Search results for: offensive language detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7163

Search results for: offensive language detection

5423 An Action Research Study of Developing Foreign Language Teachers’ Intercultural Competence

Authors: Wei Hing Rosenkvist

Abstract:

In the past few decades, concerns and demands of promoting student intercultural communicative competence in foreign language education have been increasing along with the rapid growth of information technologies and globalization in the 21st century. In Sweden, related concepts such as internationalization, global citizenship, multiculturalism, and intercultural communication etc., are also keywords that would be found in the written learning objectives of the foreign language education in all levels. Being one of the leading higher institutes in distance education in Europe, Dalarna University clearly states that after completion of the teacher education program, students shall understand the needs for integrating internationalization, intercultural and global perspective in teaching and learning in Swedish schools and implement their own studies to promote education in an international and global context. Despite the fact that many teachers and educators agree with the institutes’ mission and vision about the importance of internationalization and the need of increasing student understanding of intercultural and global perspective, they might find this objective unattainable and restricted due to the nature of the subject and their personal knowledge of intercultural competence. When conducting a comprehensive Chinese language course for the students who are going to become Chinese foreign language teachers, the researcher found that all the learning objectives are linguistic oriented while grammatical components dominate the entire course. Apparently, there is a gap between the learning objectives of the course and the DU’s mission of fostering an international learner with intercultural and globalized perspectives. How to include this macro-learning objective in a foreign language course is a great challenge to the educator. Although scholars from different academic domains have provided different theoretical frameworks and approaches for developing student intercultural competence, research that focuses on the didactic perspectives of developing student intercultural competence in teaching Chinese as a foreign language education (CFL) is limited and practical examples are rare. This has motivated the researcher to conduct an action research study that aims at integrating DU’s macro-learning objective in a current CFL course through different didactic practices with a purpose of developing the teacher student intercultural competence. This research study aims to, firstly, illustrate the cross-cultural knowledge integrated into the present Chinese language course for developing intercultural competence. Secondly, it investigates different didactic means that can be utilized to deliver cross-cultural knowledge to student teachers in the present course without generating dramatic disturbance of the syllabus. Thirdly, it examines the effectiveness of these didactic means in enhancing teacher student intercultural competence regarding the need for integrating and implementing internationalization, intercultural and global perspectives in teaching and learning in Swedish schools. Last but not least, it intends to serve as a practical example for developing the student teachers’ intercultural competence in foreign language education in DU and fill in the research gap of this academic domain worldwide.

Keywords: intercultural competence, foreign language education, action research, teacher education

Procedia PDF Downloads 119
5422 Benefits of Rainbow School Programmes: Students' and Teachers' Perceptions and Attitudes Towards Gender-Fair Language in Gender-Inclusive Schools

Authors: Teresa Naves, Katy Pallas, Carme Florit, Cristina Anton, Joan Collado, Diana Millan

Abstract:

Although gender-fair language is relatively novel in Spain, in Catalonia, the Department of Education, as well as LGBT Associations, have been promoting several innovative programmes aimed at implementing gender-inclusive schools. These Rainbow School communities are ideal for looking at how these programmes affect the use of gender-fair language and the balanced representation of gender. The students' and teachers' perceptions and attitudes have been compared to those analysed in schools that have never implemented such programmes in primary or secondary education. Spanish and Catalan, unlike English, are gendered languages in which masculine forms have traditionally been used as the unmarked gender and have been claimed to be inclusive of all genders. While the Royal Spanish Academy (RAE) rejects the use of inclusive language and thus deems all variables of inclusion of double gender as unnecessary, the vast majority of universities are promoting not only inclusive language but also gender-inclusive curricula. Adopting gender-fair language policies and including gender perspective in the curricula is an innovative trend at university level and in primary and secondary school education. Inclusion in education is a basic human right and the foundation for a more just and equal society. Educators can facilitate the process of welcoming by ensuring handbooks, forms, and other communications are inclusive of all family structures and gender identities. Using gendered language such as 'girls and boys' can be alienating for gender non-conforming and gender diverse students; on the other hand, non-gendered words like 'students' are regarded as inclusive of all identities. The paper discusses the results of mixed method research (survey, interviews, and experiment) conducted in Rainbow and non-Rainbow schools in Alacant and Barcelona (Spain). The experiment aimed at checking the role of gender-fair language in learners' perception of gender balance. It was conducted in Spanish, Catalan, and English. Students aged 10 to 16 (N > 600) were asked to draw pictures of people using specific prompts. The prompts in Spanish and Catalan were written using the generic masculine, 'los presidentes' 'els presidents' (presidents); using double gendered language such as 'ninos y ninas', 'nens i nenes' (boys and girls); and using non-gendered words like 'alumnado' 'alumnat' (students). The prompts were subdivided into people in school contexts participants could identify with, such as students and teachers; occupations mostly associated with men, such as pilots and firefighters; and occupations associated with women, such as ballet dancers and nurses. As could be expected, the participants only drew approximately the same percentage of female and male characters when double-gendered language or non-gendered words such as 'students' or 'teachers' were used, regardless of the language used in the experiment. When they were asked to draw people using the so-called generic masculine in Spanish or Catalan, 'los estudiantes' 'els estudiants' (students), less than 35% of the drawings contained female characters. The differences between the results for Rainbow and Non-Rainbow schools will be discussed in the light of the innovative coeducation programmes and learners' perceptions on gender-fair language gathered in the surveys and interviews.

Keywords: gender-fair language, gender-inclusive schools, learners’ and teachers’ perceptions and attitudes, rainbow coeducation programmes

Procedia PDF Downloads 124
5421 Saudi Twitter Corpus for Sentiment Analysis

Authors: Adel Assiri, Ahmed Emam, Hmood Al-Dossari

Abstract:

Sentiment analysis (SA) has received growing attention in Arabic language research. However, few studies have yet to directly apply SA to Arabic due to lack of a publicly available dataset for this language. This paper partially bridges this gap due to its focus on one of the Arabic dialects which is the Saudi dialect. This paper presents annotated data set of 4700 for Saudi dialect sentiment analysis with (K= 0.807). Our next work is to extend this corpus and creation a large-scale lexicon for Saudi dialect from the corpus.

Keywords: Arabic, sentiment analysis, Twitter, annotation

Procedia PDF Downloads 630
5420 Neural Networks with Different Initialization Methods for Depression Detection

Authors: Tianle Yang

Abstract:

As a common mental disorder, depression is a leading cause of various diseases worldwide. Early detection and treatment of depression can dramatically promote remission and prevent relapse. However, conventional ways of depression diagnosis require considerable human effort and cause economic burden, while still being prone to misdiagnosis. On the other hand, recent studies report that physical characteristics are major contributors to the diagnosis of depression, which inspires us to mine the internal relationship by neural networks instead of relying on clinical experiences. In this paper, neural networks are constructed to predict depression from physical characteristics. Two initialization methods are examined - Xaiver and Kaiming initialization. Experimental results show that a 3-layers neural network with Kaiming initialization achieves 83% accuracy.

Keywords: depression, neural network, Xavier initialization, Kaiming initialization

Procedia PDF Downloads 128
5419 Shape Sensing and Damage Detection of Thin-Walled Cylinders Using an Inverse Finite Element Method

Authors: Ionel D. Craiu, Mihai Nedelcu

Abstract:

Thin-walled cylinders are often used by the offshore industry as columns of floating installations. Based on observed strains, the inverse Finite Element Method (iFEM) may rebuild the deformation of structures. Structural Health Monitoring uses this approach extensively. However, the number of in-situ strain gauges is what determines how accurate it is, and for shell structures with complicated deformation, this number can easily become too high for practical use. Any thin-walled beam member's complicated deformation can be modeled by the Generalized Beam Theory (GBT) as a linear combination of pre-specified cross-section deformation modes. GBT uses bar finite elements as opposed to shell finite elements. This paper proposes an iFEM/GBT formulation for the shape sensing of thin-walled cylinders based on these benefits. This method significantly reduces the number of strain gauges compared to using the traditional inverse-shell finite elements. Using numerical simulations, dent damage detection is achieved by comparing the strain distributions of the undamaged and damaged members. The effect of noise on strain measurements is also investigated.

Keywords: damage detection, generalized beam theory, inverse finite element method, shape sensing

Procedia PDF Downloads 113
5418 A Study of Achievement and Attitude on Learning Science in English by Using Co – Teaching Method

Authors: Sakchai Rachniyom

Abstract:

Owing to the ASEAN community will formally take place in the few months; therefore, Thais should realize about the importance of English language. Since, it is regarded as a working language in the community. To promote Science students’ English proficiency, teacher should be able to teach in English language appropriately and effectively. The purposes of the quasi – experimental research are (1) to measure the learning achievement, (2) to evaluate students’ satisfaction on the teaching and learning and (3) to study the consequences of co – teaching method in order comprehend the learning achievement and improvement. The participants were 40 general science students teacher. Two types of research instruments were included; (1) an achievement test, and (2) a questionnaire. This research was conducted for 1 semester. The statistics used in this research were arithmetic mean and standard deviation. The findings of the study revealed that students’ achievement score was significantly increased at statistical level .05 and the students satisfied the teaching and learning at the highest level . The students’ involvement and teachers’ support were promoted. It was also reported students’ learning was improved by co – teaching method.

Keywords: co – teaching method, learning science in english, teacher, education

Procedia PDF Downloads 479
5417 The Lexical Eidos as an Invariant of a Polysemantic Word

Authors: S. Pesina, T. Solonchak

Abstract:

Phenomenological analysis is not based on natural language, but ideal language which is able to be a carrier of ideal meanings – eidos representing typical structures or essences. For this purpose, it’s necessary to release from the spatio-temporal definiteness of a subject and then state its noetic essence (eidos) by means of free fantasy generation. Herewith, as if a totally new objectness is created - the universal, confirming the thesis that thinking process takes place in generalizations passing by numerous means through the specific to the general and from the general through the specific to the singular.

Keywords: lexical eidos, phenomenology, noema, polysemantic word, semantic core

Procedia PDF Downloads 277
5416 Identity Construction of English Language Teachers from Nepal: A Narrative Inquiry

Authors: Bharat Prasad Neupane

Abstract:

Given the widespread concentration on beliefs, values, emotions, critical incidents, and practices in exploring teachers’ professional identities, this study presents the trajectories of identity construction of three English language teachers from Nepal, analyzing their storied lives from schoolteachers to university professors. For this purpose, the article considered the three-dimensional professional development model to explore the effective mediation by the state agencies, culture and the policies, appropriate support from the organizations, and the bottom-up initiatives taken by the teachers in their professional development. Besides, the professional development journey derived from the in-depth interview of the participants is analyzed by employing communities of practice theory, particularly engagement, alignment, and imagination, as theoretical categories to discover their professional identities. The analysis revealed that passion for language, creativity, and motivation to learn English during childhood initially encouraged them to study English. In addition, inspiration from their teachers during their schooling and later a competitive working environment motivated them to experiment with innovative teaching approaches and establish themselves in the profession. Furthermore, diversification in university teaching according to university requirements and resultant divergence from the professional root ultimately transformed their identity beyond English teachers. Finally, university policy, customization of teachers as per the university requirement, and their survival strategy as English teachers in a university where technical subjects are given more priority has impacted their professional identities.

Keywords: teachers’ professional development, English language teaching, professional identity, communities of practice

Procedia PDF Downloads 80
5415 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Vocabulary in Students of Special Needs

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaar

Abstract:

Objectives: To assess the effect of using audio-visual aids and computer-assisted/ aided language instruction (CALI) in the performance of students of special needs studying vocabulary course. Methods: The performance of forty students of special needs (males and females) who used audiovisual aids and CALI in their vocabulary course at al-Malādh school for students of special needs was compared to that of another group (control group) of the same number and age (8-18). Again, subjects in the experimental group were given lessons using audio-visual aids and CALI, while those in the control group were given lessons using ordinary educational aids only, although both groups almost shared the same features (class environment, speech language therapist (SLT), etc.). Pre-andposttest was given at the beginning and end of the semester and a qualitative and quantitative analysis followed. Results & conclusions: Results of the present experimental study's pre-and-posttests indicated that the performance of the students in the first group was higher than that of those of the second group (34.27%, 73.82% vs. 33.57%, 34.92%, respectively). Compared with females, males’ performance was higher (1515 scores vs. 1438 scores). Such findings suggest that the presence of these audiovisual aids and CALI in the classes of students of special needs, especially if they are studying vocabulary building course is very important due to their usefulness in the improvement of performance of the students of special needs.

Keywords: language components, vocabulary, audio-visual aids, CALI, special needs, students, SLTs

Procedia PDF Downloads 50
5414 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
5413 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 349
5412 Improving Capability of Detecting Impulsive Noise

Authors: Farbod Rohani, Elyar Ghafoori, Matin Saeedkondori

Abstract:

Impulse noise is electromagnetic emission which generated by many house hold appliances that are attached to the electrical network. The main difficulty of impulsive noise (IN) elimination process from communication channels is to distinguish it from the transmitted signal and more importantly choosing the proper threshold bandwidth in order to eliminate the signal. Because of wide band property of impulsive noise, we present a novel method for setting the detection threshold, by taking advantage of the fact that impulsive noise bandwidth is usually wider than that of typical communication channels and specifically OFDM channel. After IN detection procedure, we apply simple windowing mechanisms to eliminate them from the communication channel.

Keywords: impulsive noise, OFDM channel, threshold detecting, windowing mechanisms

Procedia PDF Downloads 341
5411 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 239
5410 Confidence Building Strategies Adopted in an EAP Speaking Course at METU and Their Effectiveness: A Case Study

Authors: Canan Duzan

Abstract:

For most language learners, mastery of the speaking skill is the proof of the mastery of the foreign language. On the other hand, the speaking skill is considered as the most difficult aspect of language learning to develop for both learners and teachers. Especially in countries like Turkey where exposure to the target language is minimum and resources and opportunities provided for language practice are scarce, teaching and learning to speak the language become a real struggle for teachers and learners alike. Data collected from students, instructors, faculty members and the business sector in needs analysis studies conducted previously at Middle East Technical University (METU) consistently revealed the need for addressing the problem of lack of confidence in speaking English. Action was taken during the design of the only EAP speaking course offered in Modern Languages Department since lack of confidence is considered to be a serious barrier for effective communication and causes learners to suffer from insecurity, uncertainty and fear. “Confidence building” served as the guiding principle in the syllabus design, nature of the tasks created for the course and the assessment procedures to help learners become more confident speakers of English. In order to see the effectiveness of the decisions made during the design phase of the course and whether students become more confident speakers upon completion of the course, a case study was carried out with 100 students at METU. A questionnaire including both Likert-Scale and open-ended items were administered to students to collect data and this data were analyzed using the SPSS program. Group interviews were also carried out to gain more insight into the effectiveness of the course in terms of building speaking confidence. This presentation will explore the specific actions taken to develop students’ confidence based on the findings of program evaluation studies and to what extent the students believe these actions to be effective in improving their confidence. The unique design of this course and strategies adopted for confidence building are highly applicable in other EAP contexts and may yield similar positive results.

Keywords: confidence, EAP, speaking, strategy

Procedia PDF Downloads 401
5409 Email Phishing Detection Using Natural Language Processing and Convolutional Neural Network

Authors: M. Hilani, B. Nassih

Abstract:

Phishing is one of the oldest and best known scams on the Internet. It can be defined as any type of telecommunications fraud that uses social engineering tricks to obtain confidential data from its victims. It’s a cybercrime aimed at stealing your sensitive information. Phishing is generally done via private email, so scammers impersonate large companies or other trusted entities to encourage victims to voluntarily provide information such as login credentials or, worse yet, credit card numbers. The COVID-19 theme is used by cybercriminals in multiple malicious campaigns like phishing. In this environment, messaging filtering solutions have become essential to protect devices that will now be used outside of the secure perimeter. Despite constantly updating methods to avoid these cyberattacks, the end result is currently insufficient. Many researchers are looking for optimal solutions to filter phishing emails, but we still need good results. In this work, we concentrated on solving the problem of detecting phishing emails using the different steps of NLP preprocessing, and we proposed and trained a model using one-dimensional CNN. Our study results show that our model obtained an accuracy of 99.99%, which demonstrates how well our model is working.

Keywords: phishing, e-mail, NLP preprocessing, CNN, e-mail filtering

Procedia PDF Downloads 126
5408 Latinx Adult ELLs: Exploring English Instructors’ Perceptions of Classroom Diversity and Culturally Diverse Teaching Strategies

Authors: Sharon Diaz Ruiz

Abstract:

This qualitative study addresses college English instructors’ perceptions of classroom diversity and culturally diverse teaching strategies within the adult English language learning classroom environment. Every year, English college instructors face numerous challenges as the adult Latinx population keeps rising. To better understand the Latinx adult learners and the language classroom dynamics, research should focus on the experiences, pedagogical methods, and teaching insights of full-time and adjunct minority professors at degree-granting postsecondary institutions. Culturally responsive teaching is used as the framework to understand and explore the perceptions of English instructors on the realities and needs of Latinx adult emergent bilinguals enrolled in developmental English courses. Snowball sampling allows the researcher to locate members who meet these specific criteria: adjunct and part-time English instructors of adult Latinx language learners. Participants answered a demographic questionnaire and then contributed to 45-minute in-depth interviews to explore their perceptions of culturally responsive practices in the Latinx adult emergent bilinguals’ basic and intermediate developmental English courses. The interviews shed light on topics such as teaching biases, educators’ cultural experiences, and resources and strategies faculty recommend for effective culturally responsive teaching strategies. The result of this investigation will shed light on the gap in the literature documenting the application of culturally responsive pedagogy to Latino adult language learners.

Keywords: Latinx, English language learners, English faculty, adult learners, critical theory, culturally responsive theory

Procedia PDF Downloads 67
5407 Mistranslation in Cross Cultural Communication: A Discourse Analysis on Former President Bush’s Speech in 2001

Authors: Lowai Abed

Abstract:

The differences in languages play a big role in cross-cultural communication. If meanings are not translated accurately, the risk can be crucial not only on an interpersonal level, but also on the international and political levels. The use of metaphorical language by politicians can cause great confusion, often leading to statements being misconstrued. In these situations, it is the translators who struggle to put forward the intended meaning with clarity and this makes translation an important field to study and analyze when it comes to cross-cultural communication. Owing to the growing importance of language and the power of translation in politics, this research analyzes part of President Bush’s speech in 2001 in which he used the word “Crusade” which caused his statement to be misconstrued. The research uses a discourse analysis of cross-cultural communication literature which provides answers supported by historical, linguistic, and communicative perspectives. The first finding indicates that the word ‘crusade’ carries different meaning and significance in the narratives of the Western world when compared to the Middle East. The second one is that, linguistically, maintaining cultural meanings through translation is quite difficult and challenging. Third, when it comes to the cross-cultural communication perspective, the common and frequent usage of literal translation is a sign of poor strategies being followed in translation training. Based on the example of Bush’s speech, this paper hopes to highlight the weak practices in translation in cross-cultural communication which are still commonly used across the world. Translation studies have to take issues such as this seriously and attempt to find a solution. In every language, there are words and phrases that have cultural, historical and social meanings that are woven into the language. Literal translation is not the solution for this problem because that strategy is unable to convey these meanings in the target language.

Keywords: crusade, metaphor, mistranslation, war in terror

Procedia PDF Downloads 106
5406 The Storm in Us All: An Etymological Study of Tempest

Authors: David N. Prihoda

Abstract:

This paper charts the history of the English word Tempest from its origins in Proto-Indo European to its modern usage as a term for storms, both literal and metaphorical. It does so by way of considering the word’s morphology, semiotics, and phonetics. It references numerous language studies and dictionaries to chronicle the word’s many steps along that path, from demarcation of measurement to assessment of time, all the way to an observation about the weather or the human psyche. The conclusive findings show that tempest has undergone numerous changes throughout its history, and these changes interestingly parallel its connotations as a symbol for both chaotic weather and the chaos of the human spirit

Keywords: Tempest, etymology, language origins, English

Procedia PDF Downloads 114
5405 A Theoretical Modelling and Simulation of a Surface Plasmon Resonance Biosensor for the Detection of Glucose Concentration in Blood and Urine

Authors: Natasha Mandal, Rakesh Singh Moirangthem

Abstract:

The present work reports a theoretical model to develop a plasmonic biosensor for the detection of glucose concentrations in human blood and urine as the abnormality of glucose label is the major cause of diabetes which becomes a life-threatening disease worldwide. This study is based on the surface plasmon resonance (SPR) sensor applications which is a well-established, highly sensitive, label-free, rapid optical sensing tool. Here we have introduced a sandwich assay of two dielectric spacer layers of MgF2 and BaTiO3which gives better performance compared to commonly used SiO2 and TiO2 dielectric spacers due to their low dielectric loss and higher refractive index. The sensitivity of our proposed sensor was found as 3242 nm/RIU approximately, with an excellent linear response of 0.958, which is higher than the conventional single-layer Au SPR sensor. Further, the sensitivity enhancement is also optimized by coating a few layers of two-dimensional (2D) nanomaterials (e.g., Graphene, h-BN, MXene, MoS2, WS2, etc.) on the sensor chip. Hence, our proposed SPR sensor has the potential for the detection of glucose concentration in blood and urine with enhanced sensitivity and high affinity and could be utilized as a reliable platform for the optical biosensing application in the field of medical diagnosis.

Keywords: biosensor, surface plasmon resonance, dielectric spacer, 2D nanomaterials

Procedia PDF Downloads 106
5404 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples

Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier

Abstract:

The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.

Keywords: archaea, bacteria, detection, FISH, fluorescence

Procedia PDF Downloads 387
5403 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water

Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy

Abstract:

We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.

Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker

Procedia PDF Downloads 144
5402 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images

Authors: Mekha Mathew, Varun P Gopi

Abstract:

Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.

Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform

Procedia PDF Downloads 485
5401 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning

Authors: Ezil Sam Leni, Shalen S.

Abstract:

Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.

Keywords: federated Learning, pothole detection, distributed framework, federated averaging

Procedia PDF Downloads 104
5400 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 149
5399 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: malware detection, network security, targeted attack, computational intelligence

Procedia PDF Downloads 263
5398 New Features for Copy-Move Image Forgery Detection

Authors: Michael Zimba

Abstract:

A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.

Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery

Procedia PDF Downloads 543
5397 talk2all: A Revolutionary Tool for International Medical Tourism

Authors: Madhukar Kasarla, Sumit Fogla, Kiran Panuganti, Gaurav Jain, Abhijit Ramanujam, Astha Jain, Shashank Kraleti, Sharat Musham, Arun Chaudhury

Abstract:

Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism.

Keywords: language translation, communication, machine learning, medical tourism

Procedia PDF Downloads 214
5396 Studying Second Language Learners' Language Behavior from Conversation Analysis Perspective

Authors: Yanyan Wang

Abstract:

This paper on second language teaching and learning uses conversation analysis (CA) approach and focuses on how second language learners of Chinese do repair when making clarification requests. In order to demonstrate their behavior in interaction, a comparison was made to study the differences between native speakers of Chinese with non-native speakers of Chinese. The significance of the research is to make second language teachers and learners aware of repair and how to seek clarification. Utilizing the methodology of CA, the research involved two sets of naturally occurring recordings, one of native speaker students and the other of non-native speaker students. Both sets of recording were telephone talks between students and teachers. There were 50 native speaker students and 50 non-native speaker students. From multiple listening to the recordings, the parts with repairs for clarification were selected for analysis which included the moments in the talk when students had problems in understanding or hearing the speaker and had to seek clarification. For example, ‘Sorry, I do not understand ‘and ‘Can you repeat the question? ‘were the parts as repair to make clarification requests. In the data, there were 43 such cases from native speaker students and 88 cases from non-native speaker students. The non-native speaker students were more likely to use repair to seek clarification. Analysis on how the students make clarification requests during their conversation was carried out by investigating how the students initiated problems and how the teachers repaired the problems. In CA term, it is called other-initiated self-repair (OISR), which refers to student-initiated teacher-repair in this research. The findings show that, in initiating repair, native speaker students pay more attention to mutual understanding (inter-subjectivity) while non-native speaker students, due to their lack of language proficiency, pay more attention to their status of knowledge (epistemic) switch. There are three major differences: 1, native Chinese students more often initiate closed-class OISR (seeking specific information in the request) such as repeating a word or phrases from the previous turn while non-native students more frequently initiate open-class OISR (not specifying clarification) such as ‘sorry, I don’t understand ‘. 2, native speakers’ clarification requests are treated by the teacher as understanding of the content while non-native learners’ clarification requests are treated by teacher as language proficiency problem. 3, native speakers don’t see repair as knowledge issue and there is no third position in the repair sequences to close repair while non-native learners take repair sequence as a time to adjust their knowledge. There is clear closing third position token such as ‘oh ‘ to close repair sequence so that the topic can go back. In conclusion, this paper uses conversation analysis approach to compare differences between native Chinese speakers and non-native Chinese learners in their ways of conducting repair when making clarification requests. The findings are useful in future Chinese language teaching and learning, especially in teaching pragmatics such as requests.

Keywords: conversation analysis (CA), clarification request, second language (L2), teaching implication

Procedia PDF Downloads 256
5395 Becoming Multilingual’: Empowering College Students to Learn and Maintain Languages for Life

Authors: Peter Ecke

Abstract:

This research presents insights from a questionnaire study and autobiographic narrative analyses about the language and cultural backgrounds, challenges, interests, and needs, as well as perceptions about bilingualism and language learning of undergraduate students at a Public University in the southwestern United States. Participants were 650 students, enrolled in college-level general education courses, entitled “Becoming multilingual: Learning and maintaining two or more languages” between 2020 and 2024. Data were collected via pre- and post-course questionnaires administered online through the Qualtrix XM platform and complemented with analyses of excerpts from autobiographical narratives that students produced as part of the course assignments. Findings, for example, show that course participants have diverse linguistic backgrounds. The five most frequently reported L1s were English (about 50% of course participants), Spanish, Arabic, Mandarin, and Korean (in that order). The five most frequently reported L2s were English, Spanish, French, ASL, Japanese, German, and Mandarin (in that order). Participants also reported on their L2, L3, L4, and L5 if applicable. Most participants (over 60%) rated themselves bilingual or multilingual whereas 40% considered themselves to be monolingual or foreign language learners. Only about half of the participants reported feeling very or somewhat comfortable with their language skills, but these reports changed somewhat from the pre- to the post-course survey. About half of participants were mostly interested in learning how to effectively learn a foreign language. The other half of participants reported being most curious about learning about themselves as bi/multilinguals, (re)learning a language used in childhood, learning how to bring up a child as a bi/multilingual or learning about people who speak multiple languages (distributed about evenly). Participants’ comments about advantages and disadvantages of being bilingual remained relatively stable but their agreement with common myths about bilingualism and language learning changed from the pre- to the post-course survey. Students’ reflections in the autobiographical narratives and comments in (institutionally administered) anonymous course evaluations provided additional data on students’ concerns about their current language skills and uses as well as their perceptions about learning outcomes and the usefulness of the general education course for their current and future lives. It is hoped that the presented findings and discussion will spark interest among colleagues in offering similar courses as a resource for college students (and possibly other audiences), including those from migrant, indigenous, multilingual, and multicultural communities to contribute to a more harmonious bilingualism and well-being of college students who are or inspire to become bi-or multilingual.

Keywords: autobiographic narratives, general education university course, harmonious bilingualism and well-being, multilingualism, questionnaire study

Procedia PDF Downloads 48
5394 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119