Search results for: site selection optimization
6004 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit
Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira
Abstract:
Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing
Procedia PDF Downloads 1496003 Approximation of Convex Set by Compactly Semidefinite Representable Set
Authors: Anusuya Ghosh, Vishnu Narayanan
Abstract:
The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation
Procedia PDF Downloads 3916002 Thermal Comfort in Office Rooms in a Historic Building with Modernized Heating, Ventilation and Air Conditioning Systems
Authors: Hossein Bakhtiari, Mathias Cehlin, Jan Akander
Abstract:
Envelopes with low thermal performance is a common characteristic in many European historic buildings which leads to higher energy demand for heating and cooling as well as insufficient thermal comfort for the occupants. This paper presents the results of a study on the thermal comfort in the City Hall (Rådhuset) in Gävle, Sweden. This historic building is currently used as an office building. It is equipped with two relatively modern mechanical heat recovery ventilation systems with displacement ventilation supply devices in the offices. The district heating network heats the building via pre-heat supply air and radiators. Summer cooling comes from an electric heat pump that rejects heat into the exhaust ventilation air. A building management system controls HVAC equipment (heating, ventilation and air conditioning). The methodology is based on on-site measurements, data logging on the management system and evaluating the occupants’ perception of a summer and a winter period indoor environment using a standardized questionnaire. The main aim of the study is to investigate whether or not it is enough to have modernized HVAC systems to get adequate thermal comfort in a historic building with poor envelope performance used as an office building in Nordic climate conditions.Keywords: historic buildings, on-site measurements, standardized questionnaire, thermal comfort
Procedia PDF Downloads 3756001 Optimization of High Flux Density Design for Permanent Magnet Motor
Authors: Dong-Woo Kang
Abstract:
This paper presents an optimal magnet shape of a spoke-shaped interior permanent magnet synchronous motor by using ferrite magnets. Generally, the permanent magnet motor used the ferrite magnets has lower output power and efficiency than a rare-earth magnet motor, because the ferrite magnet has lower magnetic energy than the rare-earth magnet. Nevertheless, the ferrite magnet motor is used to many industrial products owing to cost effectiveness. In this paper, the authors propose a high power density design of the ferrite permanent magnet synchronous motor. Furthermore, because the motor design has to be taken a manufacturing process into account, the design is simulated by using the finite element method for analyzing the demagnetization, the magnetizing, and the structure stiffness. Especially, the magnet shape and dimensions are decided for satisfying these properties. Finally, the authors design an optimal motor for applying our system. That final design is manufactured and evaluated from experimentations.Keywords: demagnetization, design optimization, magnetic analysis, permanent magnet motors
Procedia PDF Downloads 3826000 Brittle Fracture Tests on Steel Bridge Bearings: Application of the Potential Drop Method
Authors: Natalie Hoyer
Abstract:
Usually, steel structures are designed for the upper region of the steel toughness-temperature curve. To address the reduced toughness properties in the temperature transition range, additional safety assessments based on fracture mechanics are necessary. These assessments enable the appropriate selection of steel materials to prevent brittle fracture. In this context, recommendations were established in 2011 to regulate the appropriate selection of steel grades for bridge bearing components. However, these recommendations are no longer fully aligned with more recent insights: Designing bridge bearings and their components in accordance with DIN EN 1337 and the relevant sections of DIN EN 1993 has led to an increasing trend of using large plate thicknesses, especially for long-span bridges. However, these plate thicknesses surpass the application limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with the regulations outlined in DIN EN 1993-1-10 regarding material toughness and through-thickness properties requires some further modifications. Therefore, these standards cannot be directly applied to the material selection for bearings without additional information. In addition, recent findings indicate that certain bridge bearing components are subjected to high fatigue loads, necessitating consideration in structural design, material selection, and calculations. To address this issue, the German Center for Rail Traffic Research initiated a research project aimed at developing a proposal to enhance the existing standards. This proposal seeks to establish guidelines for the selection of steel materials for bridge bearings to prevent brittle fracture, particularly for thick plates and components exposed to specific fatigue loads. The results derived from theoretical analyses, including finite element simulations and analytical calculations, are verified through component testing on a large-scale. During these large-scale tests, where a brittle failure is deliberately induced in a bearing component, an artificially generated defect is introduced into the specimen at the predetermined hotspot. Subsequently, a dynamic load is imposed until the crack initiation process transpires, replicating realistic conditions akin to a sharp notch resembling a fatigue crack. To stop the action of the dynamic load in time, it is important to precisely determine the point at which the crack size transitions from stable crack growth to unstable crack growth. To achieve this, the potential drop measurement method is employed. The proposed paper informs about the choice of measurement method (alternating current potential drop (ACPD) or direct current potential drop (DCPD)), presents results from correlations with created FE models, and may proposes a new approach to introduce beach marks into the fracture surface within the framework of potential drop measurement.Keywords: beach marking, bridge bearing design, brittle fracture, design for fatigue, potential drop
Procedia PDF Downloads 465999 Variable Selection in a Data Envelopment Analysis Model by Multiple Proportions Comparison
Authors: Jirawan Jitthavech, Vichit Lorchirachoonkul
Abstract:
A statistical procedure using multiple comparisons test for proportions is proposed for variable selection in a data envelopment analysis (DEA) model. The test statistic in the multiple comparisons is the proportion of efficient decision making units (DMUs) in a DEA model. Three methods of multiple comparisons test for proportions: multiple Z tests with Bonferroni correction, multiple tests in 2Xc crosstabulation and the Marascuilo procedure, are used in the proposed statistical procedure of iteratively eliminating the variables in a backward manner. Two simulation populations of moderately and lowly correlated variables are used to compare the results of the statistical procedure using three methods of multiple comparisons test for proportions with the hypothesis testing of the efficiency contribution measure. From the simulation results, it can be concluded that the proposed statistical procedure using multiple Z tests for proportions with Bonferroni correction clearly outperforms the proposed statistical procedure using the remaining two methods of multiple comparisons and the hypothesis testing of the efficiency contribution measure.Keywords: Bonferroni correction, efficient DMUs, Marascuilo procedure, Pastor et al. method, 2xc crosstabulation
Procedia PDF Downloads 3135998 Applied Methods for Lightweighting Structural Systems
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior
Procedia PDF Downloads 5255997 Redefining Infrastructure as Code Orchestration Using AI
Authors: Georges Bou Ghantous
Abstract:
This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making
Procedia PDF Downloads 415996 Economical and Technical Analysis of Urban Transit System Selection Using TOPSIS Method According to Constructional and Operational Aspects
Authors: Ali Abdi Kordani, Meysam Rooyintan, Sid Mohammad Boroomandrad
Abstract:
Nowadays, one the most important problems in megacities is public transportation and satisfying citizens from this system in order to decrease the traffic congestions and air pollution. Accordingly, to improve the transit passengers and increase the travel safety, new transportation systems such as Bus Rapid Transit (BRT), tram, and monorail have expanded that each one has different merits and demerits. That is why comparing different systems for a systematic selection of public transportation systems in a big city like Tehran, which has numerous problems in terms of traffic and pollution, is essential. In this paper, it is tried to investigate the advantages and feasibility of using monorail, tram and BRT systems, which are widely used in most of megacities in all over the world. In Tehran, by using SPSS statistical analysis software and TOPSIS method, these three modes are compared to each other and their results will be assessed. Experts, who are experienced in the transportation field, answer the prepared matrix questionnaire to select each public transportation mode (tram, monorail, and BRT). The results according to experts’ judgments represent that monorail has the first priority, Tram has the second one, and BRT has the third one according to the considered indices like execution costs, wasting time, depreciation, pollution, operation costs, travel time, passenger satisfaction, benefit to cost ratio and traffic congestion.Keywords: BRT, costs, monorail, pollution, tram
Procedia PDF Downloads 1815995 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources
Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy
Abstract:
This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.Keywords: big bang big crunch, distributed generation, load control, optimization, planning
Procedia PDF Downloads 3505994 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia
Authors: Samira Melki, Moncef Gueddari
Abstract:
In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia
Procedia PDF Downloads 2085993 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm
Authors: Ming Su, Ziqiang Mu
Abstract:
This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern
Procedia PDF Downloads 1135992 A Selection Approach: Discriminative Model for Nominal Attributes-Based Distance Measures
Authors: Fang Gong
Abstract:
Distance measures are an indispensable part of many instance-based learning (IBL) and machine learning (ML) algorithms. The value difference metrics (VDM) and inverted specific-class distance measure (ISCDM) are among the top-performing distance measures that address nominal attributes. VDM performs well in some domains owing to its simplicity and poorly in others that exist missing value and non-class attribute noise. ISCDM, however, typically works better than VDM on such domains. To maximize their advantages and avoid disadvantages, in this paper, a selection approach: a discriminative model for nominal attributes-based distance measures is proposed. More concretely, VDM and ISCDM are built independently on a training dataset at the training stage, and the most credible one is recorded for each training instance. At the test stage, its nearest neighbor for each test instance is primarily found by any of VDM and ISCDM and then chooses the most reliable model of its nearest neighbor to predict its class label. It is simply denoted as a discriminative distance measure (DDM). Experiments are conducted on the 34 University of California at Irvine (UCI) machine learning repository datasets, and it shows DDM retains the interpretability and simplicity of VDM and ISCDM but significantly outperforms the original VDM and ISCDM and other state-of-the-art competitors in terms of accuracy.Keywords: distance measure, discriminative model, nominal attributes, nearest neighbor
Procedia PDF Downloads 1205991 Optimizing Volume Fraction Variation Profile of Bidirectional Functionally Graded Circular Plate under Mechanical Loading to Minimize Its Stresses
Authors: Javad Jamali Khouei, Mohammadreza Khoshravan
Abstract:
Considering that application of functionally graded material is increasing in most industries, it seems necessary to present a methodology for designing optimal profile of structures such as plate under mechanical loading which is highly consumed in industries. Therefore, volume fraction variation profile of functionally graded circular plate which has been considered two-directional is optimized so that stress of structure is minimized. For this purpose, equilibrium equations of two-directional functionally graded circular plate are solved by applying semi analytical-numerical method under mechanical loading and support conditions. By solving equilibrium equations, deflections and stresses are obtained in terms of control variables of volume fraction variation profile. As a result, the problem formula can be defined as an optimization problem by aiming at minimization of critical von-mises stress under constraints of deflections, stress and a physical constraint relating to structure of material. Then, the related problem can be solved with help of one of the metaheuristic algorithms such as genetic algorithm. Results of optimization for the applied model under constraints and loadings and boundary conditions show that functionally graded plate should be graded only in radial direction and there is no need for volume fraction variation of the constituent particles in thickness direction. For validating results, optimal values of the obtained design variables are graphically evaluated.Keywords: two-directional functionally graded material, single objective optimization, semi analytical-numerical solution, genetic algorithm, graphical solution with contour
Procedia PDF Downloads 2845990 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations
Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho
Abstract:
The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.Keywords: best management practices, on-site stormwater detention, source control, urban drainage
Procedia PDF Downloads 1925989 Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model
Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan
Abstract:
Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper.Keywords: scouring process, plunge pool, scour hole depth, physical model, flip bucket
Procedia PDF Downloads 3975988 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells
Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan
Abstract:
Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.
Procedia PDF Downloads 1205987 Apollo Quality Program: The Essential Framework for Implementing Patient Safety
Authors: Anupam Sibal
Abstract:
Apollo Quality Program(AQP) was launched across the Apollo Group of Hospitals to address the four patient safety areas; Safety during Clinical Handovers, Medication Safety, Surgical Safety and the six International Patient Safety Goals(IPSGs) of JCI. A measurable, online, quality dashboard covering 20 process and outcome parameters was devised for monthly monitoring. The expected outcomes were also defined and categorized into green, yellow and red ranges. An audit methodology was also devised to check the processes for the measurable dashboard. Documented clinical handovers were introduced for the first time at many locations for in-house patient transfer, nursing-handover, and physician-handover. Prototype forms using the SBAR format were made. Patient-identifiers, read-back for verbal orders, safety of high-alert medications, site marking and time-outs and falls risk-assessment were introduced for all hospitals irrespective of accreditation status. Measurement of Surgical-Site-Infection (SSI) for 30 days postoperatively, was done. All hospitals now tracked the time of administration of antimicrobial prophylaxis before surgery. Situations with high risk of retention of foreign body were delineated and precautionary measures instituted. Audit of medications prescribed in the discharge summaries was made uniform. Formularies, prescription-audits and other means for reduction of medication errors were implemented. There is a marked increase in the compliance to processes and patient safety outcomes. Compliance to read-back for verbal orders rose from 86.83% in April’11 to 96.95% in June’15, to policy for high alert medications from 87.83% to 98.82%, to use of measures to prevent wrong-site, wrong-patient, wrong procedure surgery from 85.75% to 97.66%, to hand-washing from 69.18% to 92.54%, to antimicrobial prophylaxis within one hour before incision from 79.43% to 93.46%. Percentage of patients excluded from SSI calculation due to lack of follow-up for the requisite time frame decreased from 21.25% to 10.25%. The average AQP scores for all Apollo Hospitals improved from 62 in April’11 to 87.7 in Jun’15.Keywords: clinical handovers, international patient safety goals, medication safety, surgical safety
Procedia PDF Downloads 2625986 Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris
Authors: Ahmed Arkoazi, Hussein Znad, Ranjeet Utikar
Abstract:
The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.Keywords: bubble column reactor, gas holdup, hydrodynamics, sparger
Procedia PDF Downloads 1485985 Implementation of IWA-ASM1 Model for Simulating the Wastewater Treatment Plant of Beja by GPS-X 5.1
Authors: Fezzani Boubaker
Abstract:
The modified activated sludge model (ASM1 or Mantis) is a generic structured model and a common platform for dynamic simulation of varieties of aerobic processes for optimization and upgrading of existing plants and for new facilities design. In this study, the modified ASM1 included in the GPS-X software was used to simulate the wastewater treatment plant (WWTP) of Beja treating domestic sewage mixed with baker‘s yeast factory effluent. The results of daily measurements and operating records were used to calibrate the model. A sensitivity and an automatic optimization analysis were conducted to determine the most sensitive and optimal parameters. The results indicated that the ASM1 model could simulate with good accuracy: the COD concentration of effluents from the WWTP of Beja for all months of the year 2012. In addition, it prevents the disruption observed at the output of the plant by injecting the baker‘s yeast factory effluent at high concentrations varied between 20 and 80 g/l.Keywords: ASM1, activated sludge, baker’s yeast effluent, modelling, simulation, GPS-X 5.1 software
Procedia PDF Downloads 3475984 Informative, Inclusive and Transparent Planning Methods for Sustainable Heritage Management
Authors: Mathilde Kirkegaard
Abstract:
The paper will focus on management of heritage that integrates the local community, and argue towards an obligation to integrate this social aspect in heritage management. By broadening the understanding of heritage, a sustainable heritage management takes its departure in more than a continual conservation of the physicality of heritage. The social aspect, or the local community, is in many govern heritage management situations being overlooked and it is not managed through community based urban planning methods, e.g.: citizen-inclusion, a transparent process, informative and inviting initiatives, etc. Historical sites are often being described by embracing terms such as “ours” and “us”: “our history” and “a history that is part of us”. Heritage is not something static, it is a link between the life that has been lived in the historical frames, and the life that is defining it today. This view on heritage is rooted in the strive to ensure that heritage sites, besides securing the national historical interest, have a value for those people who are affected by it: living in it or visiting it. Antigua Guatemala is a UNESCO-defined heritage site and this site is being ‘threatened’ by tourism, habitation and recreation. In other words: ‘the use’ of the site is considered a threat of the preservation of the heritage. Contradictory the same types of use (tourism and habitation) can also be considered development ability, and perhaps even a sustainable management solution. ‘The use’ of heritage is interlinked with the perspective that heritage sites ought to have a value for people today. In other words, the heritage sites should be comprised of a contemporary substance. Heritage is entwined in its context of physical structures and the social layer. A synergy between the use of heritage and the knowledge about the heritage can generate a sustainable preservation solution. The paper will exemplify this symbiosis with different examples of a heritage management that is centred around a local community inclusion. The inclusive method is not new in architectural planning and it refers to a top-down and bottom-up balance in decision making. It can be endeavoured through designs of an inclusive nature. Catalyst architecture is a planning method that strives to move the process of design solutions into the public space. Through process-orientated designs, or catalyst designs, the community can gain an insight into the process or be invited to participate in the process. A balance between bottom-up and top-down in the development process of a heritage site can, in relation to management measures, be understood to generate a socially sustainable solution. The ownership and engagement that can be created among the local community, along with the use that ultimately can gain an economic benefit, can delegate the maintenance and preservation. Informative, inclusive and transparent planning methods can generate a heritage management that is long-term due to the collective understanding and effort. This method handles sustainable management on two levels: the current preservation necessities and the long-term management, while ensuring a value for people today.Keywords: community, intangible, inclusion, planning
Procedia PDF Downloads 1265983 Spectrum Assignment Algorithms in Optical Networks with Protection
Authors: Qusay Alghazali, Tibor Cinkler, Abdulhalim Fayad
Abstract:
In modern optical networks, the flex grid spectrum usage is most widespread, where higher bit rate streams get larger spectrum slices while lower bit rate traffic streams get smaller spectrum slices. To our practice, under the ITU-T recommendation, G.694.1, spectrum slices of 50, 75, and 100 GHz are being used with central frequency at 193.1 THz. However, when these spectrum slices are not sufficient, multiple spectrum slices can use either one next to another or anywhere in the optical wavelength. In this paper, we propose the analysis of the wavelength assignment problem. We compare different algorithms for this spectrum assignment with and without protection. As a reference for comparisons, we concluded that the Integer Linear Programming (ILP) provides the global optimum for all cases. The most scalable algorithm is the greedy one, which yields results in subsequent ranges even for more significant network instances. The algorithms’ benchmark implemented using the LEMON C++ optimization library and simulation runs based on a minimum number of spectrum slices assigned to lightpaths and their execution time.Keywords: spectrum assignment, integer linear programming, greedy algorithm, international telecommunication union, library for efficient modeling and optimization in networks
Procedia PDF Downloads 1765982 Opportunities and Optimization of the Our Eyes Initiative as the Strategy for Counter-Terrorism in ASEAN
Authors: Chastiti Mediafira Wulolo, Tri Legionosuko, Suhirwan, Yusuf
Abstract:
Terrorism and radicalization have become a common threat to every nation in this world. As a part of the asymmetric warfare threat, terrorism and radicalization need a complex strategy as the problem solver. One such way is by collaborating with the international community. The Our Eyes Initiative (OEI), for example, is a cooperation pact in the field of intelligence information exchanges related to terrorism and radicalization initiated by the Indonesian Ministry of Defence. The pact has been signed by Indonesia, Philippines, Malaysia, Brunei Darussalam, Thailand, and Singapore. This cooperation mostly engages military acts as a central role, but it still requires the involvement of various parties such as the police, intelligence agencies and other government institutions. This paper will use a qualitative content analysis method to address the opportunity and enhance the optimization of OEI. As the result, it will explain how OEI takes the opportunities as the strategy for counter-terrorism by building it up as the regional cooperation, building the legitimacy of government and creating the legal framework of the information sharing system.Keywords: our eyes initiative, terrorism, counter-terrorism, ASEAN, cooperation, strategy
Procedia PDF Downloads 1855981 Software Development for Both Small Wind Performance Optimization and Structural Compliance Analysis with International Safety Regulations
Authors: K. M. Yoo, M. H. Kang
Abstract:
Conventional commercial wind turbine design software is limited to large wind turbines due to not incorporating with low Reynold’s Number aerodynamic characteristics typically for small wind turbines. To extract maximum annual energy product from an intermediately designed small wind turbine associated with measured wind data, numerous simulation is highly recommended to have a best fitting planform design with proper airfoil configuration. Since depending upon wind distribution with average wind speed, an optimal wind turbine planform design changes accordingly. It is theoretically not difficult, though, it is very inconveniently time-consuming design procedure to finalize conceptual layout of a desired small wind turbine. Thus, to help simulations easier and faster, a GUI software is developed to conveniently iterate and change airfoil types, wind data, and geometric blade data as well. With magnetic generator torque curve, peak power tracking simulation is also available to better match with the magnetic generator. Small wind turbine often lacks starting torque due to blade optimization. Thus this simulation is also embedded along with yaw design. This software provides various blade cross section details at user’s design convenience such as skin thickness control with fiber direction option, spar shape, and their material properties. Since small wind turbine is under international safety regulations with fatigue damage during normal operations and safety load analyses with ultimate excessive loads, load analyses are provided with each category mandated in the safety regulations.Keywords: GUI software, Low Reynold’s number aerodynamics, peak power tracking, safety regulations, wind turbine performance optimization
Procedia PDF Downloads 3095980 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization
Authors: Subhajit Das, Nirjhar Dhang
Abstract:
Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization
Procedia PDF Downloads 2175979 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas
Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher
Abstract:
Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer
Procedia PDF Downloads 1995978 The European Research and Development Project Improved Nuclear Site Characterization for Waste Minimization in Decommissioning under Constrained Environment: Focus on Performance Analysis and Overall Uncertainty
Authors: M. Crozet, D. Roudil, T. Branger, S. Boden, P. Peerani, B. Russell, M. Herranz, L. Aldave de la Heras
Abstract:
The EURATOM work program project INSIDER (Improved Nuclear Site Characterization for Waste minimization in Decommissioning under Constrained Environment) was launched in June 2017. This 4-year project has 18 partners and aims at improving the management of contaminated materials arising from decommissioning and dismantling (D&D) operations by proposing an integrated methodology of characterization. This methodology is based on advanced statistical processing and modelling, coupled with adapted and innovative analytical and measurement methods, with respect to sustainability and economic objectives. In order to achieve these objectives, the approaches will be then applied to common case studies in the form of Inter-laboratory comparisons on matrix representative reference samples and benchmarking. Work Package 6 (WP6) ‘Performance analysis and overall uncertainty’ is in charge of the analysis of the benchmarking on real samples, the organisation of inter-laboratory comparison on synthetic certified reference materials and the establishment of overall uncertainty budget. Assessment of the outcome will be used for providing recommendations and guidance resulting in pre-standardization tests.Keywords: decommissioning, sampling strategy, research and development, characterization, European project
Procedia PDF Downloads 3675977 The Ancient Oasis Architecture of Ghadames
Authors: Amer Rghei
Abstract:
The Sahara region potentially is one of the most attractive heritage areas in the world. Yet presently, the heritage of the Sahara is currently facing serious planning challenges of underdeveloped and neglected economic and physical potentials. Deterioration of heritage resources has been observed by the author during his several field tours for historic sites has discovered special heritage values such as in Ghadames which combines historic oasis, natural environment along with its exceptional urban fabric and architectural character. Despite the richness of Ghadames with historic significance, it is found that at the present time, Ghadames city, the UNESCO World Heritage site, is facing serious challenges including the abandonment by its tenants and inclusive negligence by its officials. The author believes that Ghadames can illustrate an excellent heritage example in North Africa with cultural pride and socio-economic opportunities that can contribute to overall economic development in the Sahara region. However, the paper deals with the case of Ghadames ‘The World Heritage Site’ in Libya and discusses the current challenges and possible planning for its heritage conservation strategy. The momentous resources in Ghadames with their historical, environmental, economic, social, cultural, and aesthetic values would benefit from a careful heritage planning and management program for its significant values. In this paper an attempt is made to investigate this issue seriously towards building a model of a strategy for heritage conservation planning for Ghadames is proposed.Keywords: Ghadames, Oasis architecture, Sahara region, heritage environment
Procedia PDF Downloads 3035976 Timescape-Based Panoramic View for Historic Landmarks
Authors: H. Ali, A. Whitehead
Abstract:
Providing a panoramic view of famous landmarks around the world offers artistic and historic value for historians, tourists, and researchers. Exploring the history of famous landmarks by presenting a comprehensive view of a temporal panorama merged with geographical and historical information presents a unique challenge of dealing with images that span a long period, from the 1800’s up to the present. This work presents the concept of temporal panorama through a timeline display of aligned historic and modern images for many famous landmarks. Utilization of this panorama requires a collection of hundreds of thousands of landmark images from the Internet comprised of historic images and modern images of the digital age. These images have to be classified for subset selection to keep the more suitable images that chronologically document a landmark’s history. Processing of historic images captured using older analog technology under various different capturing conditions represents a big challenge when they have to be used with modern digital images. Successful processing of historic images to prepare them for next steps of temporal panorama creation represents an active contribution in cultural heritage preservation through the fulfillment of one of UNESCO goals in preservation and displaying famous worldwide landmarks.Keywords: cultural heritage, image registration, image subset selection, registered image similarity, temporal panorama, timescapes
Procedia PDF Downloads 1715975 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes
Procedia PDF Downloads 148