Search results for: sustainable supply chain performance
1877 The Effect of Taekwondo on Plantar Pressure Distribution and Arch Index
Authors: Maryam Kakavand, Samira Entezari, Sara Khoshjamalfekri, Raghad Mimar
Abstract:
The objective of this study is 1) to compare elite female and beginner taekwondo players in terms of plantar pressure distribution, vertical ground reaction force, contact area, mean pressure, and right and left longitudinal arches, and 2) to compare preferred and non-preferred limbs among elite players. To the best of authors’ knowledge, as of yet, there is no information available about the plantar pressure distribution and arch index among taekwondo players. Material and Methods: An analytical-comparative research method is applied. Therefore seven elite athletes and eight novice athletes were selected. The emed-C50 platform was used to assess plantar pressure distribution, vertical ground reaction force, contact area, mean pressure of different areas, and planter longitudinal arch in a second step protocol. Independent t-test and dependent t-test were used at a level of 0.05 to compare the elites and beginners' right and left feet, and preferred and non-preferred limbs among elite athletes, respectively. Results: In comparing the right and left limbs of elite and beginner groups, findings indicate that there is only a significant difference in the mean pressure of the first metatarsal of the right foot. Findings also showed a significant difference in the contact area of the toes 3, 4, 5 regions between elites’ preferred and non-preferred limbs. However, no significant difference was found between the two groups’ right and left limbs and elites’ preferred and non-preferred limbs in terms of pressure distribution, vertical ground reaction force, and arch index. Conclusion: It seems that taekwondo exercises have affected pressure distribution patterns among advanced players causing some differences in their planter pressure distribution pattern when compared to that of beginners. Therefore, taekwondo exercises may be a factor contributing to asymmetry performance in preferred and non-preferred limbs.Keywords: planter pressure, arch index, taekwondo, elite
Procedia PDF Downloads 1561876 Sustainability Framework for Water Management in New Zealand's Canterbury Region
Authors: Bryan Jenkins
Abstract:
Introduction: The expansion of irrigation in the Canterbury region has led to the sustainability limits being reached for water availability and the cumulative effects of land use intensification. The institutional framework under New Zealand’s Resource Management Act was found to be an inadequate basis for managing water at sustainability limits. An alternative paradigm for water management was developed based on collaborative governance and nested adaptive systems. This led to the formulation and implementation of the Canterbury Water Management Strategy. Methods: The nested adaptive system approach was adopted. Sustainability issues were identified at multiple spatial and time scales and defined potential failure pathways for the water resource system. These included biophysical and socio-economic issues such as water availability, cumulative effects on water quality due to land use intensification, projected changes in climate, public health, institutional arrangements, economic outcomes and externalities, and, social effects of changing technology. This led to the derivation of sustainability strategies to address these failure pathways. The collaborative governance approach involved stakeholder participation and community engagement to decide on a regional strategy; regional and zone committees of community and rūnanga (Māori groups) members to develop implementation programmes for the strategy; and, farmer collectives for operational management. Findings: The strategy identified improvements in the efficiency of use of water already allocated was more effective in improving water availability than a reliance on increased storage alone. New forms of storage with less adverse impacts were introduced, such as managed aquifer recharge and off-river storage. Reductions of nutrients from land use intensification by improving management practices has been a priority. Solutions packages for addressing the degradation of vulnerable lakes and rivers have been prepared. Biodiversity enhancement projects have been initiated. Greater involvement of Māori has led to the incorporation of kaitiakitanga (resource stewardship) into implementation programmes. Emerging issues are the need for improved integration of surface water and groundwater interactions, increased use of modelling of water and financial outcomes to guide decision making, and, equity in allocation among existing users as well as between existing and future users. Conclusions: However, sustainability analysis indicates that the proposed levels of management interventions are not sufficient to achieve community targets for water management. There is a need for more proactive recovery and rehabilitation measures. Managing to environmental limits is not sufficient, rather managing adaptive cycles is needed. Better measurement and management of water use efficiency is required. Proposed implementation packages are not sufficient to deliver desired water quality outcomes. Greater attention to targets important to environmental and recreational interests is needed to maintain trust in the collaborative process. Implementation programmes don’t adequately address climate change adaptations and greenhouse gas mitigation. Affordability is a constraint on adaptive capacity of farmers and communities. More funding mechanisms are required to implement proactive measures. The legislative and institutional framework needs to be changed to incorporate water framework legislation, regional sustainability strategies and water infrastructure coordination.Keywords: collaborative governance, irrigation management, nested adaptive systems, sustainable water management
Procedia PDF Downloads 1601875 Lesson Learnt from Solar Photovoltaic Power Generation in Thailand with Global Self-Consumption Experience
Authors: Tongpong Sriboon, Prapita Thanarak, Chaitawatch Khunrangabsang
Abstract:
Nowadays, the usage of power generated from photovoltaic system has been promoted significantly in Thailand. The targeted result which is to increase the Solar Power Generation in 2036 to 6000 megawatts (MW) was planned by Alternative Energy Development Plan (AEDP 2015) and Power Development Plan (PDP 2015). The solar rooftop 200 MW was promoted and supported under the Feed-in Tariff scheme (FiT) in two phases; phase I in 2012 and phase II in 2015. However, the number of people interested in supporting the projects reduced due to many reasons which range from the first process to the last that is to sell electricity back to Electricity Authority. This paper will review this situation especially in total electricity generated from solar rooftop system during the day that has been sold back to the grid utility in different capacity FiT rates. With many stakeholders involved, the regulations and criteria were established to maintain the standard of the system. Besides, lots of problems have occurred during the processes including reliability and quality. These problems were shortly followed by other irrevocably issues concerning politics, social, economic etc. In order to effectively develop solar PV power system in Thailand, the problems and solutions were compared to those from six countries including Japan, Australia. America, China, German and Malaysia. This paper particularly focuses on policies and measurement implemented to encourage the rising in solar PV system interest. This review enables one to gain insight into the nature of the changes that have taken place in each and every country mentioned above as well as the underlying reasons behind them. Brief analysis is carried out on identify key challenges and opportunities for solar PV application. This could help create a development path that is suitable with situations to enhance the overall performance of solar PV power generating system in Thailand.Keywords: solar PV rooftop, PV policy, self-consumption, solar PV power generation
Procedia PDF Downloads 3151874 Ensuring Quality in DevOps Culture
Authors: Sagar Jitendra Mahendrakar
Abstract:
Integrating quality assurance (QA) practices into DevOps culture has become increasingly important in modern software development environments. Collaboration, automation and continuous feedback characterize the seamless integration of DevOps development and operations teams to achieve rapid and reliable software delivery. In this context, quality assurance plays a key role in ensuring that software products meet the highest quality, performance and reliability standards throughout the development life cycle. This brief explores key principles, challenges, and best practices related to quality assurance in a DevOps culture. This emphasizes the importance of quality transfer in the development process, as quality control processes are integrated in every step of the DevOps process. Automation is the cornerstone of DevOps quality assurance, enabling continuous testing, integration and deployment and providing rapid feedback for early problem identification and resolution. In addition, the summary addresses the cultural and organizational challenges of implementing quality assurance in DevOps, emphasizing the need to foster collaboration, break down silos, and promote a culture of continuous improvement. It also discusses the importance of toolchain integration and capability development to support effective QA practices in DevOps environments. Moreover, the abstract discusses the cultural and organizational challenges in implementing QA within DevOps, emphasizing the need for fostering collaboration, breaking down silos, and nurturing a culture of continuous improvement. It also addresses the importance of toolchain integration and skills development to support effective QA practices within DevOps environments. Overall, this collection works at the intersection of QA and DevOps culture, providing insights into how organizations can use DevOps principles to improve software quality, accelerate delivery, and meet the changing demands of today's dynamic software. landscape.Keywords: quality engineer, devops, automation, tool
Procedia PDF Downloads 601873 Apoptosis Inducing Potential of Onosma Bracteata Wall. in Mg-63 Human Osteosarcoma Cells via cdk2/Cyclin E Pathway
Authors: Ajay Kumar, Satwinderjeet Kaur
Abstract:
Onosma bracteata Wall. (Boraginaceae), is known to be a medicinal plant, useful in the treatment of body swellings, abdominal pain and urinary calculi, etc. The present study focused on the radical scavenging and cancer growth inhibitory properties of isolates from O. bracteata. Obea fraction demonstrated noticeable free radical scavenging ability along with antiproliferative activity in human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay with GI50 values of 88.56, 101.61 and 112.7 μg/ml, respectively. The scanning electron and confocal microscopy studies showed morphological alterations including nuclear condensation and formation of apoptotic bodies in osteosarcoma MG-63 cells. Obea fraction in osteosarcoma MG-63 cells augmented the reactive oxygen species (ROS) level and decreased the mitochondrial membrane potential. Flow cytometry analysis revealed the Obea treated cells to be arrested in the G0/G1 phase in a dose dependent manner supported by the observed increase in the early apoptotic cell population. Western blotting analysis showed that the expression of p-NF-kB, COX-2, p-Akt, and Bcl-xL decreased whereas, the expression of GSK-3β, p53, caspase-3 and caspase-9 proteins increased. The downregulation of Bcl-2, Cyclin E, CDK2 and mortalin gene expression and upregulation of p53 genes was unfolded in RT-qPCR studies. The presence of catechin, kaempferol, Onosmin A and epicatechin, as revealed in high-performance liquid chromatography (HPLC) studies, contributes towards the chemopreventive potential of O. bracteata which can be tapped for chemotherapeutic use.Keywords: apoptosis, confocal microscopy, HPLC, mitochondria membrane potential, reactive oxygen species
Procedia PDF Downloads 1391872 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand
Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee
Abstract:
Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.Keywords: e-waste, environmental contamination, informal recycling, metals
Procedia PDF Downloads 3631871 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine
Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav
Abstract:
This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA
Procedia PDF Downloads 2121870 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data
Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar
Abstract:
It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.Keywords: accuracy, exponential smoothing, forecasting, initial value
Procedia PDF Downloads 1781869 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study
Authors: Amit Kumar
Abstract:
Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality
Procedia PDF Downloads 2821868 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble
Authors: Jaehong Yu, Seoung Bum Kim
Abstract:
Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking
Procedia PDF Downloads 3411867 Investigating the Relative Priority of the Factors Affecting Customer Satisfaction in Gaining the Competitive Advantage in Pars-Khazar Company
Authors: Samaneh Pouyanfar, Michael Oliff
Abstract:
The industry of home appliances may beone of theindustries which has the highest competition, and actually what can guarantee the survival of this industry is discovering the superior services. A trend to provide quality products and services plays an important role in this industry because discovering the services is counted as a vital affair for Manufacturing Organizations’ survival and profitability. Given the importance of the topic, this paper attempts to investigate the relative priority of the factors influencing the customer satisfaction in gaining the competitive advantage in Pars-Khazar Company. In sum, 96 executives of Pars-Khazar Company where investigated in a census. For this purpose, after reviewing the research literature and performing deep interviews between pundits and experts active in the industry, the research questionnaire was made based on variables affecting customer satisfaction and components determining business competitive advantage. Determining the content validity took place by judgement of the experts. The reliability of each structure was measured based on Cronbach’s alpha coefficient. Since the value of Cronbach's alpha was higher than 0.7 for each structure, internal consistency of statements was high and the reliability of the questionnaire was acceptable. The data analysis was also done with Kulmgrf-asmyrnf test and Friedman test using SPSS software. The results showed that in dimension of factors affecting customer satisfaction, the History of trade name (brand), Familiarity with the product brand, Brand reputation and Safety have the highest value of priority respectively, and the variable of firm growth has the highest value of priority among the components determining the performance of competitive advantage.Keywords: customer satisfaction, competitive advantage, brand history, safety, growth
Procedia PDF Downloads 2311866 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 1021865 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 851864 Using Problem-Based Learning on Teaching Early Intervention for College Students
Authors: Chen-Ya Juan
Abstract:
In recent years, the increasing number of children with special needs has brought a lot of attention by many scholars and experts in education, which enforced the preschool teachers face the harsh challenge in the classroom. To protect the right of equal education for all children, enhance the quality of children learning, and take care of the needs of children with special needs, the special education paraprofessional becomes one of the future employment trends for students of the department of the early childhood care and education. Problem-based learning is a problem-oriented instruction, which is different from traditional instruction. The instructor first designed an ambiguous problem direction, following the basic knowledge of early intervention, students had to find clues to solve the problem defined by themselves. In the class, the total instruction included 20 hours, two hours per week. The primary purpose of this paper is to investigate the relationship of student academic scores, self-awareness, learning motivation, learning attitudes, and early intervention knowledge. A total of 105 college students participated in this study and 97 questionnaires were effective. The effective response rate was 90%. The student participants included 95 females and two males. The average age of the participants was 19 years old. The questionnaires included 125 questions divided into four major dimensions: (1) Self-awareness, (2) learning motivation, (3) learning attitudes, and (4) early intervention knowledge. The results indicated (1) the scores of self-awareness were 58%; the scores of the learning motivations was 64.9%; the scores of the learning attitudes was 55.3%. (2) After the instruction, the early intervention knowledge has been increased to 64.2% from 38.4%. (3) Student’s academic performance has positive relationship with self-awareness (p < 0.05; R = 0.506), learning motivation (p < 0.05; R = 0.487), learning attitudes (p < 0.05; R = 0.527). The results implied that although students had gained early intervention knowledge by using PBL instruction, students had medium scores on self-awareness and learning attitudes, medium high in learning motivations.Keywords: college students, children with special needs, problem-based learning, learning motivation
Procedia PDF Downloads 1591863 The Effect of Speech-Shaped Noise and Speaker’s Voice Quality on First-Grade Children’s Speech Perception and Listening Comprehension
Authors: I. Schiller, D. Morsomme, A. Remacle
Abstract:
Children’s ability to process spoken language develops until the late teenage years. At school, where efficient spoken language processing is key to academic achievement, listening conditions are often unfavorable. High background noise and poor teacher’s voice represent typical sources of interference. It can be assumed that these factors particularly affect primary school children, because their language and literacy skills are still low. While it is generally accepted that background noise and impaired voice impede spoken language processing, there is an increasing need for analyzing impacts within specific linguistic areas. Against this background, the aim of the study was to investigate the effect of speech-shaped noise and imitated dysphonic voice on first-grade primary school children’s speech perception and sentence comprehension. Via headphones, 5 to 6-year-old children, recruited within the French-speaking community of Belgium, listened to and performed a minimal-pair discrimination task and a sentence-picture matching task. Stimuli were randomly presented according to four experimental conditions: (1) normal voice / no noise, (2) normal voice / noise, (3) impaired voice / no noise, and (4) impaired voice / noise. The primary outcome measure was task score. How did performance vary with respect to listening condition? Preliminary results will be presented with respect to speech perception and sentence comprehension and carefully interpreted in the light of past findings. This study helps to support our understanding of children’s language processing skills under adverse conditions. Results shall serve as a starting point for probing new measures to optimize children’s learning environment.Keywords: impaired voice, sentence comprehension, speech perception, speech-shaped noise, spoken language processing
Procedia PDF Downloads 1941862 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 951861 Anaphora and Cataphora on the Selected State of the City Addresses of the Mayor of Dapitan
Authors: Mark Herman Sumagang Potoy
Abstract:
State of the City Address (SOCA) is a speech, modelled after the State of the Nation Address, given not as mandated by law but usually a matter of practice or tradition delivered before the chief executive’s constituents. Through this, the general public is made to know the performance of the local government unit and its agenda for the coming year. Therefore, it is imperative for SOCAs to clearly convey its message and carry out the myriad function of enlightening its readers which could be achieved through the proper use of reference. Anaphora and cataphora are the two major types of reference; the former refer back to something that has already been mentioned while the latter points forward to something which is yet to be said. This paper seeks to identify the types of reference employed on the SOCAs from 2014 to 2016 of Hon. Rosalina Garcia Jalosjos, Mayor of Dapitan City and look into how the references contribute to the clarity of the message of the text. The qualitative method of research is used in this study through an in-depth analysis of the corpus. As soon as the copies of the SOCAs are secured from the Office of the City Mayor, they are then analyzed using documentary technique categorizing the types of reference as to anaphora and cataphora, counting each of these types and describing the implications of the dominant types used in the addresses. After a thorough analysis, it is found out that the two reference types namely, anaphora and cataphora are both employed on the three SOCAs, the former being used more frequently than the latter accounting to 80% and 20% of actual usage, respectively. Moreover, the use of anaphors and cataphora on the three addresses helps in conveying the message clearly because they primarily become aids to avoid the repetition of the same element in the text especially when there wasn’t a need to emphasize a point. Finally, it is recommended that writers of State of the City Addresses should have a vast knowledge on how reference should be used and the functions they take in the text since this is a vital tool to clearly transmit a message. Moreover, English teachers should explicitly teach the proper usage of anaphora and cataphora, as instruments to develop cohesion in written discourse, to enable students to write not only with sense but also with fluidity in tying utterances together.Keywords: anaphora, cataphora, reference, State of the City Address
Procedia PDF Downloads 1931860 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine
Procedia PDF Downloads 3791859 Effect of vr Based Wii Fit Training on Muscle Strength, Sensory Integration Ability and Walking Abilities in Patients with Parkinson's Disease: A Randomized Control Trial
Authors: Ying-Yi Laio, Yea-Ru Yang, Yih-Ru Wu, Ray-Yau Wang
Abstract:
Background: Virtual reality (VR) systems are proved to increase motor performance in stroke and elderly. However, the effects have not been established in patients with Parkinson’s disease (PD). Purpose: To examine the effects of VR based training in improving muscle strength, sensory integration ability and walking abilities in patients with PD by a randomized controlled trial. Method: Thirty six participants with diagnosis of PD were randomly assigned to one of the three groups (n=12 for each group). Participants received VR-based Wii Fit exercise (VRWii group) or traditional exercise (TE group) for 45 minutes, followed by treadmill training for another 15 minutes for 12 sessions in 6 weeks. Participants in the control group received no structured exercise program but fall-prevention education. Outcomes included lower extremity muscle strength, sensory integration ability, walking velocity, stride length, and functional gait assessment (FGA). All outcomes were assessed at baseline, after training and at 1-month follow-up. Results: Both VRWii and TE groups showed more improvement in level walking velocity, stride length, FGA, muscle strength and vestibular system integration than control group after training and at 1-month follow-up. The VRWii training, but not the TE training, resulted in more improvement in visual system integration than the control. Conclusions: VRWii training is as beneficial as traditional exercise in improving walking abilities, sensory integration ability and muscle strength in patients with PD, and such improvements persisted at least for 1 month. The VRWii training is then suggested to be implemented in patients with PD.Keywords: virtual reality, walking, sensory integration, muscle strength, Parkinson’s disease
Procedia PDF Downloads 3331858 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors
Procedia PDF Downloads 2751857 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan
Abstract:
It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic
Procedia PDF Downloads 2451856 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 411855 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study
Authors: Omojokun G. Aju, Adedayo O. Sule
Abstract:
ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee
Procedia PDF Downloads 3861854 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions
Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba
Abstract:
The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan
Procedia PDF Downloads 3111853 An Experiment Research on the Effect of Brain-Break in the Classroom on Elementary School Students’ Selective Attention
Authors: Hui Liu, Xiaozan Wang, Jiarong Zhong, Ziming Shao
Abstract:
Introduction: Related research shows that students don’t concentrate on teacher’s speaking in the classroom. The d2 attention test is a time-limited test about selective attention. The d2 attention test can be used to evaluate individual selective attention. Purpose: To use the d2 attention test tool to measure the difference between the attention level of the experimental class and the control class before and after Brain-Break and to explore the effect of Brain-Break in the classroom on students' selective attention. Methods: According to the principle of no difference in pre-test data, two classes in the fourth- grade of Shenzhen Longhua Central Primary School were selected. After 20 minutes of class in the third class in the morning and the third class in the afternoon, about 3-minute Brain-Break intervention was performed in the experimental class for 10 weeks. The normal class in the control class did not intervene. Before and after the experiment, the d2 attention test tool was used to test the attention level of the two-class students. The paired sample t-test and independent sample t-test in SPSS 23.0 was used to test the change in the attention level of the two-class classes around 10 weeks. This article only presents results with significant differences. Results: The independent sample t-test results showed that after ten-week of Brain-Break, the missed errors (E1 t = -2.165 p = 0.042), concentration performance (CP t = 1.866 p = 0.05), and the degree of omissions (Epercent t = -2.375 p = 0.029) in experimental class showed significant differences compared with control class. The students’ error level decreased and the concentration increased. Conclusions: Adding Brain-Break interventions in the classroom can effectively improve the attention level of fourth-grade primary school students to a certain extent, especially can improve the concentration of attention and decrease the error rate in the tasks. The new sport's learning model is worth promotingKeywords: cultural class, micromotor, attention, D2 test
Procedia PDF Downloads 1351852 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 781851 Evaluation of the Efficiency of French Language Educational Software for Learners in Semnan Province, Iran
Authors: Alireza Hashemi
Abstract:
In recent decades, language teaching methodology has undergone significant changes due to the advent of computers and the growth of educational software. French language education has also benefited from these developments, and various software has been produced to facilitate the learning of this language. However, the question arises whether these software programs meet the educational needs of Iranian learners, particularly in Semnan Province. The aim of this study is to evaluate the efficiency and effectiveness of French language educational software for learners in Semnan Province, considering educational, cultural, and technical criteria. In this study, content analysis and performance evaluation methods were used to examine the educational software ‘Français Facile’. This software was evaluated based on criteria such as teaching methods, cultural compatibility, and technical features. To collect data, standardized questionnaires and semi-structured interviews with learners in Semnan Province were used. Additionally, the SPSS statistical software was employed for quantitative data analysis, and the thematic analysis method was used for qualitative data. The results indicated that the ‘Français Facile’ software has strengths such as providing diverse educational content and an interactive learning environment. However, some weaknesses include the lack of alignment of educational content with the learning culture of learners in Semnan Province and technical issues in software execution. Statistical data showed that 65% of learners were satisfied with the educational content, but 55% reported issues related to cultural alignment with their needs. This study indicates that to enhance the efficiency of French language educational software, there is a need to localize educational content and improve technical infrastructure. Producing locally adapted educational software can improve the quality of language learning and increase the motivation of learners in Semnan Province. This research emphasizes the importance of understanding the cultural and educational needs of learners in the development of educational software and recommends that developers of educational software pay special attention to these aspects.Keywords: educational software, French language, Iran, learners in Semnan province
Procedia PDF Downloads 441850 The Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Exposed for Different Environment Conditions
Authors: Rajai Al-Rousan
Abstract:
The repair and strengthening of concrete structures is a big challenge for the concrete industry for both engineers and contractors. Due to increasing economical constraints, the current trend is to repair/upgrade deteriorated and functionally obsolete structures rather than replacing them with new structures. CFRP has been used previously by air space industries regardless of the high costs. The decrease in the costs of the composite materials, as results of the technology improvement, has made CFRP an alternative to conventional materials for many applications. The primary objective of this research is to investigate the flexural behavior of reinforced concrete (RC) beams externally strengthened with CFRP composites exposed for three years for the following conditions: (a) room temperature, (b) cyclic ponding in 15% salt-water solution, (c) hot-water of 65oC, and (d) rapid freeze/thaw cycles. Results indicated that the after three years of various environmental conditions, the bond strength between the concrete beams and CFRP sheets was not affected. No signs of separation or debonding of CFRP sheets were observed before testing. Also, externally strengthening RC beams with CFRP sheets leads to a substantial increase in the ductility of concrete structures. This is a result of forcing the concrete to undergo inelastic deformation, resulting in compression failure of the structure after yielding of steel reinforcement. In addition, exposure to heat water tank for three years reduces the ultimate load by about 11%. This 11% reduction in the ultimate load equates to about 53%, 46% and 68% loss of the gain of the strength attributed to the CFRP of 2/3 Layer, 1 Layers and 2 Layers CFRP Sheets respectively. This mean that with decreasing of number of layers the environmental exposure had an efficient effect on concrete by protection concrete from environmental effect and adverse effect on the bond performance.Keywords: flexural, behavior, CFRP, composites, environment, conditions
Procedia PDF Downloads 3131849 Descriptive Analysis of the Database of Poliomyelitis Surveillance System in Mauritania from 2012-2019
Authors: B. Baba Ahmed, P. Yanogo, B. Djibryl. N. Medas
Abstract:
Introduction: Polio is a highly contagious viral infection, with children under 5 years of age being the most affected. It is a public health emergency of international concern. Polio surveillance in Mauritania has been ongoing since 1998 and has achieved "polio free" status in 2007. our objective is to analyse a pidemiological surveillance database of poliomyélitis in Mauritania from 2012-2019. Method: A transversal descriptive analysis of poliomyélitis database was carried out in Mauritania from 2012-2019.An exhaustive sampling was done on all suspected polio cases recorded in the database from 2012 -2019. This study used EPI-INFO 7.4 for frequency calculation for qualitative variables, mean and standard deviation for quantitative variables. Results: We found 459 suspected cases of polio over the study period with an average rate of acute non-polio flaccid paralysis of 25.4 cases/100,000 children under 15 years of age. The age group 0-6 years represented 75.2%. Males constituted 50.2%. Females represented 49.78% with a ratio of M/F=1.Among the 422 observations, the average age is 4 years +/- 3.38. The four regions, TIRIS-ZEMMOUR, INCHIRI, TAGANT, NOUACHCHOTT OUEST recorded the lowest percentages of notifications, respectively (3.28%; 3.93%; 4.37%; 4.8%). 99.34% [98.09-99.78] of cases presented acute flaccid paralysis. And 56.77% [52.19-61.23], had limb asymmetry. We showed that 82.93% [79.21-86.10], had fever. we found that 89.5% of suspected polio cases were investigated before 48 hours. And 88.39% of suspected cases had two adequate samples taken 48 hours apart and within 14 days after the onset of symptoms. Only 30.95% of samples arrived at the referral laboratory before 72 hours. Conclusion: This study has shown that Mauritania has achieved the objectives in most of the quantitative performance indicators of polio surveillance. This study has shown a low notification of cases in the northern and central regions of the country. There is a problem with the transport of samples to the laboratory.Keywords: analysis, data base, Epi-Info, polio
Procedia PDF Downloads 1781848 The Sustainability of Health and Safety on Construction Sites in Zamfara State
Authors: Ismaila Oladunni Muhammed, Adegbenga Raphael Ashiru
Abstract:
Construction industry has been attributed to be the engine growth of Nigerian economic and infrastructural development. It promotes infrastructural development and grows an average output of Nigerian Gross Domestic Profit. However, from this great prospect, yearly reports show that consistent accidents on construction sites in Zamfara State has affected a substantial number of workers as they become temporarily or permanently disabled, thereby making many construction sites a death trap. This posed a great threat to the industry’s sustainability, de- motivate workers from working in the industry, and further have negative impact on the economy as well. It is as a result of high construction site accident currently experiencing in Zamfara state that this research was carried out to appraise the sustainability of health and safety of construction workers on sites. The proper practice and compliance to Construction Health and safety laws are very vital to the output and growth of Zamfara State construction sector. However, a quantitative approach was adopted to justify the aforesaid statement which will provide a broader understanding of the study. Descriptive statistical analysis was obtained through Statistical Package for the Social Sciences (SPSS Version 20). Furthermore, the findings from the research highlighted that the performance and output of construction workers on construction sites depends on the proper practice of health and safety. The research findings also recommended ways to enhance employers and employee’s compliance with existing laws guiding health and safety on Zamfara State construction sites. Nevertheless, the purpose of the paper is to appraise the sustainability of Health and Safety on Zamfara State construction sites. This study further provided thorough information for resolving challenges of construction sites accidents to improve construction firm productivity and also ensured construction worker’s safety on site.Keywords: construction industry, health and safety regulations, causes of accident, construction safety practices
Procedia PDF Downloads 213