Comfort Properties of Knitted Fabrics

Authors: Mehmet Karahan, Nevin Karahan

Abstract:

Water and air permeability and thermal resistance of fabrics are the important attributes which strongly influence the thermo-physiological comfort properties of sportswear fabrics in different environmental conditions. In this work, terry and fleece fabrics were developed by varying the fiber content and areal density of fabrics. Further, the thermo-physical properties, including air permeability, water vapor permeability, and thermal resistance, of the developed fabrics were analyzed before and after washing. The multi-response optimization of thermo-physiological comfort properties was done by using principal component analysis (PCA) and Taguchi signal to noise ratio (PCA-S/N ratio) for optimal properties. It was found that the selected parameters resulted in a significant effect on thermo-physiological comfort properties of knitted fabrics. The PCA analysis showed that before wash, 100% cotton fabric with an aerial weight of 220 g.m⁻² gave optimum values of thermo-physiological comfort.

Keywords: thermo-physiological comfort, fleece knitted fabric, air permeability, water vapor transmission, cotton/polyester

Procedia PDF Downloads 117
3375 3D Shape Knitting: Loop Alignment on a Surface with Positive Gaussian Curvature

Authors: C. T. Cheung, R. K. P. Ng, T. Y. Lo, Zhou Jinyun

Abstract:

This paper aims at manipulating loop alignment in knitting a three-dimensional (3D) shape by its geometry. Two loop alignment methods are introduced to handle a surface with positive Gaussian curvature. As weft knitting is a two-dimensional (2D) knitting mechanism that the knitting cam carrying the feeders moves in two directions only, left and right, the knitted fabric generated grows in width and length but not in depth. Therefore, a 3D shape is required to be flattened to a 2D plane with surface area preserved for knitting. On this flattened plane, dimensional measurements are taken for loop alignment. The way these measurements being taken derived two different loop alignment methods. In this paper, only plain knitted structure was considered. Each knitted loop was taken as a basic unit for loop alignment in order to achieve the required geometric dimensions, without the inclusion of other stitches which give textural dimensions to the fabric. Two loop alignment methods were experimented and compared. Only one of these two can successfully preserve the dimensions of the shape.

Keywords: 3D knitting, 3D shape, loop alignment, positive Gaussian curvature

Procedia PDF Downloads 345
3374 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí

Abstract:

A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.

Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding

Procedia PDF Downloads 96
3373 Nice Stadium: Design of a Flat Single Layer ETFE Roof

Authors: A. Escoffier, A. Albrecht, F. Consigny

Abstract:

In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats. Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels. This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.

Keywords: biaxial test, creep, ETFE, single layer, stadium roof

Procedia PDF Downloads 244
3372 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt

Authors: Sammar Zain Allam

Abstract:

Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.

Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density

Procedia PDF Downloads 426
3371 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles

Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose

Abstract:

The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.

Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics

Procedia PDF Downloads 116
3370 Influence of Urban Fabric on Child’s Upbringing: A Comparative Analysis between Modern and Traditional City

Authors: Mohamed A. Tantawy, Nourelhoda A. Hussein, Moataz A. Mahrous

Abstract:

New planning and city design theories are continuously debated and optimized for seeking efficiency and adequacy in economic and life quality aspects. Here, we examine the children-city relationship, to reflect on how modern and traditional cities affect the social climate. We adopt children as a proper caliber for urbanism, as for their very young age, they are independent and attached to family. Their fragility offers a chance to gauge how various urban settings directly affect their feeling of safety, containment, and their perception of belonging for home territory. The importance of street play for the child development process is discussed thoroughly. The authority they have on their play (when and what to play) pushes us to our conclusion. A mediocre built environment characterized by spontaneity and human-scale semi-private urban spaces, is irreplaceable by a perfectly designed far away playgrounds. Street play has a huge role in empowering children for a gradual engagement with grown-ups’ urban flow.

Keywords: child's psychology, social activity, street play, urban fabric

Procedia PDF Downloads 314
3369 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 111
3368 Fabric-Reinforced Cementitious Matrix (FRCM)-Repaired Corroded Reinforced Concrete (RC) Beams under Monotonic and Fatigue Loads

Authors: Mohammed Elghazy, Ahmed El Refai, Usama Ebead, Antonio Nanni

Abstract:

Rehabilitating corrosion-damaged reinforced concrete (RC) structures has been accomplished using various techniques such as steel plating, external post-tensioning, and external bonding of fiber reinforced polymer (FRP) composites. This paper reports on the use of an innovative technique to strengthen corrosion-damaged RC structures using fabric-reinforced cementitious matrix (FRCM) composites. FRCM consists of dry-fiber fabric embedded in cement-based matrix. Twelve large-scale RC beams were constructed and tested in flexural monotonic and fatigue loads. Prior to testing, ten specimens were subjected to accelerated corrosion process for 140 days leading to an average mass loss in the tensile steel bars of 18.8 %. Corrosion was restricted to the main reinforcement located in the middle third of the beam span. Eight corroded specimens were repaired and strengthened while two virgin and two corroded-unrepaired/unstrengthened beams were used as benchmarks for comparison purpose. The test parameters included the FRCM materials (Carbon-FRCM, PBO-FRCM), the number of FRCM plies, the strengthening scheme, and the type of loading (monotonic and fatigue). The effects of the pervious parameters on the flexural response, the mode of failure, and the fatigue life were reported. Test results showed that corrosion reduced the yield and ultimate strength of the beams. The corroded-unrepaired specimen failed to meet the provisions of the ACI-318 code for crack width criteria. The use of FRCM significantly increased the ultimate strength of the corroded specimen by 21% and 65% more than that of the corroded-unrepaired specimen. Corrosion significantly decreased the fatigue life of the corroded-unrepaired beam by 77% of that of the virgin beam. The fatigue life of the FRCM repaired-corroded beams increased to 1.5 to 3.8 times that of the corroded-unrepaired beam but was lower than that of the virgin specimen. The specimens repaired with U-wrapped PBO-FRCM strips showed higher fatigue life than those repaired with the end-anchored bottom strips having similar number of PBO-FRCM-layers. PBO-FRCM was more effective than Carbon-FRCM in restoring the fatigue life of the corroded specimens.

Keywords: corrosion, concrete, fabric-reinforced cementitious matrix (FRCM), fatigue, flexure, repair

Procedia PDF Downloads 296
3367 Tensile and Bond Characterization of Basalt-Fabric Reinforced Alkali Activated Matrix

Authors: S. Candamano, A. Iorfida, F. Crea, A. Macario

Abstract:

Recently, basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result to be effective in structural strengthening and cost/environment efficient. In this study, authors investigate their mechanical behavior when an inorganic matrix, belonging to the family of alkali-activated binders, is used. In particular, the matrix has been designed to contain high amounts of industrial by-products and waste, such as Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash. Fresh state properties, such as workability, mechanical properties and shrinkage behavior of the matrix have been measured, while microstructures and reaction products were analyzed by Scanning Electron Microscopy and X-Ray Diffractometry. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. An appropriate experimental campaign based on direct tensile tests on composite specimens and single-lap shear bond test on brickwork substrate has been thus carried out to investigate their mechanical behavior under tension, the stress-transfer mechanism and failure modes. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST) were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, an average compressive strength of 32 MPa and flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline aluminium-modified calcium silicate hydrate (C-A-S-H) gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. Test results indicate that the behavior is mainly governed by cracks development (II) and widening (III) up to failure. The ultimate tensile strength and strain were respectively σᵤ = 456 MPa and ɛᵤ= 2.20%. The tensile modulus of elasticity in stage III was EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of a fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali-Activated Materials can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.

Keywords: Alkali-activated binders, Basalt-FRCM composites, direct shear tests, structural strengthening

Procedia PDF Downloads 129
3366 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests

Procedia PDF Downloads 205
3365 Surface Modification of Cotton Using Slaughterhouse Wastes

Authors: Granch Berhe Tseghai, Lodrick Wangatia Makokha

Abstract:

Cotton dyeing using reactive dyes is one of the major water polluter; this is due to large amount of dye and salt remaining in effluent. Recent adverse climate change and its associated effect to human life have lead to search for more sustainable industrial production. Cationization of cotton to improve its affinity for reactive dye has been earmarked as a major solution for dyeing of cotton with no or less salt. Synthetic cationizing agents of ammonium salt have already been commercialized. However, in nature there are proteinous products which are rich in amino and ammonium salts which can be carefully harnessed to be used as cationizing agent for cotton. The hoofs and horns have successfully been used to cationize cotton so as to improve cotton affinity to the dye. The cationization action of the hoof and horn extract on cotton was confirmed by dyeing the pretreated fabric without salt and comparing it with conventionally dyed and untreated salt free dyed fabric. UV-VIS absorption results showed better dye absorption (62.5% and 50% dye bath exhaustion percentage for cationized and untreated respectively) while K/S values of treated samples were similar to conventional sample.

Keywords: cationization, cotton, proteinous products, reactive dyes

Procedia PDF Downloads 340
3364 Extraction, Characterization and Application of Natural Dyes from the Fresh Rind of Index Colour 5 Mangosteen (Garcinia mangostana L.)

Authors: Basitah Taif

Abstract:

This study was to explore and utilize the fresh rind of mangosteen Index Colour 5 as an upcoming raw material for the production of natural dyes. Rind from the fresh mangosteen Index Colour 5 was utilized to extract the dyes. The established extracts were experimented on silk fabrics via three types of mordanting and dyeing procedures; pre-mordanting, simultaneous mordanting and post-mordanting. As a result, the applications of the freeze-drying methodology and mechanizable equipment have helped to produce excellent range of natural colours. Silk fabric treated simultaneously with mordanting and dyeing with extract dye Index Colour 5 produced a brilliant shade of the red colour and the colour from this index is also discovered sensitive to light and washing during the fastness tests. The preliminary evaluation and instrumentation analysis allowed us to examine whether the application of different mordanting and dyeing procedures with the same extract samples and concentrations affected the colours and shades of the fabric samples.

Keywords: natural dye, freeze-drying, Garcinia mangostana Linn, mordanting

Procedia PDF Downloads 462
3363 Extraction of Colorant and Dyeing of Gamma Irradiated Viscose Using Cordyline terminalis Leaves Extract

Authors: Urvah-Til-Vusqa, Unsa Noreen, Ayesha Hussain, Abdul Hafeez, Rafia Asghar, Sidrat Nasir

Abstract:

Natural dyes offer an alternative better application in textiles than synthetic ones. The present study will be aimed to employ natural dye extracted from Cordyline terminalis plant and its application into viscose under the influence of gamma radiations. The colorant extraction will be done by boiling dracaena leaves powder in aqueous, alkaline and ethyl acetate mediums. Both dye powder and fabric will be treated with different doses (5-20 kGy) of gamma radiations. The antioxidant, antimicrobial and hemolytic activities of the extracts will also be determined. Different tests of fabric characterization (before and after radiations treatment) will be employed. Dyeing variables just as time, temperature and M: L will be applied for optimization. Standard methods for ISO to evaluate color fastness to light, washing and rubbing will be employed for improvement of color strength 1.5-15.5% of Al, Fe, Cr, and Cu as mordants will be employed through pre, post and meta mordanting. Color depth % & L*, a*, b* and L*, C*, h values will be recorded using spectra flash SF650.

Keywords: natural dyes, gamma radiations, Cordyline terminalis, ecofriendly dyes

Procedia PDF Downloads 595
3362 Investigating the Impact of the Laundry and Sterilization Process on the Performance of Reusable Surgical Gowns

Authors: N. Khomarloo, F. Mousazadegan, M. Latifi, N. Hemmatinejad

Abstract:

Recently, the utilization of reusable surgical gowns in order to decrease costs, environmental protection and enhance surgeon’s comfort is considered. One of the concerns in applying this kind of medical protective clothing is reduction of their resistance to bacterial penetration especially in wet state, after repeated laundering and sterilizing process. The purpose of this study is to investigate the effect of the laundering and sterilizing process on the reusable surgical gown’s resistance against bacterial wet penetration. To this end, penetration of Staphylococcus aureus bacteria in wet state after 70 washing and sterilizing cycles was evaluated on the two single-layer and three-layer reusable gowns. The outcomes reveal that up to 20 laundering and sterilizing cycles, protective property of samples improves due to fabric shrinkage, after that because of the fabric’s construction opening, the bacterial penetration increase. However, the three-layer gown presents higher protective performance comparing to the single-layer one.

Keywords: laundry, porosity, reusable surgical gown, sterilization, wet bacterial penetration

Procedia PDF Downloads 277
3361 Eli-Twist Spun Yarn: An Alternative to Conventional Sewing Thread

Authors: Sujit Kumar Sinha, Madan Lal Regar

Abstract:

Sewing thread plays an important role in the transformation of a two-dimensional fabric into a three-dimensional garment. The interaction of the sewing thread with the fabric at the seam not only influences the appearance of a garment but also its performance. Careful selection of sewing thread and associated parameters can only help in improvement. Over the years, ring spinning has been dominating the yarn market. In the pursuit of improvement to challenge its dominance alternative technology has also been developed. But no real challenge has been posed by the any of the developed spinning systems. Eli-Twist spinning system can be a new method of yarn manufacture to provide a product with improved mechanical and physical properties with respect to the conventional ring spun yarn. The system, patented by Suessen has gained considerable attention in the recent times. The process of produces a two-ply compact yarn with improved fiber utilization. It produces a novel structure combining all advantages of condensing and doubling. In the present study, sewing threads of three different counts each from cotton, polyester and polyester/cotton (50/50) blend were produced on a ring and Eli-Twist systems. A twist multiplier of 4.2 was used to produce all the yarns. A comparison of hairiness, tensile strength and coefficient of friction with conventional ring yarn was made. Eli-Twist yarn has shown better frictional characteristics, better tensile strength and less hairiness. The performance of the Eli-Twist sewing thread has also been found to be better than the conventional 2-ply sewing thread. The performance was estimated through seam strength, seam elongation and seam efficiency of sewn fabric. Eli-Twist sewing thread has shown less friction, less hairiness, and higher tensile strength. Eli-Twist sewing thread resulted in better seam characteristics in comparison to conventional 2-ply sewing thread.

Keywords: ring spun yarn, Eli-Twist yarn, sewing thread, seam strength, seam elongation, seam efficiency

Procedia PDF Downloads 197
3360 Strategic Analysis of Loss of Urban Heritage in Bhopal City Due to Infrastructure Development

Authors: Aishwarya K. V., Shreya Sudesh

Abstract:

Built along the edges of a 11th century CE man-made lake, the city of Bhopal has stood witness to historic layers dating back to Palaeolithic times; early and medieval kingdoms ranging from the Parmaras, Pratiharas to tribal Gonds; the Begum-Nawabs and finally became the Capital of Madhya Pradesh, post-Independence. The lake more popularly called the Upper Lake was created by the King Raja Bhoj from the Parmara dynasty in 1010 AD when he constructed a bund wall across the Kolans river. Atop this bund wall lies the Kamlapati Mahal - which was part of the royal enclosure built in 1702 belonging to the Gond Kingdom. The Mahal is the epicentre of development in the city because it lies in the centre of the axis joining the Old core and New City. Rapid urbanisation descended upon the city once it became the administrative capital of Madhya Pradesh, a newly-formed state of an Independent India. Industrial pockets began being set up and refugees from the Indo-Pakistan separation settled in various regions of the city. To cater to these sudden growth, there was a boom in infrastructure development in the late twentieth century which included precarious decisions made in terms of handling heritage sites causing the destruction of significant parts of the historic fabric. And this practice continues to this day as buffer/ protected zones are breached through exemptions and the absence of robust regulations allow further deterioration of urban heritage. The aim of the research is to systematically study in detail the effect of the urban infrastructure development of the city and its adverse effect on the existing heritage fabric. Through the paper, an attempt to study the parameters involved in preparing the Masterplan of the city and other development projects is done. The research would follow a values-led approach to study the heritage fabric where the significance of the place is assessed based on the values attributed by stakeholders. This approach will involve collection and analysis of site data, assessment of the significance of the site and listing of potential. The study would also attempt to arrive at a solution to deal with urban development along with the protection of the heritage fabric.

Keywords: heritage management, infrastructure development, urban conservation, urban heritage

Procedia PDF Downloads 225
3359 Experimental Study of Moisture Effect on the Mechanical Behavior of Flax Fiber Reinforcement

Authors: Marwa Abida, Florian Gehring, Jamel Mars, Alexandre Vivet, Fakhreddine Dammak, Mohamed Haddar

Abstract:

The demand for bio-based materials in semi-structural and structural applications is constantly growing to conform to new environmental policies. Among them, Plant Fiber Reinforced Composites (PFRC) are attractive for the scientific community as well as the industrial world. Due to their relatively low densities and low environmental impact, vegetal fibers appear to be suitable as reinforcing materials for polymers. However, the major issue of plant fibers and PFRC in general is their hydrophilic behavior (high affinity to water molecules). Indeed, when absorbed, water causes fiber swelling and a loss of mechanical properties. Thus, the environmental loadings (moisture, temperature, UV) can strongly affect their mechanical properties and therefore play a critical role in the service life of PFRC. In order to analyze the influence of conditioning at relative humidity on the behavior of flax fiber reinforced composites, a preliminary study on flax fabrics has been conducted. The conditioning of the fabrics in different humid atmospheres made it possible to study the influence of the water content on the hygro-mechanical behavior of flax reinforcement through mechanical tensile tests. This work shows that increasing the relative humidity of the atmosphere induces an increase of the water content in the samples. It also brings up the significant influence of water content on the stiffness and elongation at break of the fabric, while no significant change of the breaking load is detected. Non-linear decrease of flax fabric rigidity and increase of its elongation at maximal force with the increase of water content are observed. It is concluded that water molecules act as a softening agent on flax fabrics. Two kinds of typical tensile curves are identified. Most of the tensile curves of samples show one unique linear region where the behavior appears to be linear prior to the first yarn failure. For some samples in which water content is between 2.7 % and 3.7 % (regardless the conditioning atmosphere), the emergence of a two-linear region behavior is pointed out. This phenomenon could be explained by local heterogeneities of water content which could induce premature local plasticity in some regions of the flax fabric sample behavior.

Keywords: hygro-mechanical behavior, hygroscopy, flax fabric, relative humidity, mechanical properties

Procedia PDF Downloads 188
3358 Investigation on Hand-Woven School Uniform Initiative and Sustainability: The Kerala Model from India

Authors: Abhilash Balan Paleri

Abstract:

Hand woven fabric embellishes an exceptional identity in the social milieu of Kerala; still, the artisans and handloom sector is undergoing crisis due to various reasons. The hand woven school uniform initiative of Govt. of Kerala launched in 2016 aims at enhancing the sector, ensuring sustainability at artisan and end-user levels. The Kerala Government already distributed 23 lakhs meters of cloth (for shirting, suiting, and skirting) woven by 4085 artisans in their traditional looms covering 4.5 lakhs of students in the public education sector which covers cover 3,701 schools in the state. The 2019-20 year production is expected to be 42 Lakhs meters of hand woven clothing catering 8.6 lakhs of students in the primary sector. This particular investigation unveils the upshots of the initiative, and the observations are derived through systematic enquiry with artisans, authorities, and end-users. The findings show a remarkable positive impact in the livelihood of artisans and the entire handloom sector.

Keywords: handloom school uniform initiative of Kerala, hand woven fabric, sustainability, handloom weavers

Procedia PDF Downloads 148
3357 Validation of the Recovery of House Dust Mites from Fabrics by Means of Vacuum Sampling

Authors: A. Aljohani, D. Burke, D. Clarke, M. Gormally, M. Byrne, G. Fleming

Abstract:

Introduction: House Dust Mites (HDMs) are a source of allergen particles embedded in textiles and furnishings. Vacuum sampling is commonly used to recover and determine the abundance of HDMs but the efficiency of this method is less than standardized. Here, the efficiency of recovery of HDMs was evaluated from home-associated textiles using vacuum sampling protocols.Methods/Approach: Living Mites (LMs) or dead Mites (DMs) House Dust Mites (Dermatophagoides pteronyssinus: FERA, UK) were separately seeded onto the surfaces of Smooth Cotton, Denim and Fleece (25 mites/10x10cm2 squares) and left for 10 minutes before vacuuming. Fabrics were vacuumed (SKC Flite 2 pump) at a flow rate of 14 L/min for 60, 90 or 120 seconds and the number of mites retained by the filter (0.4μm x 37mm) unit was determined. Vacuuming was carried out in a linear direction (Protocol 1) or in a multidirectional pattern (Protocol 2). Additional fabrics with LMs were also frozen and then thawed, thereby euthanizing live mites (now termed EMs). Results/Findings: While there was significantly greater (p=0.000) recovery of mites (76% greater) in fabrics seeded with DMs than LMs irrespective of vacuuming protocol or fabric type, the efficiency of recovery of DMs (72%-76%) did not vary significantly between fabrics. For fabrics containing EMs, recovery was greatest for Smooth Cotton and Denim (65-73% recovered) and least for Fleece (15% recovered). There was no significant difference (p=0.99) between the recovery of mites across all three mite categories from Smooth Cotton and Denim but significantly fewer (p=0.000) mites were recovered from Fleece. Scanning Electron Microscopy images of HMD-seeded fabrics showed that live mites burrowed deeply into the Fleece weave which reduced their efficiency of recovery by vacuuming. Research Implications: Results presented here have implications for the recovery of HDMs by vacuuming and the choice of fabric to ameliorate HDM-dust sensitization.

Keywords: allergy, asthma, dead, fabric, fleece, live mites, sampling

Procedia PDF Downloads 139
3356 The Mechanical and Comfort Properties of Cotton/Micro-Tencel Lawn Fabrics

Authors: Abdul Basit, Shahid Latif, Shah Mehmood

Abstract:

Lawn fabric was usually prepared from originally of linen but at present chiefly cotton. Lawn fabric is worn in summer. Cotton Lawn is a lightweight pure cloth which is heavier than voile. It is so fine that it is somewhat transparent. It is soft and superb to wear thus it is perfect for summer clothes or for regular wear in hotter climates. Tencel (Lyocell) fiber is considered as the fiber of the future as Tencel fibers are absorbent, soft, and extremely strong when wet or dry, and resistant to wrinkles. Fibers are more absorbent than cotton, softer than silk and cooler than linen. High water absorption and water vapor absorption give more heat capacity and heat balancing effect for thermo-regulation. This thermo-regulation is analogous with the action of phase-change-materials. The thermal wear properties result in cool and dry touch that gives cooling effect in sportswear, and the warmth properties (when used as an insulation layer). These cooling and warming effects are adaptive to the environment giving comfort in a broad range of climatic conditions. In this work, single yarns of Ne 80s were made. Yarns were made from conventional ring spinning. Different yarns of 100% cotton, 100% micro-Tencel and Cotton:micro-Tencel blends (67:33, 50:50:33:67) were made. The mechanical and comfort properties of the woven fabrics were compared. The mechanical properties include the tensile and tear strength, bending length, pilling and abrasion resistance whereas comfort properties include the air permeability, moisture management and thermal resistance. It is found that as the content of the micro-Tencel is increased, the mechanical and comfort properties of the woven fabric are also increased.

Keywords: combed cotton, comfort properties , mechanical properties, micro-Tencel

Procedia PDF Downloads 316
3355 Digital Mapping as a Tool for Finding Cities' DNA

Authors: Sanja Peter

Abstract:

Transformation of urban environments can be compared to evolutionary processes. Systematic digital mapping of historical data can enable capturing some of these processes and their outcomes. For example, it may help reveal the structure of a city’s historical DNA. Gathering historical data for automatic processing may be giving a basis for cultural algorithms. Gothenburg City museum is trying to make city’s heritage information accessible through GIS-platforms and is now partnering with academic institutions to find appropriate methods to make accessible the knowledge on the city’s historical fabric. Hopefully, this will be carried out through a project called Digital Twin Cities. One part of this large project, concerning matters of Cultural Heritage, will be in collaboration with Chalmers University of Technology. The aim is to create a layered map showing historical developments of the city and extracting quantitative data about its built heritage, above and below the earth. It will allow interpreting the information from historic maps through, for example, names of the streets/places, geography, structural changes in urban fabric and information gathered by archaeologists’ excavations. Through the study of these geographical, historical and local metamorphoses, urban environment will reveal its metaphorical DNA or its MEM (Dawkins).

Keywords: Gothenburg, mapping, cultural heritage, city history

Procedia PDF Downloads 140
3354 Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric

Authors: Archna Mall, Neelam Agrawal, Hari O. Saxena, Bhavana Sharma

Abstract:

Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries.

Keywords: Butea monosperma, cotton, mordants, natural dyes

Procedia PDF Downloads 341
3353 Music Educators for Peace: Synchronizing Music and Pedagogical Experiences to Re-Build Social Fabric in Colombia's Post-Conflict

Authors: Julian Dario Castro Cifuentes

Abstract:

In Colombia, the armed conflict has lasted for more than sixty years bringing poverty, internal displacement of people, deaths from both government and insurgent forces and other violence-related problems that has damaged its social fabric. In 2016, the peace process between the Colombian government and the FARC rebels brought the possibility of ending this war and a new set of challenges to Colombian society in order to achieve pacific coexistence and reconciliation. In this scenario, there have been different efforts from diverse social actors in order to build peace and reconciliation mainly within the victims of the armed conflict. In the case of music, there have been multiple programs for social transformation through music and pedagogical experiences. Nevertheless, the need to strengthen this initiative by giving ‘peace building oriented’ pedagogical tools to the musicians that lead this experiences and understanding which aspects make this practices ‘musically meaningful’, has been recognized. For this reason, the purpose of this study is to discuss the convergences and divergences of music, and educational experiences applied to peacebuilding in the context of Colombia’s post-conflict. In this research, the hermeneutic phenomenology paradigm is applied in a case study of a peace building music education experience in the department of Nariño, Colombia articulated with the program ‘Manos a la Paz’. Two particular experiences, one on musical practice and another on music education are taken as a unit of analysis to understand its essence and structure in order to find ways to articulate efforts in peace building actions from music. This study shows how the existent gap between music experience and its subjacent pedagogical knowledge, can be reduced through deconstruction of the music and pedagogical experience. The ‘Manos a la Paz’ program showed how a peace building approach to music education can make major contributions to Pacific Coexistence and Reconciliation in Colombia’s Post-Conflict.

Keywords: music education, music for peace, music pedagogy, peace building, social fabric

Procedia PDF Downloads 229
3352 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film

Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga

Abstract:

Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.

Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery

Procedia PDF Downloads 64
3351 Visible Expression of Social Identity: The Clothing and Fashion

Authors: Nihan Akdemir

Abstract:

Clothes are more than a piece of fabric, and the most visible material item of the fashion symbol is the garment, which carries multiple and various meanings. The dynamism of the clothing symbol can carry open or closed codes depending on culture, gender, and social location. And each one can be the expression of social identity over ethnicity, religious beliefs, age, education and social class. Through observation of clothing styles over these items, the assumptions could be made about a person’s identity. A distinctive and typical style, form or character of the clothing such as ‘zoot suits’, ‘ao dai’, removes the garment from functional and ordinary element to the symbolic area. Clothing is an 'identification' tool that functions in determining the symbolic boundaries between people in a sense. And this paper includes the investigation of the relation between social identity and clothing and also fashion. And this relationship has been taken into consideration over the visual expression because even during the ancient times, the clothes were the basic and simple way of representing the identity and social classes. The visible expression of identity over clothing from Ancient Egypt to today’s clothing and fashion has been researched in this article. And all these items have been explained with visual images and supported by the literature investigations. Then the results have shown that every piece of clothing from fabric to coloring have visual significations about social identity.

Keywords: social identity, clothing, fashion, visual expression, visual signification

Procedia PDF Downloads 617
3350 Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance

Authors: Saiyed M Ishtiaque, Priyal Dixit

Abstract:

Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties.

Keywords: filtration efficiency, layered nonwoven structure, packing density, pressure drop

Procedia PDF Downloads 76
3349 What It Means to Be an Internally Displaced Person: The Story of the Abu-Shouk Camp

Authors: Mawa Abdelbagi Mohamed Mohamed, Eslam Alaa Elbahlawan

Abstract:

This study examines the complex social fabric woven within the Abu-Shouk internally displaced persons camp, shaped by the chaotic waves of armed conflict and displacement in the early 2000s. The impact of war, economic constraints, and altered living conditions have fundamentally reshaped families and traditions, presenting both challenges and opportunities. In this exploration, we navigate the resilience of a community thrust into adversity, spotlighting how it emerged as essential in rebuilding social bonds. Exchanges of culture, intertribal marriages, and communal gathering spots have become essential tools in fostering cohesion and understanding amidst diversity. However, this resilience has been tested by the intrusion of politics, leading to shifts in governance structures and community dynamics. As we conclude, it is evident that while the scars of displacement and political disruptions are present, the community's enduring spirit and adaptability shine through. Empowering the community to rebuild their social tapestry, bridging the gaps, and restoring unity amid evolving political realities remain the beacon guiding their journey toward a shared, purposeful future.

Keywords: darfur, internally displaced person, social fabric, conflict

Procedia PDF Downloads 64
3348 Modified Norhaya Upper Limp Elevation Sling-Quick Approach Ensuring Timely Limb Elevation

Authors: Prem, Norhaya, Vwrene C., Mohammad Harris A., Amarjit, Fazir M.

Abstract:

Upper limb surgery is a common orthopedic procedure. After surgery, it is necessary to raise the patient's arm to reduce limb swelling and promote recovery. After an injury or surgery, swelling (edema) in the limbs is common. This swelling can be painful, cause stiffness, and affect movement and ability to do daily activities. One of the easiest ways to manage swelling is to elevate the swollen limb. The goal is to elevate the swollen limb slightly above the level of the heart. This helps the extra fluid move back towards the heart for circulation to the rest of the body. Conventional arm sling or pillows are usually placed under the arm to raise it, but in this way the arm cannot be fixed well and easily slide down, without ideal raising effect. Conventional arm sling need experience to tie the sling and this delay in the application process. To reduce the waiting time and cost, modified Norhaya upper limb elevation sling was designed and made readily available. The sling is made from calico fabric, readily available in the ward. Measurements of patients’ arm lengths are obtained, and fabric sizes are cut into the average arm lengths, as well as 1 size above and below. The cut calico fabric is then sewn together with thick sewing threads. Its application is easy and junior most staff or doctor will be able to apply it on patient. The time taken to set up the sling is also reduced. Feedback gathered from ground staff regarding ease of setting up the sling was tremendous and patient also feel comfort in the modified Norhaya sling. The device can freely adjust the raising height of the affected limb and effectively fix the affected limb to reduce its swelling, thus promoting recovery. This device is worthy to be clinically popularized and applied. The Modified Norhaya upper limb elevation sling is the quickest to set up and the delay in elevating the patient’s hand is significantly reduced. Moreover, it is reproducible and there is also significant cost savings.

Keywords: elevate, effective, sling, timely

Procedia PDF Downloads 205