Search results for: time deadline
16462 Developing an Information Model of Manufacturing Process for Sustainability
Authors: Jae Hyun Lee
Abstract:
Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes.Keywords: process information model, sustainability, OWL, manufacturing
Procedia PDF Downloads 43016461 Bulk Viscous Bianchi Type V Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant in General Relativity
Authors: Reena Behal, D. P. Shukla
Abstract:
In this paper, we investigate Bulk Viscous Bianchi Type V Cosmological Model with Time dependent gravitational constant and cosmological constant in general Relativity by assuming ξ(t)=ξ_(0 ) p^m where ξ_(0 ) and m are constants. We also assume a variation law for Hubble parameter as H(R) = a (R^(-n)+1), where a>0, n>1 being constant. Two universe models were obtained, and their physical behavior has been discussed. When n=1 the Universe starts from singular state whereas when n=0 the cosmology follows a no singular state. The presence of bulk viscosity increase matter density’s value.Keywords: Bulk Viscous Bianchi Type V Cosmological Model, hubble constants, gravitational constant, cosmological constants
Procedia PDF Downloads 17516460 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies
Authors: Sam Bahreini, Payam Hayati
Abstract:
Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)
Procedia PDF Downloads 16916459 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration
Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim
Abstract:
In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.Keywords: gas sensor, leak detector, lower concentration, and calibration
Procedia PDF Downloads 24016458 Impact of Fermentation Time and Microbial Source on Physicochemical Properties, Total Phenols and Antioxidant Activity of Finger Millet Malt Beverage
Authors: Henry O. Udeha, Kwaku G. Duodub, Afam I. O. Jideanic
Abstract:
Finger millet (FM) [Eleusine coracana] is considered as a potential ‘‘super grain’’ by the United States National Academies as one of the most nutritious among all the major cereals. The regular consumption of FM-based diets has been associated with reduced risk of diabetes, cataract and gastrointestinal tract disorder. Hyperglycaemic, hypocholesterolaemic and anticataractogenic, and other health improvement properties have been reported. This study examined the effect of fermentation time and microbial source on physicochemical properties, phenolic compounds and antioxidant activity of two finger millet (FM) malt flours. Sorghum was used as an external reference. The grains were malted, mashed and fermented using the grain microflora and Lactobacillus fermentum. The phenolic compounds of the resulting beverage were identified and quantified using ultra-performance liquid chromatography (UPLC) and mass spectrometer system (MS). A fermentation-time dependent decrease in pH and viscosities of the beverages, with a corresponding increase in sugar content were noted. The phenolic compounds found in the FM beverages were protocatechuic acid, catechin and epicatechin. Decrease in total phenolics of the beverages was observed with increased fermentation time. The beverages exhibited 2, 2-diphenyl-1-picrylhydrazyl, 2, 2՛-azinobis-3-ethylbenzthiazoline-6-sulfonic acid radical scavenging action and iron reducing activities, which were significantly (p < 0.05) reduced at 96 h fermentation for both microbial sources. The 24 h fermented beverages retained a higher amount of total phenolics and had higher antioxidant activity compared to other fermentation periods. The study demonstrates that FM could be utilised as a functional grain in the production of non-alcoholic beverage with important phenolic compounds for health promotion and wellness.Keywords: antioxidant activity, eleusine coracana, fermentation, phenolic compounds
Procedia PDF Downloads 10816457 Image Rotation Using an Augmented 2-Step Shear Transform
Authors: Hee-Choul Kwon, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition
Procedia PDF Downloads 27816456 Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids
Authors: Yen-Hui Chen, Terry Walker
Abstract:
As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production.Keywords: Chlorella protothecoides, microalgal lipids, response surface methodology, supercritical carbon dioxide extraction
Procedia PDF Downloads 44416455 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite
Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua
Abstract:
In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.Keywords: capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way analysis of variance (ANOVA)
Procedia PDF Downloads 37016454 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice
Authors: T. Ewetumo, K. D. Adedayo, Festus Ben
Abstract:
Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation
Procedia PDF Downloads 35716453 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 8716452 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 16816451 Enhanced Photoelectrochemical performance of TiO₂ Nanorods: The Critical Role of Hydrothermal Reaction Time
Authors: Srijitra Khanpakdee, Teera Butburee, Jung-Ho Yun, Miaoqiang Lyu, Supphasin Thaweesak, Piangjai Peerakiatkhajohn
Abstract:
The synthesis of titanium dioxide (TiO₂) nanorods (NRs) on fluorine-doped tin oxide (FTO) glass via hydrothermal methods was investigated to determine the optimal reaction time for enhanced photocatalytic and optical performance. Reaction times of 4, 6, and 8 hours were studied. Characterization through SEM, UV-vis, XRD, FTIR, Raman spectroscopy and photoelectrochemical (PEC) techniques revealed significant differences in the properties of the TiO₂ NRs based on the reaction duration. XRD and Raman spectroscopy analysis confirmed the formation of the rutile phase of TiO₂. As photoanodes in PEC cells, TiO₂ NRs synthesized for 4 hours exhibited the best photocatalytic activity, with the highest photocurrent density and superior charge transport properties, attributed to their densely packed vertical structure. Longer reaction times resulted in less optimal morphological and photoelectrochemical characteristics. The bandgap of the TiO₂ NRs remained consistent around 3.06 eV, with only slight variations observed. This study highlights the critical role of reaction time in hydrothermal synthesis, identifying 4 hours as the optimal duration for producing TiO₂ NRs with superior photoelectrochemical performance. These findings provide valuable insights for optimizing TiO₂-based materials for solar energy conversion and renewable energy applications.Keywords: titanium dioxide, nanorods, hydrothermal, photocatalytic, photoelectrochemical
Procedia PDF Downloads 4216450 Mean Field Model Interaction for Computer and Communication Systems: Modeling and Analysis of Wireless Sensor Networks
Authors: Irina A. Gudkova, Yousra Demigha
Abstract:
Scientific research is moving more and more towards the study of complex systems in several areas of economics, biology physics, and computer science. In this paper, we will work on complex systems in communication networks, Wireless Sensor Networks (WSN) that are considered as stochastic systems composed of interacting entities. The current advancements of the sensing in computing and communication systems is an investment ground for research in several tracks. A detailed presentation was made for the WSN, their use, modeling, different problems that can occur in their application and some solutions. The main goal of this work reintroduces the idea of mean field method since it is a powerful technique to solve this type of models especially systems that evolve according to a Continuous Time Markov Chain (CTMC). Modeling of a CTMC has been focused; we obtained a large system of interacting Continuous Time Markov Chain with population entities. The main idea was to work on one entity and replace the others with an average or effective interaction. In this context to make the solution easier, we consider a wireless sensor network as a multi-body problem and we reduce it to one body problem. The method was applied to a system of WSN modeled as a Markovian queue showing the results of the used technique.Keywords: Continuous-Time Markov Chain, Hidden Markov Chain, mean field method, Wireless sensor networks
Procedia PDF Downloads 16516449 Kinetic Energy Recovery System Using Spring
Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe
Abstract:
New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring
Procedia PDF Downloads 20116448 Influence of Decolourisation Condition on the Physicochemical Properties of Shea (Vitellaria paradoxa Gaertner F) Butter
Authors: Ahmed Mohammed Mohagir, Ahmat-Charfadine Mahamat, Nde Divine Bup, Richard Kamga, César Kapseu
Abstract:
In this investigation, kinetics studies of adsorption of colour material of shea butter showed a peak at the wavelength 440 nm and the equilibrium time was found to be 30 min. Response surface methodology applying Doehlert experimental design was used to investigate decolourisation parameters of crude shea butter. The decolourisation process was significantly influenced by three independent parameters: contact time, decolourisation temperature and adsorbent dose. The responses of the process were oil loss, acid value, peroxide value and colour index. Response surface plots were successfully made to visualise the effect of the independent parameters on the responses of the process.Keywords: decolourisation, doehlert experimental design, physicochemical characterisation, RSM, shea butter
Procedia PDF Downloads 41616447 From Edible Products to Disinfecting Currency Notes
Authors: Aniruddha Hore, Saptarshi Mitra, Sandip Ghosh, Sujoy Bose, Avijit Ghosh
Abstract:
The Indian rupee is the official currency of India. With time, science and technology got advanced, and our society is slowly making its way to a cashless mode of transaction. But as India is still a developing country, a large part of our society still depends on transaction through cash. During times of pandemics, we came to understand that everything that we touch is not safe from microbial contamination. The Indian currency is also not an exception. The Indian currency is the modern-day medium of harmful bacterial as well as other microbial contaminations resulting in diseases in human bodies. Therefore, the need came to make the currency disinfectant to give our people a healthier lifestyle. The main focus of the study is to develop a solution that, when applied to the currency notes, will kill the persisting bacteria or microbes present in the notes. So various natural edible products were used in order to prepare the solution, which is highly effective against the presence of harmful bacteria such as E. coli and S. aureus. The antibacterial activity of these natural ingredients is not unknown to us, so extracts from those products were mixed together to form a solution which was made the Indian currency notes antibacterial for 20min approx. The solution was creating a layer on the surface of currency notes, therefore, making it antibacterial for a given duration of time, i.e., no bacterial growth was seen during the time period of 20 minutes, therefore, making it safe for the usage of human hands.Keywords: Indian currency, antibacterial property of Indian currency, surface coating, currency disinfectant
Procedia PDF Downloads 12716446 Poultry as a Carrier of Chlamydia gallinacea
Authors: Monika Szymańska-Czerwińsk, Kinga Zaręba-Marchewka, Krzysztof Niemczuk
Abstract:
Chlamydiaceae are Gram-negative bacteria distributed worldwide in animals and humans. One of them is Chlamydia gallinacea recently discovered. Available data show that C. gallinacea is dominant chlamydial agent found in poultry in European and Asian countries. The aim of the studies was screening of poultry flocks in order to evaluate frequency of C. gallinacea shedding and genetic diversity. Sampling was conducted in different regions of Poland in 2019-2020. Overall, 1466 cloacal/oral swabs were collected in duplicate from 146 apparently healthy poultry flocks including chickens, turkeys, ducks, geese and quails. Dry swabs were used for DNA extraction. DNA extracts were screened using a Chlamydiaceae 23S rRNA real-time PCR assay. To identify Chlamydia species, specific real-time PCR assays were performed. Furthermore, selected samples were used for sequencing based on ompA gene fragments and variable domains (VD1-2, VD3-4). In total, 10.3% of the tested flocks were Chlamydiaceae-positive (15/146 farms). The presence of Chlamydiaceae was confirmed mainly in chickens (13/92 farms) but also in turkey (1/19 farms) and goose (1/26 farms) flocks. Eleven flocks were identified as C. gallinacea-positive while four flocks remained unclassified. Phylogenetic analysis revealed at least 16 genetic variants of C. gallinacea. Research showed that Chlamydiaceae occur in a poultry flock in Poland. The strains of C. gallinacea as dominant species show genetic variability.Keywords: C. gallinacea, emerging agent, poultry, real-time PCR
Procedia PDF Downloads 10516445 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
Authors: Swapnil Gupta, C. Pandu Rangan
Abstract:
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting
Procedia PDF Downloads 38916444 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study
Authors: Ghaleb Y. Abbasi, Israa Abu Rumman
Abstract:
This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.Keywords: ARIMA models, sales demand forecasting, time series, R code
Procedia PDF Downloads 38516443 Examining the Importance of the Structure Based on Grid Computing Service and Virtual Organizations
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Vast changes and developments achieved in information technology field in recent decades have made the review of different issues such as organizational structures unavoidable. Applying informative technologies such as internet and also vast use of computer and related networks have led to new organizational formations with a nature completely different from the traditional, great and bureaucratic ones; some common specifications of such organizations are transfer of the affairs out of the organization, benefiting from informative and communicative networks and centered-science workers. Such communicative necessities have led to network sciences development including grid computing. First, the grid computing was only to relate some sites for short – time and use their sources simultaneously, but now it has gone beyond such idea. In this article, the grid computing technology was examined, and at the same time, virtual organization concept was discussed.Keywords: grid computing, virtual organizations, software engineering, organization
Procedia PDF Downloads 33216442 A Case Study on Tension Drop of Cable-band Bolts in Suspension Bridge
Authors: Sihyun Park, Hyunwoo Kim, Wooyoung Jung, Dongwoo You
Abstract:
Regular maintenance works are very important on the axial forces of the cable-band bolts in suspension bridges. The band bolts show stress reduction for several reasons, including cable wire creep, the bolt relaxation, load fluctuation and cable rearrangements, etc., with time. In this study, with respect to the stress reduction that occurs over time, we carried out the theoretical review of the main cause based on the field measurements. As a result, the main cause of reduction in the cable-band bolt axial force was confirmed by the plastic deformation of the zinc plating layer used in the main cable wire, and thus, the theoretical process was established for the practical use in the field.Keywords: cable-band Bolts, field test, maintenance, stress reduction
Procedia PDF Downloads 33216441 Investigation of Surface Water Quality Intera-Annual Variations, Gorganroud Basin, Iran
Authors: K. Ebrahimi, S. Shahid, H. Dehban
Abstract:
Climate variability can affect surface water quality. The objective of present study is to assess the impacts of climate variability on water quality of Gorganroud River, Iran, over the time period 1971 to 2011. To achieve this aim, climate variability and water quality variations were studied involving a newly developed drought index (MRDI) and hysteresis curves, respectively. The results show that climate variability significantly affected surface water quality over the time. The existence of yearly internal variation and hysteresis phenomenon for pH and EC parameters was observed. It was found that though drought affected pH considerably, it could not affect EC significantly.Keywords: climate variability, hysteresis curves, multi drought index, water quality
Procedia PDF Downloads 36916440 A Study of Factors Affecting the Elapsed Time of Housing Renewal Project Implementation in Seoul
Authors: In Su Na, Gunwon Lee, Seiyong Kim
Abstract:
This study analyzed the effect of area variables and economic variables on the length of each period of the project in order to analyze the effect of agreement rate on project implementation in housing renewal projects. In conclusion, as can be seen from these results, a low agreement rate may not translate into project promotion, and a higher agreement rate may not translate into project delay. The expectation of the policy is that the lower the agreement rate, the more projects would be promoted, but that is not the actual effect. From a policy consistency viewpoint, changing the agreement rate frequently, depending on the decision of the public, is not reasonable. The policy of using agreement rate as a necessary condition for project implementation should be reconsidered.Keywords: Area and Economic Variables, Elapsed time, Housing Renewal Project
Procedia PDF Downloads 45616439 Encapsulated Rennin Enzyme in Nano and Micro Tubular Cellulose/Starch Gel Composite for Milk Coagulation
Authors: Eleftheria Barouni, Theano Petsi, Argyro Bekatorou, Dionysos Kolliopoulos, Dimitrios Vasileiou, Panayiotis Panas, Maria Kanellaki, Athanasios A. Koutinas
Abstract:
The aim of the present work was the production and use of a composite filter (TC/starch), containing rennin enzyme, in continuous system and in successive fermentation batches (SFB) for milk coagulation in order to compare the operational stability of both systems and cheese production cost. Tubular cellulose (TC) was produced after removal of lignin from lignocellulosic biomass using several procedures, e.g. alkaline treatment [1] and starch gel was added for the reduction of TC tubes dimensions to micro- and nano- range[2]. Four immobilized biocatalysts were prepared using different ways of the enzyme entrapment. 1) TC/ rennin (rennin entrapped in the tubes of TC), 2) TC/SG-rennin (rennin entrapped in the tubes of the composite), 3) TC-SG/rennin (rennin entrapped into the layer of starch gel) and 4) TC/rennin- SG/rennin (rennin is entrapped both in the tubes of the TC and into the layer of starch gel). Firstly these immobilized biocatalysts were examined in ten SFB regarding the coagulation time and their activity All the above immobilized biocatalysts remained active and the coagulation time was ranged from 90 to 480, 120-480, 330-510, and 270-540 min for (1), (2), (3), and (4) respectively. The quality of the cheese was examined through the determination of volatile compounds by SPME GC/MS analysis. These results encouraged us to study a continuous coagulation system of milk. Even though the (1) immobilized biocatalyst gave lower coagulation time, we used the (2) immobilized biocatalyst in the continuous system. The results were promising.Keywords: tubular cellulose, starch gel, composite biocatalyst, Rennin, milk coagulation
Procedia PDF Downloads 32716438 Making a ‘Once-upon-a-Time’ Mythology in Kazuo Ishiguro’s The Buried Giant
Authors: Masami Usui
Abstract:
Kazuo Ishiguro’s challenging novel, The Buried Giant, embodies how contemporary writers and readers have to discover the voices buried in our history. By avoiding setting or connecting the modern and contemporary historical incidents such as World War II this time, Ishiguro ventures into retelling myth, transfiguring historical facts, and revealing what has been forgotten in a process of establishing history and creating mythology. As generally known, modernist writers in the twentieth century employed materials from authorized classical mythologies, especially Greek mythology. As an heir of this tradition, Ishiguro imposes his mission of criticizing the repeatedly occurring yet easily-forgotten history of dictatorship and a slaughter on mythology based on King Arthur and its related heroes and myths in Britain. On an open ground, Ishiguro can start his own mythical story and space.Keywords: English literature, fantasy, globalism, history
Procedia PDF Downloads 33816437 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 16816436 Assessing Available Power from a Renewable Energy Source in the Southern Hemisphere using Anisotropic Model
Authors: Asowata Osamede, Trudy Sutherland
Abstract:
The purpose of this paper is to assess the available power from a Renewable Energy Source (off-grid photovoltaic (PV) panel) in the Southern Hemisphere using anisotropic model. Direct solar radiation is the driving force in photovoltaics. In a basic PV panels in the Southern Hemisphere, Power conversion is eminent, and this is achieved by the PV cells converting solar energy into electrical energy. In this research, the results was determined for a 6 month period from September 2022 through February 2023. Preliminary results, which include Normal Probability plot, data analysis - R2 value, effective conversion-time per week and work-time per day, indicate a favorably comparison between the empirical results and the simulation results.Keywords: power-conversion, mathematical model, PV panels, DC-DC converters, direct solar radiation
Procedia PDF Downloads 8516435 A Step Towards Automating the Synthesis of a Scene Script
Authors: Americo Pereira, Ricardo Carvalho, Pedro Carvalho, Luis Corte-Real
Abstract:
Generating 3D content is a task mostly done by hand. It requires specific knowledge not only on how to use the tools for the task but also on the fundamentals of a 3D environment. In this work, we show that automatic generation of content can be achieved, from a scene script, by leveraging existing tools so that non-experts can easily engage in a 3D content generation without requiring vast amounts of time in exploring and learning how to use specific tools. This proposal carries several benefits, including flexible scene synthesis with different levels of detail. Our preliminary results show that the automatically generated content is comparable to the content generated by users with low experience in 3D modeling while vastly reducing the amount of time required for the generation and adds support to implement flexible scenarios for visual scene visualization.Keywords: 3D virtualization, multimedia, scene script, synthesis
Procedia PDF Downloads 26616434 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark
Procedia PDF Downloads 7916433 Effect of Particle Size on Alkali-Activation of Slag
Authors: E. Petrakis, V. Karmali, K. Komnitsas
Abstract:
In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.Keywords: alkali activation, compressive strength, grinding time, particle size distribution, slag, structural integrity
Procedia PDF Downloads 138