Search results for: predictive validity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2034

Search results for: predictive validity

294 Re-Engineering Management Process in IRAN’s Smart Schools

Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi

Abstract:

Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.

Keywords: re-engineering, management process, smart school, Iran's school

Procedia PDF Downloads 243
293 Modelling of Phase Transformation Kinetics in Post Heat-Treated Resistance Spot Weld of AISI 1010 Mild Steel

Authors: B. V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani

Abstract:

Automobile manufacturers are constantly seeking means to reduce the weight of car bodies. The usage of several steel grades in auto body assembling has been found to be a good technique to enlighten vehicles weight. This few years, the usage of dual phase (DP) steels, transformation induced plasticity (TRIP) steels and boron steels in some parts of the auto body have become a necessity because of their lightweight. However, these steels are martensitic, when they undergo a fast heat treatment, the resultant microstructure is essential, made of martensite. Resistance spot welding (RSW), one of the most used techniques in assembling auto bodies, becomes problematic in the case of these steels. RSW being indeed a process were steel is heated and cooled in a very short period of time, the resulting weld nugget is mostly fully martensitic, especially in the case of DP, TRIP and boron steels but that also holds for plain carbon steels as AISI 1010 grade which is extensively used in auto body inner parts. Martensite in its turn must be avoided as most as possible when welding steel because it is the principal source of brittleness and it weakens weld nugget. Thus, this work aims to find a mean to reduce martensite fraction in weld nugget when using RSW for assembling. The prediction of phase transformation kinetics during RSW has been done. That phase transformation kinetics prediction has been made possible through the modelling of the whole welding process, and a technique called post weld heat treatment (PWHT) have been applied in order to reduce martensite fraction in the weld nugget. Simulation has been performed for AISI 1010 grade, and results show that the application of PWHT leads to the formation of not only martensite but also ferrite, bainite and pearlite during the cooling of weld nugget. Welding experiments have been done in parallel and micrographic analyses show the presence of several phases in the weld nugget. Experimental weld geometry and phase proportions are in good agreement with simulation results, showing here the validity of the model.

Keywords: resistance spot welding, AISI 1010, modeling, post weld heat treatment, phase transformation, kinetics

Procedia PDF Downloads 116
292 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat

Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh

Abstract:

Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.

Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences

Procedia PDF Downloads 425
291 Hearing Threshold Levels among Steel Industry Workers in Samut Prakan Province, Thailand

Authors: Petcharat  Kerdonfag, Surasak Taneepanichskul, Winai Wadwongtham

Abstract:

Industrial noise is usually considered as the main impact of the environmental health and safety because its exposure can cause permanently serious hearing damage. Despite providing strictly hearing protection standards and campaigning extensively encouraging public health awareness among industrial workers in Thailand, hazard noise-induced hearing loss has dramatically been massive obstacles for workers’ health. The aims of the study were to explore and specify the hearing threshold levels among steel industrial workers responsible in which higher noise levels of work zone and to examine the relationships of hearing loss and workers’ age and the length of employment in Samut Prakan province, Thailand. Cross-sectional study design was done. Ninety-three steel industrial workers in the designated zone of higher noise (> 85dBA) with more than 1 year of employment from two factories by simple random sampling and available to participate in were assessed by the audiometric screening at regional Samut Prakan hospital. Data of doing screening were collected from October to December, 2016 by the occupational medicine physician and a qualified occupational nurse. All participants were examined by the same examiners for the validity. An Audiometric testing was performed at least 14 hours after the last noise exposure from the workplace. Workers’ age and the length of employment were gathered by the developed occupational record form. Results: The range of workers’ age was from 23 to 59 years, (Mean = 41.67, SD = 9.69) and the length of employment was from 1 to 39 years, (Mean = 13.99, SD = 9.88). Fifty three (60.0%) out of all participants have been exposing to the hazard of noise in the workplace for more than 10 years. Twenty-three (24.7%) of them have been exposing to the hazard of noise less than or equal to 5 years. Seventeen (18.3%) of them have been exposing to the hazard of noise for 5 to 10 years. Using the cut point of less than or equal to 25 dBA of hearing thresholds, the average means of hearing thresholds for participants at 4, 6, and 8 kHz were 31.34, 29.62, and 25.64 dB, respectively for the right ear and 40.15, 32.20, and 25.48 dB for the left ear, respectively. The more developing age of workers in the work zone with hazard of noise, the more the hearing thresholds would be increasing at frequencies of 4, 6, and 8 kHz (p =.012, p =.026, p =.024) for the right ear, respectively and for the left ear only at the frequency 4 kHz (p =.009). Conclusion: The participants’ age in the hazard of noise work zone was significantly associated with the hearing loss in different levels while the length of participants’ employment was not significantly associated with the hearing loss. Thus hearing threshold levels among industrial workers would be regularly assessed and needed to be protected at the beginning of working.

Keywords: hearing threshold levels, hazard of noise, hearing loss, audiometric testing

Procedia PDF Downloads 227
290 The Relationship between the Content of Inner Human Experience and Well-Being: An Experience Sampling Study

Authors: Xinqi Guo, Karen R. Dobkins

Abstract:

Background and Objectives: Humans are probably the only animals whose minds are constantly filled with thoughts, feelings and emotions. Previous studies have investigated human minds from different dimensions, including its proportion of time for not being present, its representative format, its personal relevance, its temporal locus, and affect valence. The current study aims at characterizing human mind by employing Experience Sampling Methods (ESM), a self-report research procedure for studying daily experience. This study emphasis on answering the following questions: 1) How does the contents of the inner experience vary across demographics, 2) Are certain types of inner experiences correlated with level of mindfulness and mental well-being (e.g., are people who spend more time being present happier, and are more mindful people more at-present?), 3) Will being prompted to report one’s inner experience increase mindfulness and mental well-being? Methods: Participants were recruited from the subject pool of UC San Diego or from the social media. They began by filling out two questionnaires: 1) Five Facet Mindfulness Questionnaire-Short Form, and 2) Warwick-Edinburgh Mental Well-being Scale, and demographic information. Then they participated in the ESM part by responding to the prompts which contained questions about their real-time inner experience: if they were 'at-present', 'mind-wandering', or 'zoned-out'. The temporal locus, the clarity, and the affect valence, and the personal importance of the thought they had the moment before the prompt were also assessed. A mobile app 'RealLife Exp' randomly delivered these prompts 3 times/day for 6 days during wake-time. After the 6 days, participants completed questionnaire (1) and (2) again. Their changes of score were compared to a control group who did not participate in the ESM procedure (yet completed (1) and (2) one week apart). Results: Results are currently preliminary as we continue to collect data. So far, there is a trend that participants are present, mind-wandering and zoned-out, about 53%, 23% and 24% during wake-time, respectively. The thoughts of participants are ranked to be clearer and more neutral if they are present vs. mind-wandering. Mind-wandering thoughts are 66% about the past, consisting 80% of inner speech. Discussion and Conclusion: This study investigated the subjective account of human mind by a tool with high ecological validity. And it broadens the understanding of the relationship between contents of mind and well-being.

Keywords: experience sampling method, meta-memory, mindfulness, mind-wandering

Procedia PDF Downloads 132
289 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa

Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori

Abstract:

The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.

Keywords: agro-ecosystem, conventional farm, dialectical, sustainability

Procedia PDF Downloads 215
288 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 247
287 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 132
286 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 10
285 Abilitest Battery: Presentation of Tests and Psychometric Properties

Authors: Sylwia Sumińska, Łukasz Kapica, Grzegorz Szczepański

Abstract:

Introduction: Cognitive skills are a crucial part of everyday functioning. Cognitive skills include perception, attention, language, memory, executive functions, and higher cognitive skills. With the aging of societies, there is an increasing percentage of people whose cognitive skills decline. Cognitive skills affect work performance. The appropriate diagnosis of a worker’s cognitive skills reduces the risk of errors and accidents at work which is also important for senior workers. The study aimed to prepare new cognitive tests for adults aged 20-60 and assess the psychometric properties of the tests. The project responds to the need for reliable and accurate methods of assessing cognitive performance. Computer tests were developed to assess psychomotor performance, attention, and working memory. Method: Two hundred eighty people aged 20-60 will participate in the study in 4 age groups. Inclusion criteria for the study were: no subjective cognitive impairment, no history of severe head injuries, chronic diseases, psychiatric and neurological diseases. The research will be conducted from February - to June 2022. Cognitive tests: 1) Measurement of psychomotor performance: Reaction time, Reaction time with selective attention component; 2) Measurement of sustained attention: Visual search (dots), Visual search (numbers); 3) Measurement of working memory: Remembering words, Remembering letters. To assess the validity and the reliability subjects will perform the Vienna Test System, i.e., “Reaction Test” (reaction time), “Signal Detection” (sustained attention), “Corsi Block-Tapping Test” (working memory), and Perception and Attention Test (TUS), Colour Trails Test (CTT), Digit Span – subtest from The Wechsler Adult Intelligence Scale. Eighty people will be invited to a session after three months aimed to assess the consistency over time. Results: Due to ongoing research, the detailed results from 280 people will be shown at the conference separately in each age group. The results of correlation analysis with the Vienna Test System will be demonstrated as well.

Keywords: aging, attention, cognitive skills, cognitive tests, psychomotor performance, working memory

Procedia PDF Downloads 105
284 A Multilingual Model in the Multicultural World

Authors: Marina Petrova

Abstract:

Language policy issues related to the preservation and development of the native languages of the Russian peoples and the state languages of the national republics are increasingly becoming the focus of recent attention of educators and parents, public and national figures. Is it legal to teach the national language or the mother tongue as the state language? Due to that dispute language phobia moods easily evolve into xenophobia among the population. However, a civilized, intelligent multicultural personality can only be formed if the country develops bilingualism and multilingualism, and languages as a political tool help to find ‘keys’ to sufficiently closed national communities both within a poly-ethnic state and in internal relations of multilingual countries. The purpose of this study is to design and theoretically substantiate an efficient model of language education in the innovatively developing Republic of Sakha. 800 participants from different educational institutions of Yakutia worked at developing a multilingual model of education. This investigation is of considerable practical importance because researchers could build a methodical system designed to create conditions for the formation of a cultural language personality and the development of the multilingual communicative competence of Yakut youth, necessary for communication in native, Russian and foreign languages. The selected methodology of humane-personal and competence approaches is reliable and valid. Researchers used a variety of sources of information, including access to related scientific fields (philosophy of education, sociology, humane and social pedagogy, psychology, effective psychotherapy, methods of teaching Russian, psycholinguistics, socio-cultural education, ethnoculturology, ethnopsychology). Of special note is the application of theoretical and empirical research methods, a combination of academic analysis of the problem and experienced training, positive results of experimental work, representative series, correct processing and statistical reliability of the obtained data. It ensures the validity of the investigation’s findings as well as their broad introduction into practice of life-long language education.

Keywords: intercultural communication, language policy, multilingual and multicultural education, the Sakha Republic of Yakutia

Procedia PDF Downloads 222
283 The Impact of Mergers and Acquisitions on Financial Deepening in the Nigerian Banking Sector

Authors: Onyinyechi Joy Kingdom

Abstract:

Mergers and Acquisitions (M&A) have been proposed as a mechanism through which, problems associated with inefficiency or poor performance in financial institution could be addressed. The aim of this study is to examine the proposition that recapitalization of banks, which encouraged Mergers and Acquisitions in Nigeria banking system, would strengthen the domestic banks, improve financial deepening and the confidence of depositors. Hence, this study examines the impact of the 2005 M&A in the Nigerian-banking sector on financial deepening using mixed method (quantitative and qualitative approach). The quantitative process of this study utilised annual time series for financial deepening indicator for the period of 1997 to 2012. While, the qualitative aspect adopted semi-structured interview to collate data from three merged banks and three stand-alone banks to explore, understand and complement the quantitative results. Furthermore, a framework thematic analysis is employed to analyse the themes developed using NVivo 11 software. Using the quantitative approach, findings from the equality of mean test (EMT) used suggests that M&A have significant impact on financial deepening. However, this method is not robust enough given its weak validity as it does not control for other potential factors that may determine financial deepening. Thus, to control for other factors that may affect the level of financial deepening, a Multiple Regression Model (MRM) and Interrupted Times Series Analysis (ITSA) were applied. The coefficient for M&A dummy turned negative and insignificant using MRM. In addition, the estimated linear trend of the post intervention when ITSA was applied suggests that after M&A, the level of financial deepening decreased annually; however, this was statistically insignificant. Similarly, using the qualitative approach, the results from the interview supported the quantitative results from ITSA and MRM. The result suggests that interest rate should fall when capital base is increased to improve financial deepening. Hence, this study contributes to the existing literature the importance of other factors that may affect financial deepening and the economy when policies that will enhance bank performance and the economy are made. In addition, this study will enable the use of valuable policy instruments relevant to monetary authorities when formulating policies that will strengthen the Nigerian banking sector and the economy.

Keywords: mergers and acquisitions, recapitalization, financial deepening, efficiency, financial crisis

Procedia PDF Downloads 396
282 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving

Authors: Svenja Pieritz, Jakab Pilaszanovich

Abstract:

Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.

Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing

Procedia PDF Downloads 130
281 A Qualitative Review and Meta-Analyses of Published Literature Exploring Rates and Reasons Behind the Choice of Elective Caesarean Section in Pregnant Women With No Contraindication to Trial of Labor After One Previous Caesarean Section

Authors: Risheka Suthantirakumar, Eilish Pearson, Jacqueline Woodman

Abstract:

Background: Previous research has found a variety of rates and reasons for choosing medically unindicated elective repeat cesarean section (ERCS). Understanding the frequency and reasoning of ERCS, especially when unwarranted, could help healthcare professionals better tailor their advice and service. Therefore, our study conducted meta-analyses and qualitative analyses to identify the reasons and rates worldwide for choosing this procedure over the trial of labor after cesarean (TOLAC), also referred to in published literature as vaginal birth after cesarean (VBAC). Methods: We conducted a systematic review of published literature available on PubMed, EMBASE, and science.gov and conducted a blinded peer review process to assess eligibility. Search terms were created in collaboration with experts in the field. An inclusion and exclusion criteria were established prior to reviewing the articles. Included studies were limited to those published in English due to author constraints, although no international boundaries were used in the search. No time limit for the search was used in order to portray changes over time. Results: Our qualitative analyses found five consistent themes across international studies, which were socioeconomic and cultural differences, previous cesarean experience, perceptions of risk with vaginal birth, patients’ perceptions of future benefits, and medical advice and information. Our meta-analyses found variable rates of ERCS across international borders and within national populations. The average rate across all studies was 44% (CI 95% 36-51). Discussion: The studies included in our qualitative analysis demonstrated similar repetitive themes, which give validity to the findings across the studies included. We consider the rate variation across and within national populations to be partially a result of differing inclusion and eligibility assessment between different studies and argue that a proforma be utilized for future research to be comparable.

Keywords: elective cesarean section, VBAC, TOLAC, maternal choice

Procedia PDF Downloads 110
280 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 56
279 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 62
278 The Conundrum of Marital Rape in Malawi: The Past, the Present and the Future

Authors: Esther Gumboh

Abstract:

While the definition of rape has evolved over the years and now differs from one jurisdiction to another, at the heart of the offence remains the absence of consent on the part of the victim. In simple terms, rape consists in non-consensual sexual intercourse. Therefore, the core issue is whether the accused acted with the consent of the victim. Once it is established that the act was consensual, a conviction of rape cannot be secured. Traditionally, rape within marriage was impossible because it was understood that a woman gave irrevocable consent to sex with her husband throughout the duration of the marriage. This position has since changed in most jurisdictions. Indeed, Malawian law now recognises the offence of marital rape. This is a victory for women’s rights and gender equality. Curiously, however, the definition of marital rape endorsed differs from the standard understanding of rape as non-consensual sex. Instead, the law has introduced the concept of unreasonableness of the refusal to engage in sex as a defence to an accused. This is an alarming position that undermines the protection sought to be derived from the criminalisation of rape within marriage. Moreover, in the Malawian context where rape remains an offence only men can commit against women, the current legal framework for marital rape perpetuates the societal misnomer that a married woman gives a once-off consent to sexual intercourse by virtue of marriage. This takes us back to the old common law position which many countries have moved away from. The present definition of marital rape under Malawian law also sits at odd with the nature of rape that is applicable to all other instances of non-consensual sexual intercourse. Consequently, the law fails to protect married women from unwanted sexual relations at the hands of their husbands. This paper critically examines the criminalisation of marital rape in Malawi. It commences with a historical account of the conceptualisation of rape and then looks at judgments that rejected the validity of marital rape. The discussion then moves to the debates that preceded the criminalisation of marital rape in Malawi and how the Law Commission reasoned to finally make a recommendation in its favour. Against this background, the paper analyses the legal framework for marital rape and what this means for the elements of the offence and defences that may be raised by an accused. In the final analysis, this contribution recommends that there is need to amend the definition of marital rape. Better still, the law should simply state that the fact of marriage is not a defence to a charge of rape, or, in other words, that there is no marital rape exemption. This would automatically mean that husbands are subjected to the same criminal law principles as their unmarried counterparts when it comes to non-consensual sexual intercourse with their wives.

Keywords: criminal law, gender, Malawi, marital rape, rape, sexual intercourse

Procedia PDF Downloads 352
277 Histological Grade Concordance between Core Needle Biopsy and Corresponding Surgical Specimen in Breast Carcinoma

Authors: J. Szpor, K. Witczak, M. Storman, A. Orchel, D. Hodorowicz-Zaniewska, K. Okoń, A. Klimkowska

Abstract:

Core needle biopsy (CNB) is well established as an important diagnostic tool in diagnosing breast cancer and it is now considered the initial method of choice for diagnosing breast disease. In comparison to fine needle aspiration (FNA), CNB provides more architectural information allowing for the evaluation of prognostic and predictive factors for breast cancer, including histological grade—one of three prognostic factors used to calculate the Nottingham Prognostic Index. Several studies have previously described the concordance rate between CNB and surgical excision specimen in determination of histological grade (HG). The concordance rate previously ascribed to overall grade varies widely across literature, ranging from 59-91%. The aim of this study is to see how the data looks like in material at authors’ institution and are the results as compared to those described in previous literature. The study population included 157 women with a breast tumor who underwent a core needle biopsy for breast carcinoma and a subsequent surgical excision of the tumor. Both materials were evaluated for the determination of histological grade (scale from 1 to 3). HG was assessed only in core needle biopsies containing at least 10 well preserved HPF with invasive tumor. The degree of concordance between CNB and surgical excision specimen for the determination of tumor grade was assessed by Cohen’s kappa coefficient. The level of agreement between core needle biopsy and surgical resection specimen for overall histologic grading was 73% (113 of 155 cases). CNB correctly predicted the grade of the surgical excision specimen in 21 cases for grade 1 tumors (Kappa coefficient κ = 0.525 95% CI (0.3634; 0.6818), 52 cases for grade 2 (Kappa coefficient κ = 0.5652 95% CI (0.458; 0.667) and 40 cases for stage 3 tumors (Kappa coefficient κ = 0.6154 95% CI (0.4862; 0.7309). The highest level of agreement was observed in grade 3 malignancies. In 9 of 42 (21%) discordant cases, the grade was higher in the CNB than in the surgical excision. This composed 6% of the overall discordance. These results correspond to the noted in the literature, showing that underestimation occurs more frequently than overestimation. This study shows that authors’ institution’s histologic grading of CNBs and surgical excisions shows a fairly good correlation and is consistent with findings in previous reports. Despite the inevitable limitations of CNB, CNB is an effective method for diagnosing breast cancer and managing treatment options. Assessment of tumour grade by CNB is useful for the planning of treatment, so in authors’ opinion it is worthy to implement it in daily practice.

Keywords: breast cancer, concordance, core needle biopsy, histological grade

Procedia PDF Downloads 227
276 Oral Hygiene Behaviors among Pregnant Women with Diabetes Who Attend Primary Health Care Centers at Baghdad City

Authors: Zena F. Mushtaq, Iqbal M. Abbas

Abstract:

Background: Diabetes mellitus during pregnancy is one of the major medical and social problems with increasing prevalence in last decades and may lead to more vulnerable to dental problems and increased risk for periodontal diseases. Objectives: To assess oral hygiene behaviors among pregnant women with diabetes who attended primary health care centers and find out the relationship between oral hygiene behaviors and studied variables. Methodology: A cross sectional design was conducted from 7 July to 30 September 2014 on non probability (convenient sample) of 150 pregnant women with diabetes was selected from twelve Primary Health Care Centers at Baghdad city. Questionnaire format is tool for data collection which had designed and consisted of three main parts including: socio demographic, reproductive characteristics and items of oral hygiene behaviors among pregnant women with diabetes. Reliability of the questionnaire was determined through internal consistency of correlation coefficient (R= 0.940) and validity of content was determined through reviewing it by (12) experts in different specialties and was determined through pilot study. Descriptive and inferential statistics were used to analyze collected data. Result: Result of study revealed that (35.3%) of study sample was (35-39) years old with mean and SD is (X & SD = 33.57 ± 5.54) years, and (34.7%) of the study sample was graduated from primary school and less, half of the study sample was government employment and self employed, (42.7%) of the study sample had moderate socioeconomic status, the highest percentage (70.0%) of the study sample was nonsmokers, The result indicates that oral hygiene behaviors have moderate mean score in all items. There are no statistical significant association between oral hygiene domain and studied variables. Conclusions: All items related to health behavior concerning oral hygiene is in moderate mean of score, which may expose pregnant women with diabetes to high risk of periodontal diseases. Recommendations: Dental care provider should perform a dental examination at least every three months for each pregnant woman with diabetes, explanation of the effect of DM on periodontal health, oral hygiene instruction, oral prophylaxis, professional cleaning and treatment of periodontal diseases(scaling and root planing) when needed.

Keywords: diabetes, health behavior, pregnant women, oral hygiene

Procedia PDF Downloads 284
275 An Exploratory Study of Women in Political Leadership in Nigeria

Authors: Fayomi Oluyemi, Ajayi Lady

Abstract:

This article raises the question of political leadership in the context of womens' roles and responsibilities in Nigeria. The leadership question in Nigeria is disquieting to both academics and policy actors. In a democratic society like Nigeria, the parameters for a well-deserved leadership position is characterised by variables of equity, competence, transparency, accountability, selflessness, and commitment to the tenets of democracy, but the failure of leadership is pervasive in all spheres of socio-political sectors in Nigeria. The paper appraises the activities of Nigerian women in the socio-political arena in Nigeria. It traces their leadership roles from pre-colonial through post-colonial eras with emphasis on 1914 till date. It is argued in the paper that gender imbalance in leadership is a bane to peaceful co-existence and development in Nigeria. It is a truism that gender-blind and gender biased political agendas can distort leadership activities. The extent of their contributions of the few outstanding women’s relative tranquility is highlighted in the theoretical discourse. The methodology adopted for this study is an exploratory study employing the extended case method (ECM). The study was carried out among some selected Nigerian women politicians and academics. Because of ECM's robustness as a qualitative research design, it has helped this study in identifying the challenges of these women thematically and also in constructing valid and reliable measures of the constructs. The study made use of ethnography and triangulation, the latter of which is used by qualitative researchers to check and establish validity in their studies by analyzing a research question from multiple perspectives, specifically Investigator triangulation which involves using several different investigators in the analysis process. Typically, this manifests as the evaluation team consisting of colleagues within a field of study wherein each investigator examines the question of political leadership with the same qualitative method (interview, observation, case study, or focus groups). In addition, data was collated through documentary sources like journals, books, magazines, newspapers, and internet materials. The arguments of this paper center on gender equity of both sexes in socio-political representation and effective participation. The paper concludes with the need to effectively maintain gender balance in leadership in order to enhance lasting peace and unity in Nigeria.

Keywords: gender, politics, leadership, women

Procedia PDF Downloads 446
274 Behavioral Analysis of Stock Using Selective Indicators from Fundamental and Technical Analysis

Authors: Vish Putcha, Chandrasekhar Putcha, Siva Hari

Abstract:

In the current digital era of free trading and pandemic-driven remote work culture, markets worldwide gained momentum for retail investors to trade from anywhere easily. The number of retail traders rose to 24% of the market from 15% at the pre-pandemic level. Most of them are young retail traders with high-risk tolerance compared to the previous generation of retail traders. This trend boosted the growth of subscription-based market predictors and market data vendors. Young traders are betting on these predictors, assuming one of them is correct. However, 90% of retail traders are on the losing end. This paper presents multiple indicators and attempts to derive behavioral patterns from the underlying stocks. The two major indicators that traders and investors follow are technical and fundamental. The famous investor, Warren Buffett, adheres to the “Value Investing” method that is based on a stock’s fundamental Analysis. In this paper, we present multiple indicators from various methods to understand the behavior patterns of stocks. For this research, we picked five stocks with a market capitalization of more than $200M, listed on the exchange for more than 20 years, and from different industry sectors. To study the behavioral pattern over time for these five stocks, a total of 8 indicators are chosen from fundamental, technical, and financial indicators, such as Price to Earning (P/E), Price to Book Value (P/B), Debt to Equity (D/E), Beta, Volatility, Relative Strength Index (RSI), Moving Averages and Dividend yields, followed by detailed mathematical Analysis. This is an interdisciplinary paper between various disciplines of Engineering, Accounting, and Finance. The research takes a new approach to identify clear indicators affecting stocks. Statistical Analysis of the data will be performed in terms of the probabilistic distribution, then follow and then determine the probability of the stock price going over a specific target value. The Chi-square test will be used to determine the validity of the assumed distribution. Preliminary results indicate that this approach is working well. When the complete results are presented in the final paper, they will be beneficial to the community.

Keywords: stock pattern, stock market analysis, stock predictions, trading, investing, fundamental analysis, technical analysis, quantitative trading, financial analysis, behavioral analysis

Procedia PDF Downloads 85
273 Analysis and Optimized Design of a Packaged Liquid Chiller

Authors: Saeed Farivar, Mohsen Kahrom

Abstract:

The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.

Keywords: optimization, packaged liquid chiller, performance, simulation

Procedia PDF Downloads 277
272 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 266
271 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction

Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun

Abstract:

The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.

Keywords: usability, qualitative data, text-processing algorithm, natural language processing

Procedia PDF Downloads 283
270 The Relationship between Celebrity Worship and Religiosity: A Study in Turkish Context

Authors: Saadet Taşyürek Demirel, Halide Sena Koçyiğit, Rümeysa Fatma Çetin

Abstract:

Celebrity worship, characterized by excessive admiration and devotion towards public figures, often mirrors elements of religious fervor. This study delves into the intricate connection between celebrity worship and religiosity, particularly within the Turkish cultural context, where Islamic values predominantly shape societal norms. The investigation involves the adaptation of the Celebrity Attitude Scale into Turkish and scrutinizes the interplay between young individuals' religiosity and their extreme adulation of celebrities. Additionally, the study explores potential moderating factors, such as age and gender, that might influence this relationship. A cohort of 197 young adults, aged 19 to 30, participated in this research, responding to self-administered questionnaires that assessed their attitudes towards celebrities using the adapted Celebrity Attitude Scale, along with their self-reported religiosity. The anticipated relationship between religiosity and celebrity worship is hypothesized to exhibit a non-linear pattern. Specifically, we expect religiosity to positively predict celebrity worship tendencies among individuals with minimal to moderate religiosity levels. Conversely, a negative association between religiosity and celebrity worship is expected to manifest among participants exhibiting moderate to high levels of religiosity. The findings of this study will contribute to the comprehension of the intricate dynamics between celebrity worship and religiosity, offering insights specifically within the Turkish cultural context. By shedding light on this relationship, the study aims to enhance our understanding of the multifaceted influences that shape individuals' perceptions and behaviors towards both celebrities and religious inclinations. Methodology of the study: A quantitative research will be conducted, where the factor analysis and correlational method will be used. The factor structure of the scale will be determined with exploratory and confirmatory factor analysis. The reliability, internal consistency, Objectives of the study: This study examines the relationship between religiosity and celebrity worship by young adults in the Turkish context. The other aim of the study is to assess the Turkish validity and reliability of the Celebrity Attitude Scale and contribute it to the literature. Main Contributions of the study: The study aims to introduce celebrity worship to Turkish literature, assess the Celebrity Attitude Scale's reliability in a Turkish sample, explore manifestations of celebrity worship, and examine its link to religiosity. This research addresses the lack of Turkish sources on celebrity worship and extends understanding of the concept.

Keywords: celebrity, worship, religiosity, god

Procedia PDF Downloads 83
269 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 116
268 Hand Movements and the Effect of Using Smart Teaching Aids: Quality of Writing Styles Outcomes of Pupils with Dysgraphia

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Sajedah Al Yaari, Adham Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Ayah Al Yaari, Fatehi Eissa

Abstract:

Dysgraphia is a neurological disorder of written expression that impairs writing ability and fine motor skills, resulting primarily in problems relating not only to handwriting but also to writing coherence and cohesion. We investigate the properties of smart writing technology to highlight some unique features of the effects they cause on the academic performance of pupils with dysgraphia. In Amis, dysgraphics undergo writing problems to express their ideas due to ordinary writing aids, as the default strategy. The Amis data suggests a possible connection between available writing aids and pupils’ writing improvement; therefore, texts’ expression and comprehension. A group of thirteen dysgraphic pupils were placed in a regular classroom of primary school, with twenty-one pupils being recruited in the study as a control group. To ensure validity, reliability and accountability to the research, both groups studied writing courses for two semesters, of which the first was equipped with smart writing aids while the second took place in an ordinary classroom. Two pre-tests were undertaken at the beginning of the first two semesters, and two post-tests were administered at the end of both semesters. Tests examined pupils’ ability to write coherent, cohesive and expressive texts. The dysgraphic group received the treatment of a writing course in the first semester in classes with smart technology and produced significantly greater increases in writing expression than in an ordinary classroom, and their performance was better than that of the control group in the second semester. The current study concludes that using smart teaching aids is a ‘MUST’, both for teaching and learning dysgraphia. Furthermore, it is demonstrated that for young dysgraphia, expressive tasks are more challenging than coherent and cohesive tasks. The study, therefore, supports the literature suggesting a role for smart educational aids in writing and that smart writing techniques may be an efficient addition to regular educational practices, notably in special educational institutions and speech-language therapeutic facilities. However, further research is needed to prompt the adults with dysgraphia more often than is done to the older adults without dysgraphia in order to get them to finish the other productive and/or written skills tasks.

Keywords: smart technology, writing aids, pupils with dysgraphia, hands’ movement

Procedia PDF Downloads 36
267 The Interactive Effects among Supervisor Support, Academic Emotion, and Positive Mental Health: An Evidence Based on Longitudinal Cross-Lagged Panel Data Analysis on Postgraduates in China

Authors: Jianzhou Ni, Hua Fan

Abstract:

It has been determined that supervisor support has a major influence on postgraduate students' academic emotions and is considered a method of successfully anticipating postgraduates' good psychological well-being levels. As a result, by assessing the mediating influence upon academic emotions for contemporary postgraduates in China, this study investigated the tight reciprocal relationship between psychological empowerment and positive mental well-being among postgraduates. To that end, a help enables a theoretical analysis of role clarity, academic emotion, and positive psychological health was developed, and its validity and reliability were demonstrated for the first time using the normalized postgrad relationship with supervisor scale, academic emotion scale, and positive mental scale, as well as questionnaire data from Chinese postgraduate students. This study used the cross-lagged (ARCL) panel model data to longitudinally measure 798 valid data from two survey questions polls taken in 2019 (T1) and 2021 (T2) to investigate the link between supervisor support and positive graduate student mental well-being in a bidirectional relationship of influence. The study discovered that mentor assistance could have a considerable beneficial impact on graduate students' academic emotions and, as a result, indirectly help learners attain positive mental health development. This verifies the theoretical premise that academic emotions partially mediate the effect of mentor support on positive mental health development and argues for the coexistence of the two. The outcomes of this study can help researchers gain a better knowledge of the dynamic interplay among three different research variables: supervisor support, academic emotions, and positive mental health, as well as fill gaps in previous research. In this regard, the study indicated that mentor assistance directly stimulates students' academic drive and assists graduate students in developing good academic emotions, which contributes to the development of positive mental health. However, given the restricted measurement time in this study's cross-lagged panel data and the potential effect of moderating effects other than academic mood on graduate students' good mental health, the results of this study need to be more fully understood and validated.

Keywords: supervisor support, academic emotions, positive mental health, interaction effects, longitudinal cross-lagged measurements

Procedia PDF Downloads 85
266 Frequent Pattern Mining for Digenic Human Traits

Authors: Atsuko Okazaki, Jurg Ott

Abstract:

Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.

Keywords: digenic traits, DNA variants, epistasis, statistical genetics

Procedia PDF Downloads 121
265 Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers

Authors: Jing Nan

Abstract:

The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research.

Keywords: air breakdown voltage, high-temperature insulation, compact circuit breakers, electrical discharge, saha equation

Procedia PDF Downloads 83