Search results for: composite columns structure
9462 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns
Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)
Procedia PDF Downloads 769461 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads
Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh
Abstract:
Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc’ = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.Keywords: eccentric loads, ductility index, RC column, slenderness, UHPFRC
Procedia PDF Downloads 1309460 Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors
Authors: A. Khosrozadeh, M. A. Darabi, M. Xing, Q. Wang
Abstract:
Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite.Keywords: cellulose, polyaniline, reduced graphene oxide, silver, super capacitor
Procedia PDF Downloads 4309459 Synthesis and Evaluation of Heterogeneous Nano-Catalyst: Cr Loaded in to MCM-41
Authors: A. Salemi Golezania, A. Sharifi Fateha
Abstract:
In this study a nano-composite catalyst was synthesized by incorporation of chromium into the framework of MCM-41 as a base catalyst. Mesoporous silica molecular sieves MCM-41 were synthesized under Hydrothermal Continues pH Adjusting Path Way. Then, MCM-41 was impregnated by chromium nitrate aqueous solution for several times under water aspiration. Raw powder was cured by heat treatment in vacuum furnace at 500°C. Phase formation, morphology and gas absorption properties of resulted materials were characterized by XRD, TEM and BET analysis, respectively. The results showed that high quality hexagonal meso structure as a matrix and Cr as a second phase has been formed with a narrow size pore diameter distribution and high surface area in Cr/MCM-41 nano-composite structure. The specific surface and total volume of porosity of the synthesized nanocomposite are obtained 931m^2/gr and 1.12 cm^3/gr, respectively.Keywords: nano-catalyst, MCM-41, Cr/MCM-41, Marine Science and Engineering
Procedia PDF Downloads 3879458 Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator
Authors: Jinsiang Shaw, Shih-Chieh Tseng
Abstract:
Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure.Keywords: Fuzzy sliding mode controller, macro-fiber-composite actuator, skyhook controller, vibration suppression
Procedia PDF Downloads 4039457 Seismic Resistant Columns of Buildings against the Differential Settlement of the Foundation
Authors: Romaric Desbrousses, Lan Lin
Abstract:
The objective of this study is to determine how Canadian seismic design provisions affect the column axial load resistance of moment-resisting frame reinforced concrete buildings subjected to the differential settlement of their foundation. To do so, two four-storey buildings are designed in accordance with the seismic design provisions of the Canadian Concrete Design Standards. One building is located in Toronto, which is situated in a moderate seismic hazard zone in Canada, and the other in Vancouver, which is in Canada’s highest seismic hazard zone. A finite element model of each building is developed using SAP 2000. A 100 mm settlement is assigned to the base of the building’s center column. The axial load resistance of the column is represented by the demand capacity ratio. The analysis results show that settlement-induced tensile axial forces have a particularly detrimental effect on the conventional settling columns of the Toronto buildings which fail at a much smaller settlement that those in the Vancouver buildings. The results also demonstrate that particular care should be taken in the design of columns in short-span buildings.Keywords: Columns, Demand, Foundation differential settlement, Seismic design, Non-linear analysis
Procedia PDF Downloads 1359456 Vibration Control of a Flexible Structure Using MFC Actuator
Authors: Jinsiang Shaw, Jeng-Jie Huang
Abstract:
Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure.Keywords: macro-fiber composite, notch filter, skyhook controller, vibration suppression
Procedia PDF Downloads 4629455 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst
Procedia PDF Downloads 1179454 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials
Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane
Abstract:
The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation
Procedia PDF Downloads 5069453 Behaviour of RC Columns at Elevated Temperatures by NDT Techniques
Authors: D. Jagath Kumari, K. Srinivasa Rao
Abstract:
Reinforced concrete column is an important structural element in a building. Concrete usually performs well in building fires. However, when it is subjected to prolonged fire exposure or unusually high temperatures, and then it will suffer significant distress. Because concrete pre-fire compressive strength generally exceeds design requirements, therefore an average strength reduction can be tolerated. However high temperature reduces the compressive strength of concrete so much that the concrete retains no useful structural strength. Therefore the residual strength and its performance of structure can be assed by NDT testing. In this paper, rebound hammer test and the ultrasonic pulse velocity (UPV) are used to evaluate the residual compressive strength and material integrity of post-fire-curing concrete subjected to elevated temperatures. Also considering the large availability of fly ash in most of the countries, an attempt was made to study the effect of high volume fly ash concrete exposed to elevated temperatures. 32 RC column specimens were made with a M20 grade concrete mix. Out of 32 column specimens 16 column specimens were made with OPC concrete and other 16 column specimens were made with HVFA concrete. All specimens having similar cross-section details. Columns were exposed to fire for temperatures from 100oC to 800o C with increments of 100o C for duration of 3 hours. Then the specimens allowed cooling to room temperature by two methods natural air cooling method and immediate water quenching method. All the specimens were tested identically, for the compressive strengths and material integrity by rebound hammer and ultrasonic pulse velocity meter respectively for study. These two tests were carried out on preheating and post heating of the column specimens. The percentage variation of compressive strengths of RCC columns with the increase in temperature has been studied and compared the results for both OPC and HVFA concretes. Physical observations of the heated columns were observed.Keywords: HVFA concrete, NDT testing, residual strength
Procedia PDF Downloads 3869452 Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art
Authors: L. Pavithra, R. Sharmila, Shivani Sridhar
Abstract:
Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading.Keywords: RC column, Seismic behaviour, cyclic behaviour, biaxial testing, ductile behaviour
Procedia PDF Downloads 3669451 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria
Authors: M. S. Meon, M. N. Rao, K-U. Schröder
Abstract:
Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model
Procedia PDF Downloads 5029450 Simplified Analysis on Steel Frame Infill with FRP Composite Panel
Authors: HyunSu Seo, HoYoung Son, Sungjin Kim, WooYoung Jung
Abstract:
In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we re investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system.Keywords: numerical analysis, FEM, infill, GFRP, damping
Procedia PDF Downloads 4249449 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns
Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani
Abstract:
Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity
Procedia PDF Downloads 2579448 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.Keywords: rotor, composite, damage, finite element, numerical
Procedia PDF Downloads 4889447 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films
Authors: Tariku Nefo Duke
Abstract:
Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.Keywords: polyimide, corrosion resistance, electroactive, Tg
Procedia PDF Downloads 2019446 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading
Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat
Abstract:
Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section
Procedia PDF Downloads 1449445 Thermal Analysis of a Composite of Coco Fiber and Látex
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached.Keywords: natural fiber, composite, temperature, latex, gradient
Procedia PDF Downloads 8179444 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments
Authors: Melby Chacko, Jagannath Nayak
Abstract:
The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.Keywords: 6061 Al-SiC composite, aging curve, Rockwell B hardness, T4, T6 treatments
Procedia PDF Downloads 2679443 Improved Mechanical Properties and Osteogenesis in Electrospun Poly L-Lactic Ultrafine Nanofiber Scaffolds Incorporated with Graphene Oxide
Authors: Weili Shao, Qian Wang, Jianxin He
Abstract:
Recently, the applications of graphene oxide in fabricating scaffolds for bone tissue engineering have been received extensive concern. In this work, poly l-lactic/graphene oxide composite nanofibers were successfully fabricated by electrospinning. The morphology structure, porosity and mechanical properties of the composite nanofibers were characterized using different techniques. And mouse mesenchymal stem cells were cultured on the composite nanofiber scaffolds to assess their suitability for bone tissue engineering. The results indicated that the composite nanofiber scaffolds had finer fiber diameter and higher porosity as compared with pure poly l-lactic nanofibers. Furthermore, incorporation of graphene oxide into the poly l-lactic nanofibers increased protein adsorptivity, boosted the Young’s modulus and tensile strength by nearly 4.2-fold and 3.5-fold, respectively, and significantly enhanced adhesion, proliferation, and osteogenesis in mouse mesenchymal stem cells. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.Keywords: poly l-lactic, graphene oxide, osteogenesis, bone tissue engineering
Procedia PDF Downloads 3069442 Design of Composite Joints from Carbon Fibre for Automotive Parts
Authors: G. Hemath Kumar, H. Mohit, K. Karthick
Abstract:
One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place.Keywords: carbon fiber, FRP composite, MMC, automotive
Procedia PDF Downloads 4099441 A Coupled Stiffened Skin-Rib Fully Gradient Based Optimization Approach for a Wing Box Made of Blended Composite Materials
Authors: F. Farzan Nasab, H. J. M. Geijselaers, I. Baran, A. De Boer
Abstract:
A method is introduced for the coupled skin-rib optimization of a wing box where mass minimization is the objective and local buckling is the constraint. The structure is made of composite materials where continuity of plies in multiple adjacent panels (blending) has to be satisfied. Blending guarantees the manufacturability of the structure; however, it is a highly challenging constraint to treat and has been under debate in recent research in the same area. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, a reference for the stacking sequences (stacking sequence table or SST) is generated first. Then, an innovative fully gradient-based optimization approach in relation to a specific SST is introduced to obtain the optimum thickness distribution all over the structure while blending is fulfilled. The proposed optimization approach aims to turn the discrete optimization problem associated with the integer number of plies into a continuous one. As a result of a wing box deflection, a rib is subjected to load values which vary nonlinearly with the amount of deflection. The bending stiffness of a skin affects the wing box deflection and thus affects the load applied to a rib. This indicates the necessity of a coupled skin-rib optimization approach for a more realistic optimized design. The proposed method is examined with the optimization of the layup of a composite stiffened skin and rib of a wing torsion box subjected to in-plane normal and shear loads. Results show that the method can successfully prescribe a valid design with a significantly cheap computation cost.Keywords: blending, buckling optimization, composite panels, wing torsion box
Procedia PDF Downloads 4099440 Comparative Study of Numerical and Analytical Buckling Analysis of a Steel Column with Various Slenderness Ratios
Authors: Lahlou Dahmani, Warda Mekiri, Ahmed Boudjemia
Abstract:
This scientific paper explores the comparison between the ultimate buckling load obtained through the Eurocode 3 methodology and the ultimate buckling load obtained through finite element simulations for steel columns under compression. The study aims to provide insights into the adequacy of the design rules proposed in Eurocode 3 for different slenderness ratios. The finite element simulations with the Ansys commercial program involve a geometrical and material non-linear analysis of the columns with imperfections. The loss of equilibrium is generally caused by the geometrically nonlinear effects where the column begins to buckle and lose its stability when the load reaches a certain critical value. The linear buckling analysis predicts the theoretical buckling strength of an elastic structure but the nonlinear one is more accurate with taking into account the initial imperfection.Keywords: Ansys, linear buckling, eigen value, nonlinear buckling, slenderness ratio, Eurocode 3
Procedia PDF Downloads 199439 Dynamic Analysis and Instability of a Rotating Composite Rotor
Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, the dynamic response for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade is developed. The use of the composite material for the rotor, offers a good stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.Keywords: rotor, composite, damage, finite element, numerical
Procedia PDF Downloads 5329438 The Application of Artificial Neural Network for Bridge Structures Design Optimization
Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri
Abstract:
This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.Keywords: bridge structures, ANN, optimization, back propagation
Procedia PDF Downloads 3739437 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns
Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency
Procedia PDF Downloads 789436 Paraffin/Expanded Perlite Composite as a Novel Form-Stable Phase Change Material for Latent Heat Energy Storage
Authors: Awni Alkhazaleh
Abstract:
Latent heat storage using Phase Change Materials (PCMs) has attracted growing attention recently in the renewable energy utilization and building energy efficiency. Paraffin (PA) of low melting temperature, which is close to human comfort temperature in the range of 24-28 °C has been considered to be used in building applications. A form-stable composite Paraffin/Expanded perlite (PA-EP) has been prepared by retaining PA into porous particles of EP. DSC (Differential scanning calorimeter) is used to measure the thermal properties of PA in the form-stable composite with/without building materials. TGA (Thermal gravimetric analysis) shows that the composite is thermally stable. SEM (Scanning electron microscope) demonstrates that the layer structure of the EP particles is uniformly absorbed by PA. The mechanical properties in flexural mode have been discussed. The thermal energy storage performance has been evaluated using a small test room (100 mm ×100 mm ×100 mm) with thickness 10 mm. The flammability test of modified sample has been discussed using a cone calorimeter. The results confirm that the form-stable composite PA has the function of reducing building energy consumption.Keywords: flammability, latent heat storage, paraffin, plasterboard
Procedia PDF Downloads 2199435 Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction
Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida
Abstract:
Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure.Keywords: stone column, liquefaction, excess pore pressure, silt content, disturbed zone, reduced permeability
Procedia PDF Downloads 1539434 Analytical and Experimental Evaluation of Effects of Nonstructural Brick Walls on Earthquake Response of Reinforced Concrete Structures
Authors: Hasan Husnu Korkmaz, Serra Zerrin Korkmaz
Abstract:
The reinforced concrete (RC) framed structures composed of beams, columns, shear walls and the slabs. The other members are assumed to be nonstructural. Especially the brick infill walls which are used to separate the rooms or spaces are just handled as dead loads. On the other hand, if these infills are constructed within the frame bays, they also have higher shear and compression capacities. It is a well-known fact that, brick infills increase the lateral rigidity of the structure and thought to be a reserve capacity in the design. But, brick infills can create unfavorable failure or damage modes in the earthquake action such as soft story or short columns. The increase in the lateral rigidity also causes an over estimation of natural period of the structure and the corresponding earthquake loads in the design are less than the actual ones. In order to obtain accurate and realistic design results, the infills must be modelled in the structural design and their capacities must be included. Unfortunately, in Turkish Earthquake Code, there is no design methodology for the engineers. In this paper, finite element modelling of infilled reinforced concrete structures are studied. The proposed or used method is compared with the experimental results of a previous study. The effect of infills on the structural response is expressed within the paper.Keywords: seismic loading, brick infills, finite element analysis, reinforced concrete, earthquake code
Procedia PDF Downloads 3149433 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite
Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun
Abstract:
The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6
Procedia PDF Downloads 302