Search results for: Liver segmentation
1017 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection
Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad
Abstract:
The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.Keywords: community detection, electrical segmentation, multiplex graph, power grid
Procedia PDF Downloads 791016 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline
Authors: Kenan Morani, Esra Kaya Ayana
Abstract:
This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation
Procedia PDF Downloads 1331015 Black Soybeans Show Acute and Chronic Liver Protective Functions against CCl4 Induced Liver Damage
Authors: Cheng-Kuang Hsu, Chih-Hsiang Chang, Chi-Chih Wang
Abstract:
Black soybeans contain high amount of antioxidants including polyphenols, anthocyanins and flavones. The protective function of black soybean against CCl4 (a strong oxidant) induced acute and chronic liver damage was investigated in vivo using SD rats or ICR mouse. The evaluation of CCl4 induced oxidative stress in the liver tissues included the measurements of the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the concentration of thiobarbituric acid reactive substances (TBARS), the activities of antioxidant enzymes (superoxide dismutase SOD, catalase, and glutathione peroxidase GPx), as well as the level of histological lesion in the liver tissues. For chronic experiment, a decoction at the concentration of 100 or 1000 mg/kg of body weight, produced by baking black soybean at 130°C for 5 min and followed by immerging in 100°C hot water for 20 min, showed the inhibitory effect against CCl4 induced liver damage in SD rats. Hot-water extract (80 °C for 30 min) from un-preheated black soybean at the concentration of 200 mg/kg of body weight could not reduce ALT and AST levels in CCl4 treated SD rats, but the hot-water extract from preheated black soybean did enhance antioxidant enzymes activities, decline ALT and AST levels. Specially, the hot-water extract from the seed cost of black soybean had the highest liver protective function since it can reduce vacuolization and necrosis in the liver tissues. For acute experiment, the hot-water extracts from black soybean and the seed coat, as well as pure cyanidin-3-glucoside (C3G) could reduce ALT and AST levels of CCl4 induced ICR mouse. The decoction and hot-water extract from the seed coat of black soybean had higher total polyphenols, anthocyanins and flavones contents than those extracts from whole black soybean. Such results agreed with high liver protective function in the decoction and hot-water from the seed coat of black soybean. Black soybean showed protective function only after preheating process (baking at 130°C for 5 to 10 min) because preheating treatment damaged the cell wall and made the extraction of the antioxidants more effectively.Keywords: black soybean, liver protective function, antioxidant, antioxidative stress
Procedia PDF Downloads 4821014 Adverse Effects on Liver Function in Male Rats after Exposure to a Mixture of Endocrine Disrupting Pesticides
Authors: Mohamed Amine Aiche, Elkhansa Yahia, Leila Mallem, Mohamed Salah Boulakoud
Abstract:
Exposure to endocrine disrupting (ED) during life may cause long-term health effects, the population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products. Previous research indicates that a wide range of pesticides may act as endocrine disrupters. The azole fungicides propiconazole and propineb have been shown to react through several endocrine disrupting mechanisms, and to induce various endocrine disrupting effects. The purpose of this study was to evaluate the effects of two fungicides; propiconazole and propineb tested separately and in combination, on liver function. The experimental was applied on male Wistar rats dosed orally with Propiconazole 60 mg/kg/day, Propineb 100 mg/kg/day and their mixture 30 mg Propiconazole/kg/day + 50 mg Propineb /kg/day for 4 weeks, for result, a significant increase in liver weights in both treated groups with propineb, propiconazole and their mixture by reference with controls group. Also, highly significant mean values of markers of liver function such as transaminases (ALT/AST) and the activity of alkaline phosphatase (ALP) in all treated groups. The antioxidant activity showed a significant decrease in the hepatic glutathione content (GSH) and glutathione peroxidase (GPX) in all treated groups.Keywords: endocrine disrupting, pesticide mixture, propineb, propiconazole, liver, oxidative stress
Procedia PDF Downloads 5251013 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning
Authors: Rik van Leeuwen, Ger Koole
Abstract:
Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.Keywords: hierarchical cluster analysis, hospitality, market segmentation
Procedia PDF Downloads 1081012 Market Segmentation and Conjoint Analysis for Apple Family Design
Authors: Abbas Al-Refaie, Nour Bata
Abstract:
A distributor of Apple products' experiences numerous difficulties in developing marketing strategies for new and existing mobile product entries that maximize customer satisfaction and the firm's profitability. This research, therefore, integrates market segmentation in platform-based product family design and conjoint analysis to identify iSystem combinations that increase customer satisfaction and business profits. First, the enhanced market segmentation grid is created. Then, the estimated demand model is formulated. Finally, the profit models are constructed then used to determine the ideal product family design that maximizes profit. Conjoint analysis is used to explore customer preferences with their satisfaction levels. A total of 200 surveys are collected about customer preferences. Then, simulation is used to determine the importance values for each attribute. Finally, sensitivity analysis is conducted to determine the product family design that maximizes both objectives. In conclusion, the results of this research shall provide great support to Apple distributors in determining the best marketing strategies that enhance their market share.Keywords: market segmentation, conjoint analysis, market strategies, optimization
Procedia PDF Downloads 3751011 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1831010 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation
Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga
Abstract:
Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.Keywords: classification, coastline, color, sea-land segmentation
Procedia PDF Downloads 2501009 Impact of Variability in Delineation on PET Radiomics Features in Lung Tumors
Authors: Mahsa Falahatpour
Abstract:
Introduction: This study aims to explore how inter-observer variability in manual tumor segmentation impacts the reliability of radiomic features in non–small cell lung cancer (NSCLC). Methods: The study included twenty-three NSCLC tumors. Each patient had three tumor segmentations (VOL1, VOL2, VOL3) contoured on PET/CT scans by three radiation oncologists. Dice coefficients (DCS) were used to measure the segmentation variability. Radiomic features were extracted with 3D-slicer software, consisting of 66 features: first-order (n=15), second-order (GLCM, GLDM, GLRLM, and GLSZM) (n=33). The inter-observer variability of radiomic features was assessed using the intraclass correlation coefficient (ICC). An ICC > 0.8 indicates good stability. Results: The mean DSC of VOL1, VOL2, and VOL3 was 0.80 ± 0.04, 0.85 ± 0.03, and 0.76 ± 0.06, respectively. 92% of all extracted radiomic features were found to be stable (ICC > 0.8). The GLCM texture features had the highest stability (96%), followed by GLRLM features (90%) and GLSZM features (87%). The DSC was found to be highly correlated with the stability of radiomic features. Conclusion: The variability in inter-observer segmentation significantly impacts radiomics analysis, leading to a reduction in the number of appropriate radiomic features.Keywords: PET/CT, radiomics, radiotherapy, segmentation, NSCLC
Procedia PDF Downloads 471008 A Comparison of TLD Measurements to MIRD Estimates of the Dose to the Ovaries and Uterus from Tc-99m in Liver
Authors: Karim Adinehvand, Bakhtiar Azadbakht, Amin Sahebnasagh
Abstract:
Relation to high absorption fraction of Tc SESTAMIBI by internal organs in heart scan, and these organs are near to generation organs (Ovaries and uterus). In this study, Liver is specified as source organ. Method: we have set amount of absorbed fraction radiopharmaceutical in position of Liver in RANDO-phantom in form of elliptical surfaces, then absorbed dose to ovaries and uterus measured by TLD-100 that had set at position of these organs in RANDO-phantom. Calculation had done by MIRD method. Results from direct measurement and MIRD method are too similar. The absorbed dose to uterus and ovaries for Rest are 26.05µGyMBq-1, 17.23µGyMBq-1 and for Stress are 2.04µGyMBq-1, 1.35µGyMBq-1 respectively.Keywords: absorbed dose, TLD, MIRD, RANDO-phantom, Tc-99m
Procedia PDF Downloads 5651007 Extracts of Ocimum gratissimum Leaves Inhibits Fe2+ and Sodium Nitroprusside Induced Oxidative Stress in Rat Liver
Authors: Oluwafemi Ojo, Omotade Oloyede
Abstract:
This study seeks to investigate the antioxidative properties and the ability of aqueous, ethanolic and ethyl acetate extracts from Ocimum gratissimum (OG) leaves to inhibit some pro-oxidants (Fe2+ and sodium nitroprusside) induced lipid peroxidation in rat’s liver homogenates in vitro. The ability of the extracts to inhibit 25 µM FeSO4 and 7.0 µM sodium nitroprusside induced lipid peroxidation in isolated rat’s liver was determined. The results of the study revealed that both pro-oxidants caused a significantly decrease in (p < 0.05) accumulation of lipid peroxides. However, aqueous extract of OG shows a high ability to inhibit lipid production in the liver induced with SNP than Fe2+. Ethanolic and ethyl acetate extract of OG which shows a high ability to inhibit lipid production more when induced with Fe2+ than SNP. However, ethyl acetate fraction of OG shows a higher inhibitory effect on both Fe2+ and SNP induced lipid peroxidation in rat’s liver. This applies to its significantly higher extractable phytochemicals. Therefore, Fe II and sodium nitroprusside induced oxidative stress could be managed by dietary intake of Ocimum gratissimum leaves.Keywords: antioxidative, pro-oxidants, lipid peroxidation, Ocimum gratissimum
Procedia PDF Downloads 4811006 Layer-Level Feature Aggregation Network for Effective Semantic Segmentation of Fine-Resolution Remote Sensing Images
Authors: Wambugu Naftaly, Ruisheng Wang, Zhijun Wang
Abstract:
Models based on convolutional neural networks (CNNs), in conjunction with Transformer, have excelled in semantic segmentation, a fundamental task for intelligent Earth observation using remote sensing (RS) imagery. Nonetheless, tokenization in the Transformer model undermines object structures and neglects inner-patch local information, whereas CNNs are unable to simulate global semantics due to limitations inherent in their convolutional local properties. The integration of the two methodologies facilitates effective global-local feature aggregation and interactions, potentially enhancing segmentation results. Inspired by the merits of CNNs and Transformers, we introduce a layer-level feature aggregation network (LLFA-Net) to address semantic segmentation of fine-resolution remote sensing (FRRS) images for land cover classification. The simple yet efficient system employs a transposed unit that hierarchically utilizes dense high-level semantics and sufficient spatial information from various encoder layers through a layer-level feature aggregation module (LLFAM) and models global contexts using structured Transformer blocks. Furthermore, the decoder aggregates resultant features to generate rich semantic representation. Extensive experiments on two public land cover datasets demonstrate that our proposed framework exhibits competitive performance relative to the most recent frameworks in semantic segmentation.Keywords: land cover mapping, semantic segmentation, remote sensing, vision transformer networks, deep learning
Procedia PDF Downloads 111005 Assessment of Hepatosteatosis Among Diabetic and Nondiabetic Patients Using Biochemical Parameters and Noninvasive Imaging Techniques
Authors: Tugba Sevinc Gamsiz, Emine Koroglu, Ozcan Keskin
Abstract:
Aim: Nonalcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease in the general population. The higher mortality and morbidity among NAFLD patients and lack of symptoms makes early detection and management important. In our study, we aimed to evaluate the relationship between noninvasive imaging and biochemical markers in diabetic and nondiabetic patients diagnosed with NAFLD. Materials and Methods: The study was conducted from (September 2017) to (December 2017) on adults admitted to Internal Medicine and Gastroenterology outpatient clinics with hepatic steatosis reported on ultrasound or transient elastography within the last six months that exclude patients with other liver diseases or alcohol abuse. The data were collected and analyzed retrospectively. Number cruncher statistical system (NCSS) 2007 program was used for statistical analysis. Results: 116 patients were included in this study. Diabetic patients compared to nondiabetics had significantly higher Controlled Attenuation Parameter (CAP), Liver Stiffness Measurement (LSM) and fibrosis values. Also, hypertension, hepatomegaly, high BMI, hypertriglyceridemia, hyperglycemia, high A1c, and hyperuricemia were found to be risk factors for NAFLD progression to fibrosis. Advanced fibrosis (F3, F4) was present in 18,6 % of all our patients; 35,8 % of diabetic and 5,7 % of nondiabetic patients diagnosed with hepatic steatosis. Conclusion: Transient elastography is now used in daily clinical practice as an accurate noninvasive tool during follow-up of patients with fatty liver. Early diagnosis of the stage of liver fibrosis improves the monitoring and management of patients, especially in those with metabolic syndrome criteria.Keywords: diabetes, elastography, fatty liver, fibrosis, metabolic syndrome
Procedia PDF Downloads 1531004 Using Self Organizing Feature Maps for Automatic Prostate Segmentation in TRUS Images
Authors: Ahad Salimi, Hassan Masoumi
Abstract:
Prostate cancer is one of the most common recognized cancers in men, and, is one of the most important mortality factors of cancer in this group. Determining of prostate’s boundary in TRUS (Transrectal Ultra Sound) images is very necessary for prostate cancer treatments. The weakness edges and speckle noise make the ultrasound images inherently to segment. In this paper a new automatic algorithm for prostate segmentation in TRUS images proposed that include three main stages. At first morphological smoothing and sticks filtering are used for noise removing. In second step, for finding a point in prostate region, SOFM algorithm is enlisted and in the last step, the boundary of prostate extracting accompanying active contour is employed. For validation of proposed method, a number of experiments are conducted. The results obtained by our algorithm show the promise of the proposed algorithm.Keywords: SOFM, preprocessing, GVF contour, segmentation
Procedia PDF Downloads 3301003 Gold Nanoparticle: Synthesis, Characterization, Clinico-Pathological, Pathological and Bio-Distribution Studies in Rabbits
Authors: M. M. Bashandy, A. R. Ahmed, M. El-Gaffary, Sahar S. Abd El-Rahman
Abstract:
This study evaluated the acute toxicity and tissue distribution of intravenously administered gold nanoparticles (AuNPs) in male rabbits. Rabbits were exposed to single dose of AuNPs (300 µg/ kg). Toxic effects were assessed via general behavior, hematological parameters, serum biochemical parameters and histopathological examination of various rabbits’ organs. Tissue distribution of AuNPs was evaluated at a dose of 300 µg/ kg in male rabbit. Inductively coupled plasma–mass spectrometry (ICP-MS) was used to determine gold concentrations in tissue samples collected at predetermined time intervals. After one week, AuNPs exerted no obvious acute toxicity in rabbits. However, inflammatory reactions in lung and liver cells were induced in rabbits treated at the300 µg/ kg dose level. The highest gold levels were found in the spleen, followed by liver, lungs and kidneys. These results indicated that AuNPs could be distributed extensively to various tissues in the body, but primarily in the spleen and liver.Keywords: gold nanoparticles, toxicity, pathology, hematology, liver function, kidney function
Procedia PDF Downloads 3361002 Liver Transplant for Hepatocellular Carcinoma: Single Medical Center Experience in Taiwan
Authors: Yu-Chih Wang, Chia-Yu Lai, Hsiao-Tien Liu, Yi-Ju Chen, Shao-Bin Cheng
Abstract:
Liver transplant has been one of the curative treatment options for hepatocellular carcinomaunder certain oncological conditions. Two of the most validated criteria are from Milan in1996 and USCF in 2001, suggesting number and size limits of tumor without vascularinvasion or distant metastasis. We performed a retrospective cohort study of hepatocellular carcinoma patients undergoing livertransplant between August 2003 and December 2020 in our institute. Clinical andpathological characteristic, survival outcome, and recurrent pattern were analysed.UCSF criteria was applied for living donor transplantation, and Milan criteria was applied for deceased donor transplantation. Of 180 total patients, 52 cases(28.8%) with diagnosis of hepatocellular carcinoma, including26 living donor(LD) and 26 deceased donor(DD) liver transplant. Complete pathologicalremission was significantly more in the DD group(p=0.009). Pathological reports showed that30.8% of DD group exceeded Milan criteria, and 19.2% of LD group exceeded UCSFcriteria.After a median follow-up of 52.2 months, the 1-year, 3-year and 5-year overall survival was 87.6%, 74.1%, and 71.8%, respectively.Meanwhile, progression-free survival was 93.1%, 85.7%, and 81.6% for 1, 3, and 5-year, respectively, similar to that in Mazzaferro et al, 1996. We concluded that Liver transplant could be applied cautiously in expanded criteria for patent withhepatocellular carcinoma.Keywords: liver transplant, milan criteria, UCSF criteria, living donor transplantation, deceased donor transplantation
Procedia PDF Downloads 1561001 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 1321000 Vitamin C Supplementation Modulates Zinc Levels and Antioxidant Values in Blood and Tissues of Diabetic Rats Fed Zinc-Deficient Diet
Authors: W. Fatmi, F. Kriba, Z. Kechrid
Abstract:
The aim of this study was to investigate the effect of vitamin C on blood biochemical parameters, tissue zinc, and antioxidants enzymes in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin C (1mg/l) for 27 days. Body weight and food intake were recorded regularly during 27 days. On day 28, animals were killed and glucose, total lipids, triglycerides, protein, urea, serum zinc , tissues zinc concentrations, liver glycogen, GSH, TBARS concentrations and serum GOT, GPT, ALP and LDH, liver GSH-Px, GST and Catalase activities were determined. Body weight gain and food intake of zinc deficient diabetic animals at the end of experimental period was significantly lower than that of zinc adequate diabetic animals. Dietary zinc intake significantly increased glucose, lipids, triglycerides, urea, and liver TBARS levels of zinc deficient diabetic rats. In contrast, serum zinc, tissues zinc, protein, liver glycogen and GSH levels were decreased. The consumption of zinc deficient diet led also to an increase in serum GOT, GPT and liver GST accompanied with a decrease in serum ALP, LDH and liver GSH-Px, CAT activities. Meanwhile, vitamin C treatment was ameliorated all the previous parameters approximately to their normal levels. Vitamin C supplementation presumably acting as an antioxidant, and it probably led to an improvement of insulin activity, which significantly reduced the severity of zinc deficiency in diabetes.Keywords: antioxidant, experimental diabetes, liver enzymes, vitamin c, zinc deficiency
Procedia PDF Downloads 367999 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 123998 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 105997 Liver Histopathological Findings after Treatment with Anastrazole and Letrozole in Ovariectomized Rats
Authors: Ioannis Boutas, Vasilios Pergialiotis, Nicolaos Salakos, George Agrogiannis, Panagiotis Konstantopoulos, Laskarina-Maria Korou, Theodoros Kalampokas, Odysseas Gregoriou, George Creatsas, Despina Perrea
Abstract:
Introduction: The effect of third generation aromatase inhibitors in the lipid profile among women with breast cancer, present diversities. It has been also shown that low levels of estrogens affect liver metabolism in mice in numerous ways, such as lipid accumulation and hepatic steatosis. Materials and Methods: Forty-five female Wistar rats underwent surgical ovariectomy. The animals were anesthetized with a combination of ketamine (75 mg/kg) and xylazine (10 mg/kg) which were administered intraperitoneally. After the ovariectomy, the operated animals were randomized in three groups. The first group did not receive any drug regimen (ovariectomized control group). The second group received Anastrazole and the third group received Letrozole. Four months after the initiation of the study, the animals were euthanized and livers were dissected immediately for further histopathological analysis. The histological features were grouped into 4 broad categories: steatosis, ballooning, portal inflammation and lobular activity. A score from 0 (absence) to 3 (severe) was assigned to each parameter. Results: The liver pathology analysis revealed significant differences among groups with favored mild steatosis and ballooning among animals that received Anastrazole or Letrozole. Conclusion: The effect of Anastrazole and Letrozole on liver function have not yet been clarified. In our study mild histological liver alterations seem also to occur and these alterations should be taken in mind in future clinical studiesKeywords: anastrazole, letrozole, liver, rats
Procedia PDF Downloads 352996 Human Mesenchymal Stem Cells as a Potential Source for Cell Therapy in Liver Disorders
Authors: Laila Montaser, Hala Gabr, Maha El-Bassuony, Gehan Tawfeek
Abstract:
Orthotropic liver transplantation (OLT) is the final procedure of both end stage and metabolic liver diseases. Hepatocyte transplantation is an alternative for OLT, but the sources of hepatocytes are limited. Bone marrow mesenchymal stem cells (BM-MSCs) can differentiate into hepatocyte-like cells and are a potential alternative source for hepatocytes. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. MSCs from bone marrow may have the potential to differentiate in vitro and in vivo into hepatocytes. Our study examined whether mesenchymal stem cells (MSCs), which are stem cells originated from human bone marrow, are able to differentiate into functional hepatocyte-like cells in vitro. Our aim was to investigate the differentiation potential of BM-MSCs into hepatocyte-like cells. Adult stem cell therapy could solve the problem of degenerative disorders, including liver disease.Keywords: bone marrow, differentiation, hepatocyte, stem cells
Procedia PDF Downloads 520995 Protective Effect of Probiotic Lactic Acid Bacteria on Thioacetamide-Induced Liver Fibrosis in Rats: Histomorphological Study
Authors: Chittapon Jantararussamee, Malai Taweechotipatr, Udomsri Showpittapornchai, Wisuit Pradidarcheep
Abstract:
Hepatic fibrosis is characterized by collagen accumulation in hepatic lobules following wound healing process. If lefts untreated, it could progress into hepatic cirrhosis, portal hypertension, and liver failure. Probiotics comprise of lactic acid bacteria which are crucial components of the intestinal microflora and possess many beneficial properties. The objective of this study is to investigate the hepatoprotective effects of probiotic lactic acid bacteria (mixture of Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus confusus at a ratio of 1: 1: 1) on thioacetamide-induced liver fibrotic rats in term of histomorphology study. Twenty-four male Wistar rats were randomly divided into four groups with 6 rats each: (A) control, (B) fibrotic, (C) fibrotic+probiotic, and (D) probiotic. Group (A) received daily oral administration of distilled water. Group (B and C) were induced by intraperitoneal injection of thioacetamide (TAA) (200 mg/kg BW) 3 times per week for consecutive 8 weeks. In probiotic-treated group (C and D), the number of a mixture of the viable microbial cells at 10⁹ CFU/ml was administered orally daily. After sacrifice, liver tissues were collected and processed for routine histological technique and stained with Sirius red. It was found that the fibrotic rats showed hepatic injury marked by area of inflammation, hydropic degeneration of hepatocytes, and accumulation of myofibroblast-like cells. The collagen fibers were substantially accumulated in the hepatic lobules. Moreover, probiotic-treated group significantly reduced the accumulation of collagen in rats treated by TAA. The liver damage was found to be lesser in the probiotic-treated group. It was noted that the liver tissues of control and probiotics groups were shown to be normal. Administration with probiotic lactic acid bacteria could improve the histomorphology in fibrotic liver and be useful for prevention of hepatic disorders.Keywords: liver fibrosis, probiotics, lactic acid bacteria, thioacetamide
Procedia PDF Downloads 126994 Insulin Resistance in Patients with Chronic Hepatitis C Virus Infection: Upper Egypt Experience
Authors: Ali Kassem
Abstract:
Background: In the last few years, factors such as insulin resistance (IR) and hepatic steatosis have been linked to progression of hepatic fibrosis.Patients with chronic liver disease, and cirrhosis in particular, are known to be prone to IR. However, chronic HCV (hepatitis C) infection may induce IR, regardless of the presence of liver cirrhosis. Our aims are to study insulin resistance (IR) assessed by HOMA-IR (Homeostatic Model Assessment Insulin Resistance) as a possible risk factor in disease progression in cirrhotic patients and to evaluate the role of IR in hepatic fibrosis progression. The correlations of HOMA-IR values to laboratory, virological and histopathological parameters of chronic HCV are also examined. Methods: The study included 50 people divided into 30 adult chronic hepatitis C patients diagnosed by PCR (polymerase chain reaction) within previous 6 months and 20 healthy controls. The functional and morphological status of the liver were evaluated by ultrasonography and laboratory investigations including liver function tests and by liver biopsy. Fasting blood glucose and fasting insulin levels were measured and body mass index and insulin resistance were calculated. Patients having HOMA-IR >2.5 were labeled as insulin resistant. Results: Chronic hepatitis C patients with IR showed significantly higher mean values of BMI (body mass index) and fasting insulin than those without IR (P < 0.000). Patients with IR were more likely to have steatosis (p = 0.006), higher necroinflammatory activity (p = 0.05). No significant differences were found between the two groups regarding hepatic fibrosis. Conclusion: HOMA-IR measurement could represent a novel marker to identify the cirrhotic patients at greater risk for the progression of liver disease. As IR is a potentially modifiable risk factor, these findings may have important prognostic and therapeutic implications. Assessment of IR by HOMA-IR and improving insulin sensitivity are recommended in patients with HCV and related chronic liver disease.Keywords: hepatic fibrosis, hepatitis C virus infection, hepatic steatosis, insulin resistance
Procedia PDF Downloads 154993 Determination of Antibiotic Residues in Carcasses of Cows Slaughtered in Amol City by Four-Plate-Test Method
Authors: Arezou Ghadi, Nasrollah Vahedi, Azam Sinkakarimi
Abstract:
For determination of antibiotic residues in slaughtered cow carcasses of Amol city in Iran, sampling has done from 100 heads of cow. For this purpose, the microbiological F.P.T (Four-Plate Test) method was used. Basis of this method, a clear zone is creating around the leachate on the plate that already has cultured a uniform layer of under test bacteria on agar plate. In this study from 100 heads of cow carcasses, at least 75 cases (75%) in one of the tested organs (muscle-liver-kidney) have been antibiotic residues. Also, it has been found that kidney have the most positive cases (60%) than other organs (liver and muscle), then the liver (58%) and finally are muscles (51%).Keywords: antibiotic residues, agar plate test, cow carcass
Procedia PDF Downloads 457992 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.Keywords: pedestrian detection, color segmentation, false positive, feature extraction
Procedia PDF Downloads 281991 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 163990 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 376989 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 380988 Antioxidant Activity and Hepatoprotective Potential of Genista quadriflora Munby against Paracetamol-Induced Liver Injury
Authors: Nacera Baali, Zahia Belloum, Souad Ameddah, Fadila Benayache, Samir Benayache, Chantal Wrutniak-Cabello
Abstract:
Allurement of herbs as health beneficial foods and as a source material for the development of new drugs, has led to greater furtherance in the study of herbal medicines during recent years. In the present study, in vitro antioxidant, free radical scavenging capacity, and hepatoprotective activity of butanolic extract from Genista quadriflora Munby (G.quadriflora) were evaluated using established in vitro models such as DPPH radical and hydrogen peroxide radical scavenging activities and antilipidperoxidation ability. Interestingly, the extract showed considerable in vitro antioxidant and free radical scavenging activities in a dose-dependent manner when compared to the standard antioxidant which verified the presence of antioxidant compound in extract tested. The hepatoprotective potential of G.quadriflora extract was also evaluated in male Wistar rats against paracetamol (APAP) induced liver damage. Therapy of G.quadriflora showed the liver protective effect on biochemical and histopathological alterations. Moreover, histological studies also supported the biochemical finding, that is, the maximum improvement in the histoarchitecture of the liver. Results revealed that G.quadriflora extract could protect the liver against APAP-induced oxidative damage by possibly increasing the antioxidant protection mechanism in rats. These findings are of great importance in view of the availability of the plant and its observed possible diverse applications in medicine and nutrition.Keywords: genista quadriflora munby, antioxidant, liver, paracetamol, oxidative stress
Procedia PDF Downloads 473