Search results for: artificial caries
2013 Meeting the Challanges of Regulating Artificial Intelligence
Authors: Abdulrahman S. Shryan Aldossary
Abstract:
Globally, artificial intelligence (AI) is already performing legitimate tasks on behalf of humans. In Saudi Arabia, large-scale national projects, primarily based on AI technologies and receiving billions of dollars of funding, are projected for completion by 2030. However, the legal aspect of these projects is seriously vulnerable, given AI’s unprecedented ability to self-learn and act independently. This paper, therefore, identifies the critical legal aspects of AI that authorities and policymakers should be aware of, specifically whether AI can possess identity and be liable for the risk of public harm. The article begins by identifying the problematic characteristics of AI and what should be considered by legal experts when dealing with it. Also discussed are the possible competent institutions that could regulate AI in Saudi Arabia. Finally, a procedural proposal is presented for controlling AI, focused on Saudi Arabia but potentially of interest to other jurisdictions facing similar concerns about AI safety.Keywords: regulation, artificial intelligence, tech law, automated systems
Procedia PDF Downloads 1742012 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs
Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers
Abstract:
High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling
Procedia PDF Downloads 1562011 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 2512010 Detection of Autistic Children's Voice Based on Artificial Neural Network
Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono
Abstract:
In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform
Procedia PDF Downloads 4592009 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis
Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab
Abstract:
Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.Keywords: artificial kidney, home dialysis, renal failure, wearable kidney
Procedia PDF Downloads 2332008 Finite Element Modelling for the Development of a Planar Ultrasonic Dental Scaler for Prophylactic and Periodontal Care
Authors: Martin Hofmann, Diego Stutzer, Thomas Niederhauser, Juergen Burger
Abstract:
Dental biofilm is the main etiologic factor for caries, periodontal and peri-implant infections. In addition to the risk of tooth loss, periodontitis is also associated with an increased risk of systemic diseases such as atherosclerotic cardiovascular disease and diabetes. For this reason, dental hygienists use ultrasonic scalers for prophylactic and periodontal care of the teeth. However, the current instruments are limited to their dimensions and operating frequencies. The innovative design of a planar ultrasonic transducer introduces a new type of dental scalers. The flat titanium-based design allows the mass to be significantly reduced compared to a conventional screw-mounted Langevin transducer, resulting in a more efficient and controllable scaler. For the development of the novel device, multi-physics finite element analysis was used to simulate and optimise various design concepts. This process was supported by prototyping and electromechanical characterisation. The feasibility and potential of a planar ultrasonic transducer have already been confirmed by our current prototypes, which achieve higher performance compared to commercial devices. Operating at the desired resonance frequency of 28 kHz with a driving voltage of 40 Vrms results in an in-plane tip oscillation with a displacement amplitude of up to 75 μm by having less than 8 % out-of-plane movement and an energy transformation factor of 1.07 μm/mA. In a further step, we will adapt the design to two additional resonance frequencies (20 and 40 kHz) to obtain information about the most suitable mode of operation. In addition to the already integrated characterization methods, we will evaluate the clinical efficiency of the different devices in an in vitro setup with an artificial biofilm pocket model.Keywords: ultrasonic instrumentation, ultrasonic scaling, piezoelectric transducer, finite element simulation, dental biofilm, dental calculus
Procedia PDF Downloads 1212007 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction
Authors: Kudzanayi Chiteka, Wellington Makondo
Abstract:
The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models
Procedia PDF Downloads 2702006 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3412005 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction
Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade
Abstract:
Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction
Procedia PDF Downloads 3912004 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays
Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov
Abstract:
Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.Keywords: main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud
Procedia PDF Downloads 2552003 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud
Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova
Abstract:
Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.Keywords: cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud
Procedia PDF Downloads 3152002 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN
Procedia PDF Downloads 5302001 Synthesis of a Model Predictive Controller for Artificial Pancreas
Authors: Mohamed El Hachimi, Abdelhakim Ballouk, Ilyas Khelafa, Abdelaziz Mouhou
Abstract:
Introduction: Type 1 diabetes occurs when beta cells are destroyed by the body's own immune system. Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an Artificial Pancreas (AP). Method: In this paper, we present a new formulation of the cost function for a Model Predictive Control (MPC) utilizing a technic which accelerates the speed of control of the AP and tackles the nonlinearity of the control problem via asymmetric objective functions. Finding: The finding of this work consists in a new Model Predictive Control algorithm that leads to good performances like decreasing the time of hyperglycaemia and avoiding hypoglycaemia. Conclusion: These performances are validated under in silico trials.Keywords: artificial pancreas, control algorithm, biomedical control, MPC, objective function, nonlinearity
Procedia PDF Downloads 3052000 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process
Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand
Abstract:
This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping
Procedia PDF Downloads 521999 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method
Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari
Abstract:
In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.Keywords: artificial bee colony, cooperative, multilevel cooperation, vector
Procedia PDF Downloads 4441998 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 9531997 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4061996 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks
Authors: Shahzad Yousaf, Imran Shafi
Abstract:
This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions
Procedia PDF Downloads 3881995 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization
Authors: Daham Owaid Matrood, Naqaa Hussein Raheem
Abstract:
Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization
Procedia PDF Downloads 4501994 Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions
Authors: Changgil Lee, Junkyeong Kim, Jihwan Park, Seunghee Park
Abstract:
In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN.Keywords: bridge weigh-in-motion (BWIM) system, environmental conditions, artificial neural network, type of bridges
Procedia PDF Downloads 4411993 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems
Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi
Abstract:
The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks
Procedia PDF Downloads 3531992 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 5441991 Inspection of Railway Track Fastening Elements Using Artificial Vision
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux
Abstract:
In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network
Procedia PDF Downloads 4511990 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4421989 Jung GPT: Unveiling the Therapeutic Potential of Artificial Intelligence
Authors: Eman Alhajjar, Albatool Jamjoom, Fatmah Bugshan
Abstract:
This research aims to investigate the artificial intelligence (AI) application Jung GPT and how helpful it is, as a therapy AI, to users. Jung GPT has the potential to make mental health care more accessible and cheaper while also providing tailored support and advice. However, it is not intended to be a substitute for human therapists. Jung GPT is instructed to understand a wide range of concepts, including emojis, sensitive subjects, and various languages. Furthermore, participants were asked to fill out a survey based on their experience with Jung GPT. Additionally, analysis of the responses indicated that Jung GPT was helpful in identifying and exploring challenges, and the use of Jung GPT by participants in the future is highly possible. The results demonstrate that Jung GPT does help in recognizing challenges or problems within the users. On this basis, it is recommended that individuals use Jung GPT to explore their thoughts, feelings, and challenges. Moreover, further research is needed to better evaluate the effectiveness of Jung GPT.Keywords: Jung GPT, artificial intelligence, therapy, mental health, AI application
Procedia PDF Downloads 681988 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 101987 Marketing in the Age of Artificial Intelligence: Implications for Consumption Patterns of Halal Food
Authors: Djermani Farouk, Sri Rahayu Hijrah Hati, Fenitra Maminirin, Permata Wulandari
Abstract:
This study investigates the implications of Artificial Intelligence Marketing (AIM) marketing mix (PRD) Product, (PRC) Price, (PRM), Promotion and (PLC) Place on consumption patterns of halal food (CPHF). A quantitative approach was adopted in this study and responses were obtained from 350 Indonesian consumers. Using Partial Least Squares-Structural Equation Modeling (PLS-SEM), the results show that there is a direct support of marketing mix (PRD, PRC, PLC) to AIM and CPHF, while PRM does not play a significant role in CPHF. In addition, the findings reveal that AIM mediates significantly the relationship between PLC, PRC and PRM and CPHF, while AIM indicates no mediation between PRD and CPHF. Indonesian consumer’s exhibit serious concerns with consumption patterns of halal food. it is recommended that managers focus their attention on marketing strategies to predict consumer behavior in terms of consumption patterns of halal food through the integration of AIM.Keywords: marketing mix, consumption patterns, artificial intelligence marketing, Halal food
Procedia PDF Downloads 311986 Determinants of Artificial Intelligence Capabilities in Healthcare: The Case of Ethiopia
Authors: Dereje Ferede, Solomon Negash
Abstract:
Artificial Intelligence (AI) is a key enabler and driver to transform and revolutionize the healthcare industries. However, utilizing AI and achieving these benefits is challenging for different sectors in wide-ranging, more difficult for developing economy healthcare. Due to this, real-world clinical execution and implementation of AI have not yet aged. We believe that examining the determinants is key to addressing these challenges. Furthermore, the literature does not yet particularize determinants of AI capabilities and ways of empowering the healthcare ecosystem to develop AI capabilities in a developing economy. Thus, this study aims to position AI as a digital transformation weapon for the healthcare ecosystem by examining AI capability determinants and providing insights on better empowering the healthcare industry to develop AI capabilities. To do so, we base on the technology-organization-environment (TOE) model and will apply a mixed research approach. We will conclude with recommendations based on findings for future practitioners and researchers.Keywords: artificial intelligence, capability, digital transformation, developing economies, healthcare
Procedia PDF Downloads 2401985 Antibacterial Effect of Silver Diamine Fluoride Incorporated in Fissure Sealants
Authors: Nélio Veiga, Paula Ferreira, Tiago Correia, Maria J. Correia, Carlos Pereira, Odete Amaral, Ilídio J. Correia
Abstract:
Introduction: The application of fissure sealants is considered to be an important primary prevention method used in dental medicine. However, the formation of microleakage gaps between tooth enamel and the fissure sealant applied is one of the most common reasons of dental caries development in teeth with fissure sealants. The association between various dental biomaterials may limit the major disadvantages and limitations of biomaterials functioning in a complementary manner. The present study consists in the incorporation of a cariostatic agent – silver diamine fluoride (SDF) – in a resin-based fissure sealant followed by the study of release kinetics by spectrophotometry analysis of the association between both biomaterials and assessment of the inhibitory effect on the growth of the reference bacterial strain Streptococcus mutans (S. mutans) in an in vitro study. Materials and Methods: An experimental in vitro study was designed consisting in the entrapment of SDF (Cariestop® 12% and 30%) into a commercially available fissure sealant (Fissurit®), by photopolymerization and photocrosslinking. The same sealant, without SDF was used as a negative control. The effect of the sealants on the growth of S. mutans was determined by the presence of bacterial inhibitory halos in the cultures at the end of the incubation period. In order to confirm the absence of bacteria in the surface of the materials, Scanning Electron Microscopy (SEM) characterization was performed. Also, to analyze the release profile of SDF along time, spectrophotometry technique was applied. Results: The obtained results indicate that the association of SDF to a resin-based fissure sealant may be able to increase the inhibition of S. mutans growth. However, no SDF release was noticed during the in vitro release studies and no statistical significant difference was verified when comparing the inhibitory halo sizes obtained for test and control group. Conclusions: In this study, the entrapment of SDF in the resin-based fissure sealant did not potentiate the antibacterial effect of the fissure sealant or avoid the immediate development of dental caries. The development of more laboratorial research and, afterwards, long-term clinical data are necessary in order to verify if this association between these biomaterials is effective and can be considered for being used in oral health management. Also, other methodologies for associating cariostatic agents and sealant should be addressed.Keywords: biomaterial, fissure sealant, primary prevention, silver diamine fluoride
Procedia PDF Downloads 2581984 Flushing Model for Artificial Islands in the Persian Gulf
Authors: Sawsan Eissa, Momen Gharib, Omnia Kabbany
Abstract:
A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection.Keywords: hydrodynamics, flushing, delft 3d, Persian Gulf, artificial islands.
Procedia PDF Downloads 53