Search results for: Sustainable Energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11974

Search results for: Sustainable Energy

11824 Towards Carbon-Free Communities: A Compilation of Urban Design Criteria for Sustainable Neighborhoods

Authors: Atefeh Kalantari

Abstract:

The increase in population and energy consumption has caused environmental crises such as the energy crisis, increased pollution, and climate change, all of which have resulted in a decline in the quality of life, especially in urban environments. Iran is one of the developing countries which faces several challenges concerning energy use and environmental sustainability such as air pollution, climate change, and energy security. On the other hand, due to its favorable geographic characteristics, Iran has diverse and accessible renewable sources, which provide appropriate substitutes to reduce dependence on fossil fuels. Sustainable development programs and post-carbon cities rely on implementing energy policies in different sectors of society, particularly, the built environment sector is one of the main ones responsible for energy consumption and carbon emissions for cities. Because of this, several advancements and programs are being implemented to promote energy efficiency for urban planning, and city experts, like others, are looking for solutions to deal with these problems. Among the solutions provided for this purpose, low-carbon design can be mentioned. Among the different scales, the neighborhood can be mentioned as a suitable scale for applying the principles and solutions of low-carbon urban design; Because the neighborhood as a "building unit of the city" includes elements and flows that all affect the number of CO2 emissions. The article aims to provide criteria for designing a low-carbon and carbon-free neighborhood through descriptive methods and secondary data analysis. The ultimate goal is to promote energy efficiency and create a more resilient and livable environment for local residents.

Keywords: climate change, low-carbon urban design, carbon-free neighborhood, resilience

Procedia PDF Downloads 81
11823 Design and Modeling of a Green Building Energy Efficient System

Authors: Berhane Gebreslassie

Abstract:

Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.

Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy

Procedia PDF Downloads 275
11822 Improving Energy Efficiency through Industrial Symbiosis: A Conceptual Framework of Energy Management in Energy-Intensive Industries

Authors: Yuanjun Chen, Yongjiang Shi

Abstract:

Rising energy prices have drawn a focus to global energy issues, and the severe pollution that has resulted from energy-intensive industrial sectors has yet to be addressed. By combining Energy Efficiency with Industrial Symbiosis, the practices of efficient energy utilization and improvement can be not only enriched at the factory level but also upgraded into “within and/or between firm level”. The academic contribution of this paper provides a conceptual framework of energy management through IS. The management of waste energy within/between firms can contribute to the reduction of energy consumption and provides a solution to the environmental issues.

Keywords: energy efficiency, energy management, industrial symbiosis, energy-intensive industry

Procedia PDF Downloads 437
11821 The Efects of Viable Marketing on Sustainable Development

Authors: Gabriela Tutuanu

Abstract:

The economic, social and environmental undesirable impact of the existing development pattern pushes to the adoption and use of a new development paradigm that of sustainable development. This paper intends to substantiate how the marketing can help the sustainable development. It begins with the subjects of sustainable development and sustainable marketing as they are discussed in literature. The sustainable development is a three dimensional concept which embeds the economic dimension, the social dimension and the environmental dimension that ask to have in view the simultaneous pursuit of economic prosperity, social equity and environmental quality. A major challenge to achieve these goals at business level and to integrate all three dimensions of sustainability is the sustainable marketing. The sustainable marketing is a relationship marketing that aims at building lasting relationships with the social and natural environment on a long-term thinking and futurity and this philosophy allows helping all three dimensions of sustainability. As marketing solutions that could contribute to the sustainable development. We advance the stimulation of sustainable demand, the constant innovation and improvement of sustainable products, the design and use of customized communication, a multichannel distribution network and the sale of sustainable products and services at fair prices. Their implementation will increase the economic, social and environmental sustainability at a large extent in the future if they are supported by political, governmental and legal authorities.

Keywords: sustainable development, sustainable marketing, sustainable demand, sustainable product, credible communication, multi-channel distribution network, fair price

Procedia PDF Downloads 475
11820 Metagovernance and Sustainable Development Goals: Importance of Sustainable Policies and Democratic Institutions

Authors: Ghulam Rasool Madni

Abstract:

Global economies are prioritizing the attainment of Sustainable Development Goals (SDGs) for well-being of their people. An emphasis lies on the concept of metagovernance when contemplating the role of government in SDGs, especially in the context of its influence and guidance. Existing literature acknowledges the pivotal role of metagovernance in achieving the SDGs, but aspects of metagovernance unclear that are important for 17 SDGs. Using data from 41 countries, a comparative analysis is conducted for the year 2022. Utilizing a multiple regression analysis, the impact of different dimensions of metagovernance to achieve SDGs is explored, with a particular focus on sustainable policies, strategic capacity, policy coherence, democratic institutions, reflexivity, and adaptation. It is found that sustainable policies have a positive and significant relationship with different SDGs, including no poverty, zero hunger, health, sanitation and clean water, affordable and clean energy, decent work and economic growth, industry, innovation and infrastructure, reduced inequalities while democratic institutions also have a positive relationship with no poverty, good health and well-being, quality education, gender equality, clean water and sanitation, clean and affordable energy, and peace, justice, and strong institutions in these countries. Policymakers are suggested to ensure that sustainable policies are backed by legislation to provide them with a strong legal foundation. It is suggested to develop a long-term vision for sustainability that goes beyond short-term political cycles. Economies are encouraged to invest in building the capacity of government agencies, civil society organizations, and other stakeholders to effectively implement sustainable policies. Moreover, democratic institutions may be established through a constitution providing a solid foundation for democratic governance, including protection of human rights, separation of powers, and mechanisms for accountability and transparency.

Keywords: metagovernance, sustainable development goals, sustainable policies, democratic institutions

Procedia PDF Downloads 19
11819 The Role of Natural Gas in Reducing Carbon Emissions

Authors: Abdulrahman Nami Almutairi

Abstract:

In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.

Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection

Procedia PDF Downloads 43
11818 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.

Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands

Procedia PDF Downloads 64
11817 FengShui Paradigm as Philosophy of Sustainable Design

Authors: E. Erdogan, H. A. Erdogan

Abstract:

FengShui, an old Chinese discipline, dates back to more than 5000 years, is one of the design principles that aim at creating habitable and sustainable spaces in harmony with nature by systematizing data within its own structure. Having emerged from Chinese mysticism and embodying elements of faith in its principles, FengShui argues that the positive energy in the environment channels human behavior and psychology. This argument is supported with the thesis of quantum physics that ‘everything is made up of energy’ and gains an important place. In spaces where living and working take place with several principles and systematized rules, FengShui promises a happier, more peaceful and comfortable life by influencing human psychology, acts, and soul as well as the professional and social life of the individual. Observing these design properties in houses, workplaces, offices, the environment, and daily life as a design paradigm is significant. In this study, how FengShui, a Central Asian culture emanated from Chinese mysticism, shapes design and how it is used as an element of sustainable design will be explained.

Keywords: Feng Shui, design principle, sustainability, philosophy

Procedia PDF Downloads 542
11816 The Relationship between Energy Consumption and Economic Growth in Turkey: A Time Series Analysis

Authors: Burcu Guvenek, Volkan Alptekin

Abstract:

Turkey is a country in the process of development and its economy has undergone structural reforms in order to realize a sustainable development and energy has vital role as a basic input for this aim. Turkey has been in the process of economic growth and development and, because of this, has an increasing energy need. This paper investigates relationship between economic growth and electricity consumption using annual data for Turkey between 1970-2008 by using bounds test. As economic growth and energy consumption variables used in empirical analysis was different order of integration I(0) and I(1), we employed bounds test approach. We have not found co-integration relationship between the variables.

Keywords: bounds test, economic growth, energy consumption, Turkey

Procedia PDF Downloads 363
11815 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 54
11814 Using Building Information Modeling in Green Building Design and Performance Optimization

Authors: Moataz M. Hamed, Khalid S. M. Al Hagla, Zeyad El Sayad

Abstract:

Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome.

Keywords: BIM, building performance analysis, BIM-based sustainable analysis, green building design

Procedia PDF Downloads 343
11813 Smart Sustainable University Campus: Aspects on Efficient Space Utilization at National Taiwan University of Science and Technology

Authors: Wei-Hwa Chiang, Yu-Ching Cheng, Pei-Hsien Kao, Yu-Chi Lai

Abstract:

A smart sustainable university campus is multi-dimensional. The success requires intensive inter-disciplinary coordination among all users and the expert group and long-term optimization. This paper reported the design and realization process of the dense and campus NTUST campus where space sharing is essential. Two-phase web-based interviews with students were conducted regarding where they study between classes as well as how they move within the campus. Efficient and active utilization of public and semi-public spaces, in particular, the ones near the ground, were progressively designed and realized where lobbies, corridors, reading rooms, and classrooms not in use were considered. Most of the spaces were equipped with smart monitoring and controls in terms of access, lighting, ceiling fans, air condition, and energy use. Mobile device apps were developed regarding the management of the spaces while information about energy use, environmental quality, and the smart sustainable campus project itself were provided to stimulate the awareness of sustainability and active participation in optimizing the campus.

Keywords: smart, sustainability, campus, space utilization

Procedia PDF Downloads 153
11812 Living Wall Systems: An Approach for Reducing Energy Consumption in Curtain Wall Façades

Authors: Salma Maher, Ahmed Elseragy, Sally Eldeeb

Abstract:

Nowadays, Urbanism and climate change lead to the rapid growth in energy consumption and the increase of using air-conditioning for cooling. In a hot climate area, there is a need for a new sustainable alternative that is more convenient for an existing situation. The Building envelope controls the heat transfer between the outside and inside the building. While the building façade is the most critical part, types of façade material play a vital role in influences of the energy demand for heating and cooling due to exposure to direct solar radiation throughout the day. Since the beginning of the twentieth century, the use of curtain walls in office buildings façades started to increase rapidly, which lead to more cooling loads in energy consumption. Integrating the living wall system in urban areas as a sustainable renovation and energy-saving method for the built environment will reduce the energy demand of buildings and will also provide environmental benefits. Also, it will balance the urban ecology and enhance urban life quality. The results show that the living wall systems reduce the internal temperature up to 4.0 °C. This research carries on an analytical study by highlighting the different types of living wall systems and verifying their thermal performance, energy-saving, and life potential on the building. These assessing criteria include the reason for using the Living wall systems in the building façade as well as the effect it has upon the surrounding environment. Finally, the paper ends with concluding the effect of using living wall systems on building. And, it suggests a system as long-lasting, and energy-efficient solution to be applied in curtain wall façades in a hot climate area.

Keywords: living wall systems, energy consumption, curtain walls, energy-saving, sustainability, urban life quality

Procedia PDF Downloads 141
11811 Economic Development and New Challenges: Biomass Energy and Sustainability

Authors: Fabricia G. F. S. Rossato, Ieda G. Hidalgo, Andres Susseta, Felipe Casale, Leticia H. Nakamiti

Abstract:

This research was conducted to show the useful source of biomass energy provided from forest waste and the black liquor from the pulping process. This energy source could be able to assist and improve its area environment in a sustainable way. The research will demonstrate the challenges from producing the biomass energy and the implantation of the pulp industry in the city of Três Lagoas, MS. – Brazil. Planted forest’s potential, energy production in the pulp industries and its consequence of impacts on the local region environmental was also studied and examined. The present study is classified as descriptive purposes as it exposes the characteristics of a given population and the means such as bibliographical and documentary. All the data and information collected and demonstrate in this study was carefully analyzed and provided from reliable sources such as official government agencies.

Keywords: Brazil, pulp industry, renewable energy, Três Lagoas

Procedia PDF Downloads 328
11810 The Analysis of Application of Green Bonds in New Energy Vehicles in China: From Evolutionary Game Theory

Authors: Jing Zhang

Abstract:

Sustainable development in the new energy vehicles field is the requirement of the net zero aim. Green bonds are accepted as a practical financial tool to boost the transformation of relevant enterprises. The paper analyzes the interactions among governments, enterprises of new energy vehicles, and financial institutions by an evolutionary game theory model and offers advice to stakeholders in China. The decision-making subjects of green behavior are affected by experiences, interests, perception ability, and risk preference, so it is difficult for them to be completely rational. Based on the bounded rationality hypothesis, this paper applies prospect theory in the evolutionary game analysis framework and analyses the costs of government regulation of enterprises adopting green bonds. The influence of the perceived value of revenue prospect and the probability and risk transfer coefficient of the government's active regulation on the decision-making agent's strategy is verified by numerical simulation. Finally, according to the research conclusions, policy suggestions are given to promote green bonds.

Keywords: green bonds, new energy vehicles, sustainable development, evolutionary Game Theory model

Procedia PDF Downloads 86
11809 Integrated Waste-to-Energy Approach: An Overview

Authors: Tsietsi J. Pilusa, Tumisang G. Seodigeng

Abstract:

This study evaluates the benefits of advanced waste management practices in unlocking waste-to-energy opportunities within the solid waste industry. The key drivers of sustainable waste management practices, specifically with respect to packaging waste-to-energy technology options are discussed. The success of a waste-to-energy system depends significantly on the appropriateness of available technologies, including those that are well established as well as those that are less so. There are hard and soft interventions to be considered when packaging an integrated waste treatment solution. Technology compatibility with variation in feedstock (waste) quality and quantities remains a key factor. These factors influence the technology reliability in terms of production efficiencies and product consistency, which in turn, drives the supply and demand network. Waste treatment technologies rely on the waste material as feedstock; the feedstock varies in quality and quantities depending on several factors; hence, the technology fails, as a result. It is critical to design an advanced waste treatment technology in an integrated approach to minimize the possibility of technology failure due to unpredictable feedstock quality, quantities, conversion efficiencies, and inconsistent product yield or quality. An integrated waste-to-energy approach offers a secure system design that considers sustainable waste management practices.

Keywords: emerging markets, evaluation tool, interventions, waste treatment technologies

Procedia PDF Downloads 273
11808 Teaching 'Sustainable Architecture' to Pre-School Children by School Building for a Clean Future

Authors: Cimen Ozburak

Abstract:

Pollution and the consumption of natural resources are significant global concerns. These problems have to be resolved in order to create a cleaner environment for the world. It is believed that sustainable building designs may reduce environmental problems throughout the world. It is known that if children receive environmental education in early childhood, they will be more likely to construct sustainable living systems and environment when they are older. School buildings can be used as educational material for teaching the natural and artificial environment in environmental education. In this study, the effect of school buildings on environmental education is examined by using the literature review method along with various examples. The selected examples in the study were analyzed according to 4 main criteria of LEED green building certification systems. These are the use of sustainable utilization of land, efficient utilization of water, efficient utilization of energy and efficient utilization of materials. According to the literature review, children who are educated in buildings designed according to these criteria, they will be environmentally sensitive individuals when they are older.

Keywords: clean future, educational sustainable pre-schools, environmental education, sustainable systems

Procedia PDF Downloads 254
11807 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa

Authors: Christopher I. Ifeacho, Adeleke Omolade

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship

Procedia PDF Downloads 99
11806 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria

Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar

Abstract:

Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.

Keywords: biocapacity, carbon footprint, ecological footprint assessment, energy consumption

Procedia PDF Downloads 147
11805 Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan

Authors: Sheikh Saeed Ahmad

Abstract:

Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth.

Keywords: demand and supply, LEAP, solar energy, wind energy, households

Procedia PDF Downloads 427
11804 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa

Authors: Christopher Ikechukwu Ifeacho

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability

Procedia PDF Downloads 22
11803 Energy Scenarios for Greater Kampala Metropolitan Area towards a Sustainable 2050: A TIMES-VEDA Analysis

Authors: Kimuli Ismail, Michael Lubwama, John Baptist Kirabira, Adam Sebbit

Abstract:

This study develops 4 energy scenarios for Greater Kampala Metropolitan Area (GKMA). GKMA is Uganda’s capital with a population of 4.1million and a GDP growth rate of 5.8 with a nonsustainable energy management system. The study uses TIMES-VEDA to examine the energy impacts of business as usual (BAU), Kabejja, Carbon-Tax, and Lutta scenarios in commercial, industrial, transportation, residential, agricultural, and electricity generation activities. BAU is the baseline scenario with limited CO2 emissions restrictions against which Kabejja with 20% CO2 emissions restriction, a carbon tax of $100/ton imposed in 2050 for Carbon-Tax scenario, and Lutta with 95% CO2 emissions restriction is made. The analysis suggests that if the current policy trends continue as BAU, consumption would increase from 139.6PJ to 497.42PJ and CO2 emissions will increase from 4.6mtns to 7mtns. However, consumption would decrease by 2.3% in Kabejja, 3.4% in Carbon-Tax, and 3.3 % in Lutta compared to BAU. The CO2 emissions would decrease by 8.57% in Kabejja, 55.14% in Carbon-Tax, and 60% in Lutta compared to BAU. Sustainability is achievable when low-carbon electricity is increased by 53.68% in the EMS, and setting up an electrified Kampala metro. The study recommends Lutta as the sustainable pathway to a lowcarbon 2050.

Keywords: Sustainability, Scenario Plannnig, Times-Veda Modelling, Energy Policy Development

Procedia PDF Downloads 69
11802 Sustainable Tourism Development: Assessment of Egyptian Sustainable Resorts

Authors: Riham A. Ragheb

Abstract:

Tourism can do a great deal of good in destinations, whether it be by bringing economic benefits to local communities, helping with conservation efforts or in placing a value on aspects of cultural heritage. As responsive travelers, we must all try to do more of the good and less of the negative. This is simply description of the sustainable tourism. This paper aims to set some criteria of successful sustainable tourism development and then through these criteria analyzing the development of some resorts in Egypt known as sustainable resorts. Hence, a comprehensive improvement of the touristic areas is certainly needed to ensure a successful sustainable tourism development radiated the sense of uniformity and coherence. Egypt can benefit from these criteria to develop its resorts in order to preserve and revitalize its unique natural character and achieve mixed uses and tourism development.

Keywords: Egypt, resorts, sustainable tourism, tourism development

Procedia PDF Downloads 449
11801 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation

Authors: Naseer M. A.

Abstract:

Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.

Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings

Procedia PDF Downloads 252
11800 The Importance of Adopting Sustainable Practices in Power Projects

Authors: Sikander Ali Abbassi, Wazir Muhmmad Laghari, Bashir Ahmed Laghari

Abstract:

Attaining sustainable development is one of the greatest challenges facing Pakistan today. A challenge that can only be met by developing and deploying confidence among the people. Transparency in project activities at all stages and other measures will also enhance its social and economic growth. Adopting sustainable practices and sensible policies, we mean that project activity should be economically viable, socially acceptable and environment friendly. In order to achieve this objective, there must be a continued commitment to encourage and ensure the public participation in development of power projects. Since Pakistan is an energy deficient country, it has to initiate power projects on a large scale in the near future. Therefore, it is the need of the hour to tackle these projects in a sustainable way, so that it can be benefited to the maximum possible level and have the least adverse effects on people and the environment. In order to get desirable results, careful planning, efficient implementation, standardized operational practices and community participation are the key parameters which ensure the positive impacts on economy, prosperity and the well being of our people. This paper pinpoints the potential environmental hazards due to project activity and emphasizes to adopt sustainable approaches in power projects.

Keywords: environmental hazards, sustainable practices, environment friendly, power projects

Procedia PDF Downloads 389
11799 Advanced Simulation of Power Consumption of Electric Vehicles

Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo

Abstract:

Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.

Keywords: electric vehicles, EV, power consumption, power management, simulation

Procedia PDF Downloads 516
11798 Energy Intensity: A Case of Indian Manufacturing Industries

Authors: Archana Soni, Arvind Mittal, Manmohan Kapshe

Abstract:

Energy has been recognized as one of the key inputs for the economic growth and social development of a country. High economic growth naturally means a high level of energy consumption. However, in the present energy scenario where there is a wide gap between the energy generation and energy consumption, it is extremely difficult to match the demand with the supply. India being one of the largest and rapidly growing developing countries, there is an impending energy crisis which requires immediate measures to be adopted. In this situation, the concept of Energy Intensity comes under special focus to ensure energy security in an environmentally sustainable way. Energy Intensity is defined as the energy consumed per unit output in the context of industrial energy practices. It is a key determinant of the projections of future energy demands which assists in policy making. Energy Intensity is inversely related to energy efficiency; lesser the energy required to produce a unit of output or service, the greater is the energy efficiency. Energy Intensity of Indian manufacturing industries is among the highest in the world and stands for enormous energy consumption. Hence, reducing the Energy Intensity of Indian manufacturing industries is one of the best strategies to achieve a low level of energy consumption and conserve energy. This study attempts to analyse the factors which influence the Energy Intensity of Indian manufacturing firms and how they can be used to reduce the Energy Intensity. The paper considers six of the largest energy consuming manufacturing industries in India viz. Aluminium, Cement, Iron & Steel Industries, Textile Industries, Fertilizer and Paper industries and conducts a detailed Energy Intensity analysis using the data from PROWESS database of the Centre for Monitoring Indian Economy (CMIE). A total of twelve independent explanatory variables based on various factors such as raw material, labour, machinery, repair and maintenance, production technology, outsourcing, research and development, number of employees, wages paid, profit margin and capital invested have been taken into consideration for the analysis.

Keywords: energy intensity, explanatory variables, manufacturing industries, PROWESS database

Procedia PDF Downloads 329
11797 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 197
11796 Water-Energy-Food Nexus Model for India: A Way Forward for Achieving Sustainable Development Goals

Authors: Rajendra Singh, Krishna Mondal, Chandranath Chatterjee

Abstract:

The water, energy, and food (WEF) nexus describes the interconnectedness of these three essential elements of human life. Each of these three sectors depends on the others. India's expanding population, urbanization, and industrialization make WEF nexus management difficult. Coupling and coordination degrees can be used as indicators of a complex system's level of sustainable development. Thus, coupling and coordination of WEF sectors in India are essential for achieving Sustainable Development Goals (SDGs) 2 (zero hunger), 6 (clean water and sanitation), and 7 (affordable and clean energy). This study used a newly developed WEF nexus model and the concept of coupling coordination degree model to examine the coupling and coordination degrees of the WEF nexus at India's sub-national scale (States/Union Territories (UTs)) for the years 2011 and 2021. Results indicate that the WEF nexus coupling degree was reasonably stable among the Indian States/UTs in both years, with all having a coupling degree above 0.90, indicating high-quality coupling. However, the degree of coordination varied spatially and temporally from ‘primary development’ to ‘quality development’ for the Indian States/UTs. In 2021, it went from 53% to 14% intermediate development and 44% to 83% good development compared to 2011. Most Indian States/UTs developed SDG2 more than SDG6 and SDG7. This study also suggests that most States/UTs must implement WEF-related policies and programmes effectively to achieve quality coordinated WEF nexus development. This study may help administrators and policymakers identify States/UTs that need more attention to implement existing or new policies for achieving SDGs 2, 6, and 7.

Keywords: WEF nexus model, Pardee-RAND WEF nexus, sustainable development, policy

Procedia PDF Downloads 63
11795 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 350