Search results for: models synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8834

Search results for: models synthesis

7094 Super-Hydrophilic TFC Membrane with High Stability in Oil

Authors: M. Obaid, Nasser A. M. Barakat, Fadali O.A

Abstract:

Low stability in oil media and the hydrophobicity problems of the ploysulfone electrospun membranes could be overcome in the present study. Synthesis of super-hydrophilic and highly stable in oil polysulfone electrospun nanofiber membrane was achieved by electrospinning of polysulfone solution containing NaOH salt followed by activation of the dried electrospun membrane by deposition of polyamide layer on the surface using m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride. The introduced membrane has super-hydrophilicity characteristic (contact angle=3o), excellent stability in oil media and distinct performance in oil-water separation process.

Keywords: electrospinning, oil-degradability, membrane, nanofibers

Procedia PDF Downloads 482
7093 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media

Procedia PDF Downloads 301
7092 Synthesis and Characterization of a Type Oxide Ca1-x Srx MnO3

Authors: A. Guemache, M. Omari

Abstract:

Oxides with formula Ca1-xSrx MnO3(0≤x≤0.2) were synthesized using co precipitation method. The identification of the obtained phase was carried out using infrared spectroscopy and x-ray diffraction. Thermogravimetric and differential analysis was permitted to characterize different transformations of precursors which take place during one heating cycle. The study of electrochemical behavior was carried out by cyclic voltammetry and impedance spectroscopy. The obtained results show that apparent catalytic activity improved when increasing the concentration of strontium. Anodic current densities varies from 1.3 to 5.9 mA/cm2 at the rate scan of 20 mV.s-1 and a potential 0.8 V for oxides with composition x=0 to 0.2.

Keywords: oxide, co-precipitation, thermal analysis, electrochemical properties

Procedia PDF Downloads 361
7091 Patient Care Needs Assessment: An Evidence-Based Process to Inform Quality Care and Decision Making

Authors: Wynne De Jong, Robert Miller, Ross Riggs

Abstract:

Beyond the number of nurses providing care for patients, having nurses with the right skills, experience and education is essential to ensure the best possible outcomes for patients. Research studies continue to link nurse staffing and skill mix with nurse-sensitive patient outcomes; numerous studies clearly show that superior patient outcomes are associated with higher levels of regulated staff. Due to the limited number of tools and processes available to assist nurse leaders with staffing models of care, nurse leaders are constantly faced with the ongoing challenge to ensure their staffing models of care best suit their patient population. In 2009, several hospitals in Ontario, Canada participated in a research study to develop and evaluate an RN/RPN utilization toolkit. The purpose of this study was to develop and evaluate a toolkit for Registered Nurses/Registered Practical Nurses Staff mix decision-making based on the College of Nurses of Ontario, Canada practice standards for the utilization of RNs and RPNs. This paper will highlight how an organization has further developed the Patient Care Needs Assessment (PCNA) questionnaire, a major component of the toolkit. Moreover, it will demonstrate how it has utilized the information from PCNA to clearly identify patient and family care needs, thus providing evidence-based results to assist leaders with matching the best staffing skill mix to their patients.

Keywords: nurse staffing models of care, skill mix, nursing health human resources, patient safety

Procedia PDF Downloads 314
7090 Revisionism in Literature: Deconstructing Patriarchal Ideals in Margaret Atwood's The Penelopiad

Authors: Essam Abdelhamid Hegazy

Abstract:

This paper aims to read Margaret Atwood's The Penelopiad (2005) via a revisionist and deconstructive approach. This novel is a postmodernist exploration of the grand-narrative myth The Odyssey (800 BC) by Homer, who portrayed the heroic warrior and the faithful wife as the epitome of perfect male and female models _examples whom all must follow and mimic. In Atwood's narrative, the same two hero models are the two great tricksters who are willing to perform any sort of obnoxious act for achieving their goals. This research tries to examine how Atwood tried to synthesize the change in character’s narratives leading to the humanization of the perfect hero and the ideal wife. The researcher has used a multidisciplinary approach where the feminist, revisionist and deconstructive theories were implemented to identify and find out the new interpretations of the myths that center the experiences and perspectives of women. Research findings are that revisionist approach was applied through giving an opportunity to the victimized and the voiceless to speak out and retaliate against their prosecutions.

Keywords: margret atwood, patriarchal, penelopiad, revisionism

Procedia PDF Downloads 82
7089 The Principle of Methodological Rationality and Security of Organisations

Authors: Jan Franciszek Jacko

Abstract:

This investigation presents the principle of methodological rationality of decision making and discusses the impact of an organisation's members' methodologically rational or irrational decisions on its security. This study formulates and partially justifies some research hypotheses regarding the impact. The thinking experiment is used according to Max Weber's ideal types method. Two idealised situations("models") are compared: Model A, whereall decision-makers follow methodologically rational decision-making procedures. Model B, in which these agents follow methodologically irrational decision-making practices. Analysing and comparing the two models will allow the formulation of some research hypotheses regarding the impact of methodologically rational and irrational attitudes of members of an organisation on its security. In addition to the method, phenomenological analyses of rationality and irrationality are applied.

Keywords: methodological rationality, rational decisions, security of organisations, philosophy of economics

Procedia PDF Downloads 139
7088 Comparative Functional Analysis of Two Major Sterol-Biosynthesis Regulating Transcription Factors, Hob1 and Sre1, in Pathogenic Cryptococcus Species Complex

Authors: Dong-Gi Lee, Suyeon Cha, Yong-Sun Bahn

Abstract:

Sterol lipid is essential for cell membrane structure in eukaryotic cells. In mammalian cells, sterol regulatory element binding proteins (SREBPs) act as principal regulators of cellular cholesterol which is essential for proper cell membrane fluidity and structure. SREBP and sterol regulation are related to levels of cellular oxygen because it is a major substrate for sterol synthesis. Upon cellular sterol and oxygen levels are depleted, SREBP is translocated to the Golgi where it undergoes proteolytic cleavage of N terminus, then it travels to the nucleus to play a role as transcription factor. In yeast cells, synthesis of ergosterol is also highly oxygen consumptive, and Sre1 is a transcription factor known to play a central role in adaptation to growth under low oxygen condition and sterol homeostasis in Cryptococcus neoformans. In this study, we observed phenotypes in other strains of Cryptococcus species by constructing hob1Δ and sre1Δ mutants to confirm whether the functions of both genes are conserved in most serotypes. As a result, hob1Δ showed no noticeable phenotype under treatment of antifungal drugs and most environmental stresses in R265 (C. gattii) and XL280 (C. neoformans), suggesting that Hob1 is related to sterol regulation only in H99 (serotype A). On the other hand, the function of Sre1 was found to be conserved in most serotypes. Furthermore, mating experiment of hob1Δ or sre1Δ showed dramatic defects in serotype A (H99) and D (XL280). It revealed that Hob1 and Sre1 related to mating ability in Cryptococcus species, especially cell fusion efficiency. In conclusion, HOB1 and SRE1 play crucial role in regulating sterol-homeostasis and differentiation in C. neoformans, moreover, Hob1 is specific gene in Cryptococcus neoformans. It suggests that Hob1 is considered as potent factor-targeted new safety antifungal drug.

Keywords: cryptococcus neoformans, Hob1, Sre1, sterol regulatory element binding proteins

Procedia PDF Downloads 250
7087 Atomic Layer Deposition Of Metal Oxide Inverse Opals: A Promising Strategy For Photocatalytic Applications

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Tamás Igricz, Zoltán Erdélyi, , Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a promising class of photocatalysts with a unique hierarchical structure. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. In this study, we report the synthesis of TiO₂, ZnO, and Al₂O₃ inverse opal and their composites photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al₂O₃ can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production.

Keywords: ALD, metal oxide inverse opals, photocatalysis, composites

Procedia PDF Downloads 82
7086 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders

Authors: Emilie Zimet

Abstract:

During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.

Keywords: identification, student selection, communication, special education, school policy, planning for intervention

Procedia PDF Downloads 47
7085 Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting

Authors: J. E. Mendes, T. T. de Barros, O. B. G. de Assis, J. D. C. Pessoa

Abstract:

Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting.

Keywords: chitosan microparticles, biomaterial, scaffold, bioprinting

Procedia PDF Downloads 322
7084 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic

Authors: Jiri Dufek

Abstract:

The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)

Keywords: trip distribution, three dimension, transport model, municipalities

Procedia PDF Downloads 130
7083 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 329
7082 Biomimicked Nano-Structured Coating Elaboration by Soft Chemistry Route for Self-Cleaning and Antibacterial Uses

Authors: Elodie Niemiec, Philippe Champagne, Jean-Francois Blach, Philippe Moreau, Anthony Thuault, Arnaud Tricoteaux

Abstract:

Hygiene of equipment in contact with users is an important issue in the railroad industry. The numerous cleanings to eliminate bacteria and dirt cost a lot. Besides, mechanical solicitations on contact parts are observed daily. It should be interesting to elaborate on a self-cleaning and antibacterial coating with sufficient adhesion and good resistance against mechanical and chemical solicitations. Thus, a Hauts-de-France and Maubeuge Val-de-Sambre conurbation authority co-financed Ph.D. thesis has been set up since October 2017 based on anterior studies carried by the Laboratory of Ceramic Materials and Processing. To accomplish this task, a soft chemical route has been implemented to bring a lotus effect on metallic substrates. It involves nanometric liquid zinc oxide synthesis under 100°C. The originality here consists in a variation of surface texturing by modification of the synthesis time of the species in solution. This helps to adjust wettability. Nanostructured zinc oxide has been chosen because of the inherent photocatalytic effect, which can activate organic substance degradation. Two methods of heating have been compared: conventional and microwave assistance. Tested subtracts are made of stainless steel to conform to transport uses. Substrate preparation was the first step of this protocol: a meticulous cleaning of the samples is applied. The main goal of the elaboration protocol is to fix enough zinc-based seeds to make them grow during the next step as desired (nanorod shaped). To improve this adhesion, a silica gel has been formulated and optimized to ensure chemical bonding between substrate and zinc seeds. The last step consists of deposing a wide carbonated organosilane to improve the superhydrophobic property of the coating. The quasi-proportionality between the reaction time and the nanorod length will be demonstrated. Water Contact (superior to 150°) and Roll-off Angle at different steps of the process will be presented. The antibacterial effect has been proved with Escherichia Coli, Staphylococcus Aureus, and Bacillus Subtilis. The mortality rate is found to be four times superior to a non-treated substrate. Photocatalytic experiences were carried out from different dyed solutions in contact with treated samples under UV irradiation. Spectroscopic measurements allow to determinate times of degradation according to the zinc quantity available on the surface. The final coating obtained is, therefore, not a monolayer but rather a set of amorphous/crystalline/amorphous layers that have been characterized by spectroscopic ellipsometry. We will show that the thickness of the nanostructured oxide layer depends essentially on the synthesis time set in the hydrothermal growth step. A green, easy-to-process and control coating with self-cleaning and antibacterial properties has been synthesized with a satisfying surface structuration.

Keywords: antibacterial, biomimetism, soft-chemistry, zinc oxide

Procedia PDF Downloads 142
7081 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’

Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell

Abstract:

Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.

Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML

Procedia PDF Downloads 137
7080 Temperature Control Improvement of Membrane Reactor

Authors: Pornsiri Kaewpradit, Chalisa Pourneaw

Abstract:

Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.

Keywords: model predictive control, batch reactor, temperature control, membrane reactor

Procedia PDF Downloads 468
7079 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
7078 Ag Nanoparticle/Melamine Sulfonic Acid Supported on Alumina: Efficient Catalytic System in Synthesis of Dihydropyrimidines

Authors: Parya Nasehi, Mohammad Kazem Mohammadi

Abstract:

3,4-dihydropyrimidin-2(1H)-thiones were synthesized in the presence of Ag nanoparticle/melamine sulfonic acid (MSA) supported on alumina. The reaction was carried out at 110 oC for 20 min under solvent free conditions. This method have some advantages such as good yield, mild reaction conditions, ease of operation and work up, short reaction time and high product purity.

Keywords: nanoparticle melamine sulfonic acid, Al2O3, Biginelli reaction, 3, 4-dihydropyrimidin-2(1H, solvent free

Procedia PDF Downloads 513
7077 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures

Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim

Abstract:

Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.

Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate

Procedia PDF Downloads 122
7076 Times Series Analysis of Depositing in Industrial Design in Brazil between 1996 and 2013

Authors: Jonas Pedro Fabris, Alberth Almeida Amorim Souza, Maria Emilia Camargo, Suzana Leitão Russo

Abstract:

With the law Nº. 9279, of May 14, 1996, the Brazilian government regulates rights and obligations relating to industrial property considering the economic development of the country as granting patents, trademark registration, registration of industrial designs and other forms of protection copyright. In this study, we show the application of the methodology of Box and Jenkins in the series of deposits of industrial design at the National Institute of Industrial Property for the period from May 1996 to April 2013. First, a graphical analysis of the data was done by observing the behavior of the data and the autocorrelation function. The best model found, based on the analysis of charts and statistical tests suggested by Box and Jenkins methodology, it was possible to determine the model number for the deposit of industrial design, SARIMA (2,1,0)(2,0,0), with an equal to 9.88% MAPE.

Keywords: ARIMA models, autocorrelation, Box and Jenkins Models, industrial design, MAPE, time series

Procedia PDF Downloads 544
7075 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 470
7074 Synthesis and Antimicrobial Profile of Newer Schiff Bases and Thiazolidinone Derivatives

Authors: N. K. Fuloria, S. Fuloria, R. Gupta

Abstract:

Esterification of p-bromo-m-cresol offered 2-(4-bromo-3-methyl phenoxy)acetate (1), which was hydrazinated to yield 2-(4-bromo-3-methyl phenoxy)aceto hydrazide (2). Compound (2) was reacted with different aromatic aldehydes to yield N-(substituted benzylidiene)-2-(4-bromo-3-methyl phenoxy)acetamide(3a-c). Cyclization of compound (3a-c) with thioglycolic acid yielded 2-(4-bromo-3-methylphenoxy)-N-(4-oxo-2-arylthiazolidin-3-yl) acetamide (4a-c). The newly synthesized compounds were characterized on the basis of spectral studies and evaluated for antibacterial and antifungal activities.

Keywords: imines, thiazolidinone, schiff base, antimicrobial

Procedia PDF Downloads 446
7073 Evaluating Traffic Congestion Using the Bayesian Dirichlet Process Mixture of Generalized Linear Models

Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig

Abstract:

This study applied traffic speed and occupancy to develop clustering models that identify different traffic conditions. Particularly, these models are based on the Dirichlet Process Mixture of Generalized Linear regression (DML) and change-point regression (CR). The model frameworks were implemented using 2015 historical traffic data aggregated at a 15-minute interval from an Interstate 295 freeway in Jacksonville, Florida. Using the deviance information criterion (DIC) to identify the appropriate number of mixture components, three traffic states were identified as free-flow, transitional, and congested condition. Results of the DML revealed that traffic occupancy is statistically significant in influencing the reduction of traffic speed in each of the identified states. Influence on the free-flow and the congested state was estimated to be higher than the transitional flow condition in both evening and morning peak periods. Estimation of the critical speed threshold using CR revealed that 47 mph and 48 mph are speed thresholds for congested and transitional traffic condition during the morning peak hours and evening peak hours, respectively. Free-flow speed thresholds for morning and evening peak hours were estimated at 64 mph and 66 mph, respectively. The proposed approaches will facilitate accurate detection and prediction of traffic congestion for developing effective countermeasures.

Keywords: traffic congestion, multistate speed distribution, traffic occupancy, Dirichlet process mixtures of generalized linear model, Bayesian change-point detection

Procedia PDF Downloads 294
7072 Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan

Authors: Muhammad Imran, Iqra Basit, Mobushir Riaz Khan, Sajid Rasheed Ahmad

Abstract:

The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar.

Keywords: Landsat NDVI, panel models, temperature, rainfall

Procedia PDF Downloads 205
7071 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide

Authors: V. Mani Rathnam, Giridhar Madras

Abstract:

Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.

Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide

Procedia PDF Downloads 134
7070 A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements

Authors: Ahmadali Tahmasebimoradi, Chetra Mang, Xavier Lorang

Abstract:

Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model.

Keywords: additive manufacturing, Ansys, geometric defects, hybrid finite element model, lattice structure

Procedia PDF Downloads 112
7069 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 139
7068 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 104
7067 A Risk-Based Modeling Approach for Successful Adoption of CAATTs in Audits: An Exploratory Study Applied to Israeli Accountancy Firms

Authors: Alon Cohen, Jeffrey Kantor, Shalom Levy

Abstract:

Technology adoption models are extensively used in the literature to explore drivers and inhibitors affecting the adoption of Computer Assisted Audit Techniques and Tools (CAATTs). Further studies from recent years suggested additional factors that may affect technology adoption by CPA firms. However, the adoption of CAATTs by financial auditors differs from the adoption of technologies in other industries. This is a result of the unique characteristics of the auditing process, which are expressed in the audit risk elements and the risk-based auditing approach, as encoded in the auditing standards. Since these audit risk factors are not part of the existing models that are used to explain technology adoption, these models do not fully correspond to the specific needs and requirements of the auditing domain. The overarching objective of this qualitative research is to fill the gap in the literature, which exists as a result of using generic technology adoption models. Followed by a pretest and based on semi-structured in-depth interviews with 16 Israeli CPA firms of different sizes, this study aims to reveal determinants related to audit risk factors that influence the adoption of CAATTs in audits and proposes a new modeling approach for the successful adoption of CAATTs. The findings emphasize several important aspects: (1) while large CPA firms developed their own inner guidelines to assess the audit risk components, other CPA firms do not follow a formal and validated methodology to evaluate these risks; (2) large firms incorporate a variety of CAATTs, including self-developed advanced tools. On the other hand, small and mid-sized CPA firms incorporate standard CAATTs and still need to catch up to better understand what CAATTs can offer and how they can contribute to the quality of the audit; (3) the top management of mid-sized and small CPA firms should be more proactive and updated about CAATTs capabilities and contributions to audits; and (4) All CPA firms consider professionalism as a major challenge that must be constantly managed to ensure an optimal CAATTs operation. The study extends the existing knowledge of CAATTs adoption by looking at it from a risk-based auditing approach. It suggests a new model for CAATTs adoption by incorporating influencing audit risk factors that auditors should examine when considering CAATTs adoption. Since the model can be used in various audited scenarios and supports strategic, risk-based decisions, it maximizes the great potential of CAATTs on the quality of the audits. The results and insights can be useful to CPA firms, internal auditors, CAATTs developers and regulators. Moreover, it may motivate audit standard-setters to issue updated guidelines regarding CAATTs adoption in audits.

Keywords: audit risk, CAATTs, financial auditing, information technology, technology adoption models

Procedia PDF Downloads 67
7066 Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes

Authors: Zahreddine Hafsi, Manoranjan Mishra , Sami Elaoud

Abstract:

Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity.

Keywords: capillary pressure, EOR process, immiscible flow, numerical modelling

Procedia PDF Downloads 131
7065 The Types of Collaboration Models Driven by Public Art Establishment–Case Study of Taichung City

Authors: Cheng-Lung Yu, Ying-His Liao

Abstract:

Some evidence show that public art accelerates local economic growth. Even local governments award the collaboration of public-private partnership to sustain the creation of public art for urban economic development. Through the public-private partnership of public art establishment it is obvious that public construction projects have been led by the governmental policy yet the private developers have played crucial roles to drive the innovative business models such as tourism investment, real estate value up and community participation. This study shows that the types of collaboration have been driven by Taichung city governmental policy from the regulation of public art establishment in the past three years. Through some cases empirical analyzes the authors discover the trends concerning the public art development to support local economic growth in Taiwan.

Keywords: public art, public art establishment regulation, construction management, urban governance

Procedia PDF Downloads 32