Search results for: the health belief model
23029 Economic Development Process: A Compartmental Analysis of a Model with Two Delays
Authors: Amadou Banda Ndione, Charles Awono Onana
Abstract:
In this paper the compartmental approach is applied to build a macroeconomic model characterized by countries. We consider a total of N countries that are subdivided into three compartments according to their economic status: D(t) denotes the compartment of developing countries at time t, E(t) stands for the compartment of emerging countries at time t while A(t) represents advanced countries at time t. The model describes the process of economic development and includes the notion of openness through collaborations between countries. Two delays appear in this model to describe the average time necessary for collaborations between countries to become efficient for their development process. Our model represents the different stages of development. It further gives the conditions under which a country can change its economic status and demonstrates the short-term positive effect of openness on economic growth. In addition, we investigate bifurcation by considering the delay as a bifurcation parameter and examine the onset and termination of Hopf bifurcations from a positive equilibrium. Numerical simulations are provided in order to illustrate the theoretical part and to support discussion.Keywords: compartmental systems, delayed dynamical system, economic development, fiscal policy, hopf bifurcation
Procedia PDF Downloads 13723028 Application of Stochastic Models to Annual Extreme Streamflow Data
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.Keywords: stochastic models, ARIMA, extreme streamflow, Karkheh river
Procedia PDF Downloads 14823027 Application of Nonlinear Model to Optimize the Coagulant Dose in Drinking Water Treatment
Authors: M. Derraz, M.Farhaoui
Abstract:
In the water treatment processes, the determination of the optimal dose of the coagulant is an issue of particular concern. Coagulant dosing is correlated to raw water quality which depends on some parameters (turbidity, ph, temperature, conductivity…). The objective of this study is to provide water treatment operators with a tool that enables to predict and replace, sometimes, the manual method (jar testing) used in this plant to predict the optimum coagulant dose. The model is constructed using actual process data for a water treatment plant located in the middle of Morocco (Meknes).Keywords: coagulation process, aluminum sulfate, model, coagulant dose
Procedia PDF Downloads 27723026 Pattern Recognition Based on Simulation of Chemical Senses (SCS)
Authors: Nermeen El Kashef, Yasser Fouad, Khaled Mahar
Abstract:
No AI-complete system can model the human brain or behavior, without looking at the totality of the whole situation and incorporating a combination of senses. This paper proposes a Pattern Recognition model based on Simulation of Chemical Senses (SCS) for separation and classification of sign language. The model based on human taste controlling strategy. The main idea of the introduced model is motivated by the facts that the tongue cluster input substance into its basic tastes first, and then the brain recognizes its flavor. To implement this strategy, two level architecture is proposed (this is inspired from taste system). The separation-level of the architecture focuses on hand posture cluster, while the classification-level of the architecture to recognizes the sign language. The efficiency of proposed model is demonstrated experimentally by recognizing American Sign Language (ASL) data set. The recognition accuracy obtained for numbers of ASL is 92.9 percent.Keywords: artificial intelligence, biocybernetics, gustatory system, sign language recognition, taste sense
Procedia PDF Downloads 29423025 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter
Authors: Yi Huang, Clemens Guehmann
Abstract:
In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model
Procedia PDF Downloads 28523024 Beyond Classic Program Evaluation and Review Technique: A Generalized Model for Subjective Distributions with Flexible Variance
Authors: Byung Cheol Kim
Abstract:
The Program Evaluation and Review Technique (PERT) is widely used for project management, but it struggles with subjective distributions, particularly due to its assumptions of constant variance and light tails. To overcome these limitations, we propose the Generalized PERT (G-PERT) model, which enhances PERT by incorporating variability in three-point subjective estimates. Our methodology extends the original PERT model to cover the full range of unimodal beta distributions, enabling the model to handle thick-tailed distributions and offering formulas for computing mean and variance. This maintains the simplicity of PERT while providing a more accurate depiction of uncertainty. Our empirical analysis demonstrates that the G-PERT model significantly improves performance, particularly when dealing with heavy-tail subjective distributions. In comparative assessments with alternative models such as triangular and lognormal distributions, G-PERT shows superior accuracy and flexibility. These results suggest that G-PERT offers a more robust solution for project estimation while still retaining the user-friendliness of the classic PERT approach.Keywords: PERT, subjective distribution, project management, flexible variance
Procedia PDF Downloads 1823023 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure
Authors: T. Nozu, K. Hibi, T. Nishiie
Abstract:
This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure
Procedia PDF Downloads 24423022 Nutrition and Physical Activity Intervention on Health Screening Outcomes for Singaporean Employees: A Worksite Based Randomised Controlled Trial
Authors: Elaine Wong
Abstract:
This research protocol aims to explore and justify the need for nutrition and physical activity intervention to improve health outcomes among SME (Small Medium Enterprise) employees. It was found that the worksite is an ideal and convenient setting for employees to take charge of their health thru active participation in health programmes since they spent a great deal of time at their workplace. This study will examine the impact of both general or/and targeted health interventions in both SME and non-SME companies utilizing the Workplace Health Promotion (WHP) grant over a 12 months period and assessed the improvement in chronic health disease outcomes in Singapore. Random sampling of both non-SME and SME companies will be conducted to undergo health intervention and statistical packages such as Statistical Package for Social Science (SPSS) 25 will be used to examine the impact of both general and targeted interventions on employees who participate and those who do not participate in the intervention and their effects on blood glucose (BG), blood lipid, blood pressure (BP), body mass index (BMI), and body fat percentage. Using focus groups and interviews, the data results will be transcribed to investigate enablers and barriers to workplace health intervention revealed by employees and WHP coordinators that could explain the variation in the health screening results across the organisations. Dietary habits and physical activity levels of the employees participating and not participating in the intervention will be collected before and after intervention to assess any changes in their lifestyle practices. It makes economic sense to study the impact of these interventions on health screening outcomes across various organizations that are existing grant recipients to justify the sustainability of these programmes by the local government. Healthcare policy makers and employers can then tailor appropriate and relevant programmes to manage these escalating chronic health disease conditions which is integral to the competitiveness and productivity of the nation’s workforce.Keywords: chronic diseases, health screening, nutrition and fitness intervention , workplace health
Procedia PDF Downloads 14823021 Simulation of Kinetic Friction in L-Bending of Sheet Metals
Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang
Abstract:
This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.Keywords: friction, L-bending, springback, Stribeck curves
Procedia PDF Downloads 49123020 How to Capitalize on BioCNG at a Wastewater Plant
Authors: William G. "Gus" Simmons
Abstract:
Municipal and industrial wastewater plants across our country utilize anaerobic digestion as either primary treatment or as a means of waste sludge treatment and reduction. The emphasis on renewable energy and clean energy over the past several years, coupled with increasing electricity costs and increasing consumer demands for efficient utility operations has led to closer examination of the potential for harvesting the energy value of the biogas produced by anaerobic digestion. Although some facilities may have already come to the belief that harvesting this energy value is not practical or a top priority as compared to other capital needs and initiatives at the wastewater plant, we see that many are seeing biogas, and an opportunity for additional revenues, go up in flames as they continue to flare. Conversely, few wastewater plants under progressive and visionary leadership have demonstrated that harvesting the energy value from anaerobic digestion is more than “smoke and hot air”. From providing thermal energy to adjacent or on-campus operations to generating electricity and/or transportation fuels, these facilities are proving that energy harvesting can not only be profitable, but sustainable. This paper explores ways in which wastewater treatment plants can increase their value and import to the communities they serve through the generation of clean, renewable energy; also presented the processes in which these facilities moved from energy and cost sinks to sparks of innovation and pride in the communities in which they operate.Keywords: anaerobic digestion, harvesting energy, biogas, renewable energy, sustainability
Procedia PDF Downloads 31623019 A Case Study on Smart Energy City of the UK: Based on Business Model Innovation
Authors: Minzheong Song
Abstract:
The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system.Keywords: smart city, smart energy, business model, business model innovation (BMI)
Procedia PDF Downloads 16223018 A Cross-Cultural Investigation of Self-Compassion in Adolescents Across Gender
Authors: H. N. Cheung
Abstract:
Self-compassion encourages one to accept oneself, reduce self-criticism and self-judgment, and see one’s shortcomings and setbacks in a balanced view. Adolescent self-compassion is a crucial protective factor against mental illness. It is, however, affected by gender. Given the scarcity of self-compassion scales for adolescents, the current study evaluates the Self-Compassion Scale for Youth (SCS-Y) in a large cross-cultural sample and investigates how the subscales of SCS-Y relate to the dimensions of depressive symptoms across gender. Through the internet-based Qualtrics, a total of 2881 teenagers aged 12 to 18 years were recruited from Hong Kong (HK), China, and the United Kingdom. A Multiple Indicator Multiple Cause (MIMIC) model was used to evaluate measurement invariance of the SCS-Y, and differential item functioning (DIF) was checked across gender. Upon the establishment of the best model, a multigroup structural equation model (SEM) was built between factors of SCS-Y and Multidimensional depression assessment scale (MDAS) which assesses four dimensions of depressive symptoms (emotional, cognitive, somatic and interpersonal). The SCS-Y was shown to have good reliability and validity. The MIMIC model produced a good model fit for a hypothetical six-factor model (CFI = 0.980; TLI = 0.974; RMSEA = 0.038) and no item was flagged for DIF across gender. A gender difference was observed between SCS-Y factors and depression dimensions. Conclusions: The SCS-Y exhibits good psychometric characteristics, including measurement invariance across gender. The study also highlights the gender difference between self-compassion factors and depression dimensions.Keywords: self compassion, gender, depression, structural equation modelling, MIMIC model
Procedia PDF Downloads 7123017 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model
Authors: N. Nivedita, S. Durbha
Abstract:
Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain
Procedia PDF Downloads 52923016 AIPM:An Integrator and Pull Request Matching Model in Github
Authors: Zhifang Liao, Yanbing Li, Li Xu, Yan Zhang, Xiaoping Fan, Jinsong Wu
Abstract:
Pull Request (PR) is the primary method for code contributions from the external contributors in Github. PR review is an essential part of open source software developments for maintaining the quality of software. Matching a new PR of an appropriate integrator will make the PR review more effective. However, PR and integrator matching are now organized manually in Github. To reduce this cost, we presented an AIPM model to predict highly relevant integrator of incoming PRs. AIPM uses topic model to extract topics from the PRs, and builds a one-to-one correspondence between topics and integrators. Then, AIPM finds the most suitable integrator according to the maximum entry of the topic-document distribution. On average, AIPM can reach a precision of 60%, and even in some projects, can reach a precision of 80%.Keywords: pull Request, integrator matching, Github, open source project, topic model
Procedia PDF Downloads 29923015 Number of Parameters of Anantharam's Model with Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of Anantharam’s model within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters of Anantharam’s model. We consider single-input single-output systems in this paper. By the investigation, we find three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: linear systems, parametrization, coprime factorization, number of parameters
Procedia PDF Downloads 21423014 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 17823013 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model
Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey
Abstract:
This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system
Procedia PDF Downloads 36923012 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 35323011 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System
Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López
Abstract:
Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring
Procedia PDF Downloads 24623010 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability
Procedia PDF Downloads 27323009 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications
Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu
Abstract:
On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.Keywords: cloud computing, CPU intensive applications, resource optimization, strategy
Procedia PDF Downloads 27823008 Simulation Model of Biosensor Based on Gold Nanoparticles
Authors: Kholod Hajo
Abstract:
In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics
Procedia PDF Downloads 25723007 Evidence Based Approach on Beliefs and Perceptions on Mental Health Disorder and Substance Abuse: The Role of a Social Worker
Authors: Helena Baffoe
Abstract:
The US has developed numerous programs over the past 50 years to enhance the lives of those who suffer from mental health illnesses and substance abuse, as well as the effectiveness of their treatments. Despite these advances over the past 50 years, there hasn't been a corresponding improvement in American public attitudes and beliefs about mental health disorders and substance abuse. Highly publicized acts of violence frequently elicit comments that blame the perpetrator's perceived mental health disorder since such people are thought to be substance abusers. Despite these strong public beliefs and perception about mental disorder and substance abuse, concreate empirical evidence that entail this perception is lacking, and evidence of their effectiveness has not been integrated. A rich data was collected from Substance Abuse and Mental Health Services Administration (SAMHSA) with a hypothesis that people who are diagnosed with a mental health disorder are likely to be diagnosed with substance abuse using logit regression analysis and Instrumental Variable. It was found that depressive, anxiety, and trauma/stressor mental disorders constitute the most common mental disorder in the United States, and the study could not find statistically significant evidence that being diagnosed with these leading mental health disorders in the United States does necessarily imply that such a patient is diagnosed with substances abuse. Thus, the public has a misconception of mental health and substance abuse issues, and social workers' responsibilities are outlined in order to assist ameliorate this attitude and perception.Keywords: mental health disorder, substance use, empirical evidence, logistic regression
Procedia PDF Downloads 7823006 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical
Authors: Nai-Chia Chao, Meng-Chi Shih
Abstract:
Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.Keywords: arts integration, co-working, children's musical
Procedia PDF Downloads 29923005 Understanding Knowledge, Skills and Competency Needs in Digital Health for Current and Future Health Workforce
Authors: Sisira Edirippulige
Abstract:
Background: Digital health education and training (DHET) is imperative for preparing current and future clinicians to work competently in digitally enabled environments. Despite rapid integration of digital health in modern health services, systematic education and training opportunities for health workers is still lacking. Objectives: This study aimed to investigate healthcare professionals’ perspectives and expectations regarding the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Methods: A qualitative study design with semi-structured individual interviews was employed. A purposive sample method was adopted to collect relevant information from the health workers. Inductive thematic analysis was used to analyse data. Interviews were audio-recorded and transcribed verbatim. Consolidated Criteria for Reporting Qualitative Research (COREQ) was followed when we reported this study. Results: Two themes emerged while analysing the data: (1) what to teach in DHET and (2) how to teach DHET. Overall, healthcare professionals agreed that DHET is important for preparing current and future clinicians for working competently in digitally enabled environments. Knowledge relating to what is digital health, types of digital health, use of technology and human factors in digital health were considered as important to be taught in DHET. Skills relating to digital health consultations, clinical information system management and remote monitoring were considered important to be taught. Blended learning which combined e-learning and classroom-based teaching, simulation sessions and clinical rotations were suggested by healthcare professionals as optimal approaches to deliver the above-mentioned content. Conclusions: This study is the first of its kind to investigate health professionals’ perspectives and expectations relating to the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Healthcare workers are keen to acquire relevant knowledge, skills and competencies related to digital health. Different modes of education delivery is of interest to fit in with busy schedule of health workers.Keywords: digital health, telehealth, telemedicine, education, curriculum
Procedia PDF Downloads 14923004 Classification of Barley Varieties by Artificial Neural Networks
Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran
Abstract:
In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.Keywords: physical properties, artificial neural networks, barley, classification
Procedia PDF Downloads 17823003 Geo-Additive Modeling of Family Size in Nigeria
Authors: Oluwayemisi O. Alaba, John O. Olaomi
Abstract:
The 2013 Nigerian Demographic Health Survey (NDHS) data was used to investigate the determinants of family size in Nigeria using the geo-additive model. The fixed effect of categorical covariates were modelled using the diffuse prior, P-spline with second-order random walk for the nonlinear effect of continuous variable, spatial effects followed Markov random field priors while the exchangeable normal priors were used for the random effects of the community and household. The Negative Binomial distribution was used to handle overdispersion of the dependent variable. Inference was fully Bayesian approach. Results showed a declining effect of secondary and higher education of mother, Yoruba tribe, Christianity, family planning, mother giving birth by caesarean section and having a partner who has secondary education on family size. Big family size is positively associated with age at first birth, number of daughters in a household, being gainfully employed, married and living with partner, community and household effects.Keywords: Bayesian analysis, family size, geo-additive model, negative binomial
Procedia PDF Downloads 54123002 Tackling the Value-Action-Gap: Improving Civic Participation Using a Holistic Behavioral Model Approach
Authors: Long Pham, Julia Blanke
Abstract:
An increasingly popular way of establishing citizen engagement within communities is through ‘city apps’. Currently, most of these mobile applications seem to be extensions of the existing communication media, sometimes merely replicating the information available on the classical city web sites, and therefore provide minimal additional impact on citizen behavior and engagement. In order to overcome this challenge, we propose to use a holistic behavioral model to generate dynamic and contextualized app content based on optimizing well defined city-related performance goals constrained by the proposed behavioral model. In this paper, we will show how the data collected by the CorkCitiEngage project in the Irish city of Cork can be utilized to calibrate aspects of the proposed model enabling the design of a personalized citizen engagement app aiming at positively influencing people’s behavior towards more active participation in their communities. We will focus on the important aspect of intentions to act, which is essential for understanding the reasons behind the common value-action-gap being responsible for the mismatch between good intentions and actual observable behavior, and will discuss how customized app design can be based on a rigorous model of behavior optimized towards maximizing well defined city-related performance goals.Keywords: city apps, holistic behaviour model, intention to act, value-action-gap, citizen engagement
Procedia PDF Downloads 22623001 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem
Authors: E. Koyuncu
Abstract:
The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling
Procedia PDF Downloads 33823000 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma
Authors: Abderazak Guettaf
Abstract:
The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma
Procedia PDF Downloads 491