Search results for: utilization rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9520

Search results for: utilization rate

7780 CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room

Authors: Amirreza Niktash, B. P. Huynh

Abstract:

A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications.

Keywords: CFD, RANS, ventilation, windcatcher

Procedia PDF Downloads 416
7779 Utilization of Coconut Husk and Sugarcane Bagasse as a Natural Component in Making Water Resistance Tote Bags

Authors: Cyril Mae B. Mationg, Alexa T. Belizar, Vethany B. Bellen

Abstract:

This study aims to determine the use of coconut husks and sugarcane bagasse as natural components in making water-resistant tote bags. The study consists of three concentrations: 70% Coconut Husk - 30% Sugarcane Bagasse, 70% cellulose, and 30% cellulose. The results of these tests revealed that, out of the three concentration concentrations, the one consisting of 70% Coconut Husk and 30% sugarcane bagasse exhibited superior performance in breaking capacity and water penetration. During tensile strength testing, the coconut husk and sugarcane bagasse withstood a force of 207.7 Newtons (N) in the machine direction and 216.5 N in the cross-machine direction.

Keywords: coconut husk, sugarcane bagasse, tote bags, water resistance

Procedia PDF Downloads 48
7778 The Effect of Tax Avoidance on Firm Value: Evidence from Amman Stock Exchange

Authors: Mohammad Abu Nassar, Mahmoud Al Khalilah, Hussein Abu Nassar

Abstract:

The purpose of this study is to examine whether corporate tax avoidance practices can impact firm value in the Jordanian context. The study employs a quantitative approach using s sample of (124) industrial and services companies listed on the Amman Stock Exchange for the period from 2010 to 2019. Multiple linear regression analysis has been applied to test the study's hypothesis. The study employs effective tax rate and book-tax difference to measure tax avoidance and Tobin's Q factor to measure firm value. The results of the study revealed that tax avoidance practices, when measured using effective tax rates, do not significantly impact firm value. When the book-tax difference is used to measure tax avoidance, the study results showed a negative impact on firm value. The result of the study has not supported the traditional view of tax avoidance as a transfer of wealth from the government to shareholders for industrial and services companies listed on the Amman Stock Exchange, indicating that Jordanian firms should not use tax avoidance strategies to enhance their value.

Keywords: tax avoidance, effective tax rate, book-tax difference, firm value, Amman stock exchange

Procedia PDF Downloads 138
7777 Strabismus Detection Using Eye Alignment Stability

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.

Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization

Procedia PDF Downloads 59
7776 Yield and Composition of Bio-Oil from Co-Pyrolysis of Corn Cobs and Plastic Waste of HDPE in a Fixed Bed Reactor

Authors: Dijan Supramono, Eny Kusrini, Haisya Yuana

Abstract:

Pyrolysis, a thermal cracking process in inert environment, may be used to produce bio-oil from biomass and plastic waste thus accommodating the use of renewable energy. Abundant amount of biomass waste in Indonesia are not utilised and plastic wastes are not well processed for clean environment. The aim of present work was to evaluate effect of mass ratio of plastic material to biomass in the feed blend of corn cobs and high density polyethylene (HDPE) of co-pyrolysis on bio-oil yield and chemical composition of bio-oil products. The heating rate of the co-pyrolysis was kept low and residence time was in the order of seconds to accommodate high yield of oil originating from plastic pyrolysis. Corn cobs have high cellulose and hemicellulose content (84%) which is potential to produce bio-oil. The pyrolysis was conducted in a laboratory-scale using a fixed bed reactor with final temperature of 500°C, heating rate 5 °C/min, flow rate N2 750 mL/min, total weight of biomass and plastic material of 20 g, and hold time after peak temperature of 30 min. Set up of conditions of co-pyrolysis should lead to accommodating the production of oil originating from HDPE due to constraint of HDPE pyrolysis residence time. Mass ratio of plastics to biomass in the feed blend was varied 0:100, 25:75, 50:50, 75:25 and 100:0. It was found that by increasing HDPE content up to 100% in the feed blend, the yield of bio-oil at different mass ratios prescribed above were 28.05, 21.55, 14.55, 9.5, and 6.3wt%, respectively. Therefore, in the fixed bed reactor, producing bio-oil is constrained by low contribution of plastic feedstock to the pyrolysis liquid yield. Furthermore, for the same variation of the mass ratio, yields of the mixture of paraffins, olefins and cycloalkanes contained in bio-oil were of 0, 28.35, 40.75, 47.17, and 67.05wt%, respectively. Olefins and cycloalkanes are easily hydrogenised to produce paraffins, suitable to be used as bio-fuel. By increasing composition of HDPE in the feed blend, viscosity and pH of bio-oil change approaching to those of commercial diesel oil.

Keywords: co-pyrolysis, corn cobs, fixed bed reactor, HDPE

Procedia PDF Downloads 337
7775 Designing an Aerodynamic Braking in Order to Increase Power and Speed of Braking System of Vehicles

Authors: Hamidreza Ahmadi, Majid Abbasalizadeh, Ghasem Yazdani, Masoud Ahmadi

Abstract:

In this paper a special kind of aerodynamic system as a spoiler has been designed and tried to show effects of this devise on braking system of vehicle. Moreover, position of this spoiler has been considered in order to find optimum point from safety and highest rate of braking view for spoiler. Fluent software is our main tool to calculate rate of extra force that is produced by spoiler and this article has been tried to use various figures that are showed effects of spoiler at different speeds, angles and also heights. Other major points in this paper are static pressure of vehicle at different speed and statues. Undoubtedly, shape of spoiler would be very important, so in this investigation spoiler has been designed and proposed after a lot of simulation for different shape of spoiler. In the end, there is very important part as validation since these simulations must be validated by experimental way to prove our claims. In this case, a special kind of BMW has been simulated and results have been compared by experimental results that have been presented by BMW Company. Difference between simulation results and experimental results are very little and it could be a suitable validation for this project.

Keywords: drag force, down force, vehicle, spoiler

Procedia PDF Downloads 320
7774 Imperfect Production Inventory Model with Inspection Errors and Fuzzy Demand and Deterioration Rates

Authors: Chayanika Rout, Debjani Chakraborty, Adrijit Goswami

Abstract:

Our work presents an inventory model which illustrates imperfect production and imperfect inspection processes for deteriorating items. A cost-minimizing model is studied considering two types of inspection errors, namely, Type I error of falsely screening out a proportion of non-defects, thereby passing them on for rework and Type II error of falsely not screening out a proportion of defects, thus selling those to customers which incurs a penalty cost. The screened items are reworked; however, no returns are entertained due to deteriorating nature of the items. In more practical situations, certain parameters such as the demand rate and the deterioration rate of inventory cannot be accurately determined, and therefore, they are assumed to be triangular fuzzy numbers in our model. We calculate the optimal lot size that must be produced in order to minimize the total inventory cost for both the crisp and the fuzzy models. A numerical example is also considered to exemplify the procedure which is followed by the analysis of sensitivity of various parameters on the decision variable and the objective function.

Keywords: deteriorating items, EPQ, imperfect quality, rework, type I and type II inspection errors

Procedia PDF Downloads 169
7773 Audit on Antibiotic Prophylaxis and Post-Procedure Complication Rate for Patients Undergoing Transperineal Template Biopsies of the Prostate

Authors: W. Hajuthman, R. Warner, S. Rahman, M. Abraham, H. Helliwell, D. Bodiwala

Abstract:

Context: Prostate cancer is a prevalent cancer in males in Europe and the US, with diagnosis primarily relying on PSA testing, mpMRI, and subsequent biopsies. However, this diagnostic strategy may lead to complications for patients. Research Aim: The aim of this study is to assess compliance with trust guidelines for antibiotic prophylaxis in patients undergoing transperineal template biopsies of the prostate and evaluate the rate of post-procedure complications. Methodology: This study is conducted retrospectively over an 8-month period. Data collection includes patient demographics, compliance with trust guidelines, associated risk factors, and post-procedure complications such as infection, haematuria, and urinary retention. Findings: The audit includes 100 patients with a median age of 66.11. The compliance with pre-procedure antibiotics was 98%, while compliance with antibiotic prophylaxis recommended by trust guidelines was 68%. Among the patients, 3% developed post-procedure sepsis, with 2 requiring admission for intravenous antibiotics. No evident risk factors were identified in these cases. Additionally, post-procedure urinary retention occurred in 3% of patients and post-procedure haematuria in 2%. Theoretical Importance: This study highlights the increasing use of transperineal template biopsies across UK centres and suggests that having a standardized protocol and compliance with guidelines can reduce confusion, ensure appropriate administration of antibiotics, and mitigate post-procedure complications. Data Collection and Analysis Procedures: Data for this study is collected retrospectively, involving the extraction and analysis of relevant information from patient records over the specified 8-month period. Question Addressed: This study addresses the following research questions: (1) What is the compliance rate with trust guidelines for antibiotic prophylaxis in transperineal template biopsies of the prostate? (2) What is the rate of post-procedure complications, such as infection, haematuria, and urinary retention? Conclusion: Transperineal template biopsies are becoming increasingly prevalent in the UK. Implementing a standardized protocol and ensuring compliance with guidelines can reduce confusion, ensure proper administration of antibiotics, and potentially minimize post-procedure complications. Additionally, considering that studies show no difference in outcomes when prophylactic antibiotics are not used, the reminder to follow trust guidelines may prompt a re-evaluation of antibiotic prescribing practices.

Keywords: prostate, transperineal template biopsies of prostate, antibiotics, complications, microbiology, guidelines

Procedia PDF Downloads 62
7772 A Mathematical Model of Blood Perfusion Dependent Temperature Distribution in Transient Case in Human Dermal Region

Authors: Yogesh Shukla

Abstract:

Many attempts have been made to study temperature distribution problem in human tissues under normal environmental and physiological conditions at constant arterial blood temperature. But very few attempts have been made to investigate temperature distribution in human tissues under different arterial blood temperature. In view of above, a finite element model has been developed to unsteady temperature distribution in dermal region in human body. The model has been developed for one dimension unsteady state case. The variation in parameters like thermal conductivity, blood mass flow and metabolic activity with respect to position and time has been incorporated in the model. Appropriate boundary conditions have been framed. The central difference approach has been used in space variable and trapezoidal rule has been employed a long time variable. Numerical results have been obtained to study relationship among temperature and time.

Keywords: rate of metabolism, blood mass flow rate, thermal conductivity, heat generation, finite element method

Procedia PDF Downloads 339
7771 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production

Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez

Abstract:

Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.

Keywords: CEDI, hydrogen carrier, LHHW, RDS

Procedia PDF Downloads 28
7770 A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions

Authors: Karima Bourenane, Aissa Keffous

Abstract:

In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions.

Keywords: silicon carbide, dissolution, Chemical etching, mechanism

Procedia PDF Downloads 36
7769 Real-world Characterization of Treatment Intensified (Add-on to Metformin) Adults with Type 2 Diabetes in Pakistan: A Multi-center Retrospective Study (Converge)

Authors: Muhammad Qamar Masood, Syed Abbas Raza, Umar Yousaf Raja, Imran Hassan, Bilal Afzal, Muhammad Aleem Zahir, Atika Shaheer

Abstract:

Background: Cardiovascular disease (CVD) is a major burden among people with type 2 diabetes (T2D) with 1 in 3 reported to have CVD. Therefore, understanding real-world clinical characteristics and prescribing patterns could help in better care. Objective: The CONVERGE (Cardiovascular Outcomes and Value in the Real world with GLP-1RAs) study characterized demographics and medication usage patterns in T2D intensified (add-on to metformin) overall population. The data were further divided into subgroups {dipeptidyl peptidase-4 inhibitors (DPP-4is), sulfonylureas (SUs), insulins, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT-2is)}, according to the latest prescribed antidiabetic agent (ADA) in India/Pakistan/Thailand. Here, we report findings from Pakistan. Methods: A multi-center retrospective study utilized data from medical records between 13-Sep-2008 (post-market approval of GLP-1RAs) and 31-Dec-2017 in adults (≥18-year-old). The data for this study were collected from 05 centers / institutes located in major cities of Pakistan, including Karachi, Lahore, Islamabad, and Multan. These centers included National Hospital, Aga Khan University Hospital, Diabetes Endocrine Clinic Lahore, Shifa International Hospital, Mukhtar A Sheikh Hospital Multan. Data were collected at start of medical record and at 6 or 12-months prior to baseline based on variable type; analyzed descriptively. Results: Overall, 1,010 patients were eligible. At baseline, overall mean age (SD) was 51.6 (11.3) years, T2D duration was 2.4 (2.6) years, HbA1c was 8.3% (1.9) and 35% received ≥1CVD medications in the past 1-year (before baseline). Most frequently prescribed ADAs post-metformin were DPP-4is and SUs (~63%). Only 6.5% received GLP-1RAs and SGLT-2is were not available in Pakistan during the study period. Overall, it took a mean of 4.4 years and 5 years to initiate GLP-1RAs and SGLT-2is, respectively. In comparison to other subgroups, more patients from GLP-1RAs received ≥3 types of ADA (58%), ≥1 CVD medication (64%) and had higher body mass index (37kg/m2). Conclusions: Utilization of GLP-1RAs and SGLT-2is was low, took longer time to initiate and not before trying multiple ADAs. This may be due to lack of evidence for CV benefits for these agents during the study period. The planned phase 2 of the CONVERGE study can provide more insights into utilization and barriers to prescribe GLP-1RAs and SGLT-2is post 2018 in Pakistan.

Keywords: type 2 diabetes, GLP-1RA, treatment intensification, cardiovascular disease

Procedia PDF Downloads 42
7768 An Accidental Forecasting Modelling for Various Median Roads

Authors: Pruethipong Xinghatiraj, Rajwanlop Kumpoopong

Abstract:

Considering the current situation of road safety, Thailand has the world’s second-highest road fatality rate. Therefore, decreasing the road accidents in Thailand is a prime policy of the Thai government seeking to accomplish. One of the approaches to reduce the accident rate is to improve road environments to fit with the local behavior of the road users. The Department of Highways ensures that choosing the road median types right to the road characteristics, e.g. roadside characteristics, traffic volume, truck traffic percentage, etc., can decrease the possibility of accident occurrence. Presently, raised median, depressed median, painted median and median barriers are typically used in Thailand Highways. In this study, factors affecting road accident for each median type will be discovered through the analysis of the collecting of accident data, death numbers on sample of 600 Kilometers length across the country together with its roadside characteristics, traffic volume, heavy vehicles percentage, and other key factors. The benefits of this study can assist the Highway designers to select type of road medians that can match local environments and then cause less accident prone.

Keywords: highways, road safety, road median, forecasting model

Procedia PDF Downloads 249
7767 Landfill Leachate and Settled Domestic Wastewater Co-Treatment Using Activated Carbon in Sequencing Batch Reactors

Authors: Amin Mojiri, Hamidi Abdul Aziz

Abstract:

Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. In literature, for treatment of wastewater and leachate, different ways of biological treatment were used. Sequencing batch reactor (SBR) is a kind of biological treatment. This study investigated the co-treatment of landfill leachate and domestic waste water by SBR and powdered activated carbon augmented (PAC) SBR process. The response surface methodology (RSM) and central composite design (CCD) were employed. The independent variables were aeration rate (L/min), contact time (h), and the ratio of leachate to wastewater mixture (%; v/v)). To perform an adequate analysis of the aerobic process, three dependent parameters, i.e. COD, color, and ammonia-nitrogen (NH3-N or NH4-N) were measured as responses. The findings of the study indicated that the PAC-SBR showed a higher performance in elimination of certain pollutants, in comparison with SBR. With the optimal conditions of aeration rate (0.6 L/min), leachate to waste water ratio (20%), and contact time (10.8 h) for the PAC-SBR, the removal efficiencies for color, NH3-N, and COD were 72.8%, 98.5%, and 65.2%, respectively.

Keywords: co-treatment, landfill Leachate, wastewater, sequencing batch reactor, activate carbon

Procedia PDF Downloads 454
7766 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment

Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar

Abstract:

Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate

Procedia PDF Downloads 309
7765 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 262
7764 The Role of Genetic Markers in Prostate Cancer Diagnosis and Treatment

Authors: Farman Ali, Asif Mahmood

Abstract:

The utilization of genetic markers in prostate cancer management represents a significant advance in personalized medicine, offering the potential for more precise diagnosis and tailored treatment strategies. This paper explores the pivotal role of genetic markers in the diagnosis and treatment of prostate cancer, emphasizing their contribution to the identification of individual risk profiles, tumor aggressiveness, and response to therapy. By integrating current research findings, we discuss the application of genetic markers in developing targeted therapies and the implications for patient outcomes. Despite the promising advancements, challenges such as accessibility, cost, and the need for further validation in diverse populations remain. The paper concludes with an outlook on future directions, underscoring the importance of genetic markers in revolutionizing prostate cancer care.

Keywords: prostate cancer, genetic markers, personalized medicine, BRCA1 and BRCA2

Procedia PDF Downloads 41
7763 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring

Authors: Younghoon Kim, Seoung Bum Kim

Abstract:

One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.

Keywords: control chart, mixed integer programming, one-class classification, support vector data description

Procedia PDF Downloads 162
7762 Pellet Feed Improvements through Vitamin C Supplementation for Snakehead (Channa striata) Culture in Vietnam

Authors: Pham Minh Duc, Tran Thi Thanh Hien, David A. Bengtson

Abstract:

Laboratory feeding trial: the study was conducted to find out the optimal dietary vitamin C, or ascorbic acid (AA) levels in terms of the growth performance of snakehead. The growth trial included six treatments with five replications. Each treatment contained 0, 125, 250, 500, 1000 and 2000 mg AA equivalent kg⁻¹ diet which included six iso-nitrogenous (45% protein), iso-lipid (9% lipid) and isocaloric (4.2 Kcal.g¹). Eighty snakehead fingerlings (6.24 ± 0.17 g.fish¹) were assigned randomly in 0.5 m³ composite tanks. Fish were fed twice daily on demand for 8 weeks. The result showed that growth rates increased, protein efficiency ratio increased and the feed conversion ratio decreased in treatments with AA supplementation compared with control treatment. The survival rate of fish tends to increase with increase AA level. The number of RBCs, lysozyme in treatments with AA supplementation tended to rise significantly proportional to the concentration of AA. The number of WBCs of snakehead in treatments with AA supplementation was higher 2.1-3.6 times. In general, supplementation of AA in the diets for snakehead improved growth rate, feed efficiency and immune response. Hapa on-farm trial: based on the results of the laboratory feeding trial, the effects of AA on snakehead in hapas to simulate farm conditions, was tested using the following treatments: commercial feed; commercial feed plus hand mixed AA at 500; 750 and 1000 mg AA.kg⁻¹; SBM diet without AA; SBM diet plus 500; 750 and 1000 mg AA.kg⁻¹. The experiment was conducted in two experimental ponds (only SBM diet without AA placed in one pond and the rest in the other pond) with four replicate hapa each. Stocking density was 150 fish.m² and culture period was 5 months until market size was attained. The growth performance of snakehead and economic aspects were examined in this research.

Keywords: fish health, growth rate, snakehead, Vitamin C

Procedia PDF Downloads 87
7761 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model

Authors: A. Shakoor, M. Arshad

Abstract:

The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.

Keywords: groundwater quality, groundwater management, PMWIN, MT3D model

Procedia PDF Downloads 363
7760 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression

Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug

Abstract:

Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.

Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam

Procedia PDF Downloads 58
7759 Iron Removal from Aqueous Solutions by Fabricated Calcite Ooids

Authors: Al-Sayed A. Bakr, W. A. Makled

Abstract:

The precipitated low magnesium calcite ooids in assembled softening unit from natural Mediterranean seawater samples were used as adsorbent media in a comparative study with granular activated carbon media in a two separated single-media filtration vessels (operating in parallel) for removal of iron from aqueous solutions. In each vessel, the maximum bed capacity, which required to be filled, was 13.2 l and the bed filled in the vessels of ooids and GAC were 8.6, and 6.6 l, respectively. The operating conditions applied to the semi-pilot filtration unit were constant pH (7.5), different temperatures (293, 303 and 313 k), different flow rates (20, 30, 40, 50 and 60 l/min), different initial Fe(II) concentrations (15–105 mg/ l) and the calculated adsorbent masses were 34.1 and 123 g/l for GAC and calcite ooids, respectively. At higher temperature (313 k) and higher flow rate (60 l/min), the maximum adsorption capacities for ferrous ions by GAC and calcite ooids filters were 3.87 and 1.29 mg/g and at lower flow rate (20 l/min), the maximum adsorption capacities were 2.21 and 3.95 mg/g, respectively. From the experimental data, Freundlich and Langmuir adsorption isotherms were used to verify the adsorption performance. Therefore, the calcite ooids could act as new highly effective materials in iron removal from aqueous solutions.

Keywords: water treatment, calcite ooids, activated carbon, Fe(II) removal, filtration

Procedia PDF Downloads 134
7758 Integration of Rapid Generation Technology in Pulse Crop Breeding

Authors: Saeid H. Mobini, Monika Lulsdorf, Thomas D. Warkentin

Abstract:

The length of the breeding cycle from seed to seed is a limiting factor in the development of improved homozygous lines for breeding or recombinant inbred lines (RILs) for genetic analysis. The objective of this research was to accelerate the production of field pea RILs through application of rapid generation technology (RGT). RGT is based on the principle of growing miniature plants in an artificial medium under controlled conditions, and allowing them to produce a few flowers which develop seeds that are harvested prior to normal seed maturity. We aimed to maintain population size and genetic diversity in regeneration cycles. The effects of flurprimidol (a gibberellin synthesis inhibitor), plant density, hydroponic system, scheduled fertilizer applications, artificial light spectrum, photoperiod, and light/dark temperature were evaluated in the development of RILs from a cross between cultivars CDC Dakota and CDC Amarillo. The main goal was to accelerate flowering while reducing maintenance and space costs. In addition, embryo rescue of immature seeds was tested for shortening the seed fill period. Data collected over seven generations included plant height, the percentage of plant survival, flowering rate, seed setting rate, the number of seeds per plant, and time from seed to seed. Applying 0.6 µM flurprimidol reduced the internode length. Plant height was decreased to approximately 32 cm allowing for higher plant density without a delay in flowering and seed setting rate. The three light systems (T5 fluorescent bulbs, LEDs, and High Pressure Sodium +Metal-halide lamp) evaluated did not differ significantly in terms of flowering time in field pea. Collectively, the combination of 0.6 µM flurprimidol, 217 plant. m-2, 20 h photoperiod, 21/16 oC light/dark temperature in a hydroponic system with vermiculite substrate, applying scheduled fertilizer application based on growth stage, and 500 µmole.m-2.s-1 light intensity using T5 bulbs resulted in 100% of plants flowering within 34 ± 3 days and 96.5% of plants completed seed setting in 68.2 ± 3.6 days, i.e., 30-45 days/generation faster than conventional single seed descent (SSD) methods. These regeneration cycles were reproducible consistently. Hence, RGT could double (5.3) generations per year, using 3% occupying space, compared to SSD (2-3 generation/year). Embryo rescue of immature seeds at 7-8 mm stage, using commercial fertilizer solutions (Holland’s Secret™) showed seed setting rate of 95%, while younger embryos had lower germination rate. Mature embryos had a seed setting rate of 96.5% without either hormones or sugar added. So, considering the higher cost of embryo rescue using a procedure which requires skill, additional materials, and expenses, it could be removed from RGT with a further cost saving, and the process could be stopped between generations if required.

Keywords: field pea, flowering, rapid regeneration, recombinant inbred lines, single seed descent

Procedia PDF Downloads 347
7757 Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation

Authors: P. Mukhopadhyay, N. C. Dey

Abstract:

Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.

Keywords: workload, working heart rate, occupational health hazard, industrial worker

Procedia PDF Downloads 118
7756 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim

Abstract:

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 259
7755 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air

Procedia PDF Downloads 388
7754 Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus)) (Diptera: Culicidae) in Penang Island, Malaysia

Authors: A. H. Maimusa, A. Abu Hassan, Nur Faeza A. Kassim

Abstract:

In this study, we report on the main life table developmental attributes of laboratory colonies of wild strains Ae. albopictus and Ae. aegypti. The raw life history data of the two species were analyzed and compared based on the age-stage and two-sex life table. The total pre-adult development times were 9.47 days (Ae. albopictus) and 8.76 days (Ae. aegypti). The adult pre-oviposition periods (APOP) was 1.61 day for Ae. albopictus and 2.02 for Ae. aegypti. The total pre-oviposition period (TPOP) of Ae. albopictus is significantly longer (11.66 days) than (10.75 days) for Ae. aegypti. The mean intrinsic rate of increase (r) was 0.124 days (Ae. albopictus) and 1.151 days (Ae. aegypti) while the mean finite rate of increase (λ) was 1.13 day (Ae. albopictus) and (1.16 d) (Ae. aegypti). The net reproductive rates (Ro) were 8.10 and 10.75 for Ae. albopictus and Ae. aegypti, respectively. The mean generation time (T) for Ae. albopictus and Ae. aegypti, were 16.81 days and 15.77 days respectively. The mean development time for each stage insignificantly correlated with temperature (r = -0.208, p > 0.05) and (r = -0.312, p > 0.05) for Ae. albopictus and Ae. aegypti respectively. The life expectancy was 19.01 and 19.94 days for Ae. albopictus and Ae. aegypti respectively. Mortality occurred mostly during the adult stage and ranged between 0.01 and 0.07%. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategist characterized by a high r, a large Ro, and short T. This kind of information is crucial in understanding mosquito population dynamics in disease transmission and control.

Keywords: Ae. aegypti, Ae. albopictus, age-stage, life table, two-sex

Procedia PDF Downloads 302
7753 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Authors: Manoj Kumar Dutta

Abstract:

Wavelength division multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating fiber delay lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput

Procedia PDF Downloads 431
7752 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption

Authors: I. O. Nascimento, J. T. Manzi

Abstract:

The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.

Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers

Procedia PDF Downloads 247
7751 Ground Water Sustainable Management in Ethiopia, Africa

Authors: Ebissa Gadissa Kedir

Abstract:

This paper presents the potential groundwater assessment and sustainable management in the selected study area. It is the most preferred water source in all climatic zones for its convenient availability, drought dependability, excellent quality, and low development cost. The rural areas, which account for more than 85% of the country's population, are encountered a shortage of potable water supply which can be solved by proper groundwater utilization. For the present study area, the groundwater potential is assessed and analysed. Thus, the study area falls in four potential groundwater zones ranging from poor to high. However, the current groundwater management practices in the study area are poor. Despite the pervasive and devastating challenges, immediate and proper responses have not yet been given to the problem. Thus, such frustrating threats and challenges have initiated the researcher to work in the project area.

Keywords: GW potential, GW management, GW sustainability, South gonder, Ethiopia

Procedia PDF Downloads 44