Search results for: sequence activity
5593 Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors
Authors: Paweł Stączek, Tomasz Plech, Aleksandra Strzelczyk, Katarzyna Dzitko, Monika Wujec, Edyta Kuśmierz, Piotr Paneth, Agata Paneth
Abstract:
In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors.Keywords: bioactivity, drug design, topoisomerase, molecular modeling
Procedia PDF Downloads 5695592 Benzene Sulfonamide Derivatives: Synthesis, Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, Anti-proliferative Activity, and Docking Simulation with Theoretical Investigation
Authors: Asmaa M. Fahim
Abstract:
In this elucidation, we synthesized different heterocyclic compounds attached to Benzene sulfonamide moiety via (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)-4-methyl benzene sulfonamide which is obtained from Nucleophilic substitution reaction between 4-methylbenzene sulfonyl chloride and 1-(4-aminophenyl)ethan-1-one in pyridine to get N-(4-acetyl phenyl)-4-methyl benzenesulfonamide which reacted 4-bromobenzal dehyde undergoes aldol condensation in NaOH to afford the corresponding chalchone 4. Moreover, the reactivity of chalchone 4 showed several active methylene derivatives utilized the pressurized microwave irradiation as a green energy resource. Chalcone 4 was allowed to react with ethyl cyanoacetate and acetylacetone, respectively, at 70 °C with pressure under microwave reaction condition to afford the 5-cyano-6-oxo-1,2,5,6-tetrahydropyridin-2-yl)-4-methylbenzenesulfonamide 6 and N-(4'-acetyl-4''-bromo-5'-oxo-2',3',4',5'-tetrahydro-[1,1':3',1''-terphenyl]-4-yl)-4-methylbenzenesulfonamide 8 derivatives. Moreover, the reactivity of this sulphonamide chalchone with NH2NH2 in EtOH and acetic acid, which gave 2,5-dihydro-1H-imidazol-4-yl)-4-methyl benzenesulfonamide, 1H-pyrazol-3-yl)-4-methyl and reactivity with NH2OH.HCl gave isoxazol-3-yl)-4-methylbenzenesulfonamide derivatives. The synthesized compounds were screened for their ADME properties and directed to antitumor activity on HepG2 hepatocellular carcinoma and MCF-7 breast cancer and exhibited excellent behavior against standard drugs; these results were confirmed through molecular simulations with different proteins. Additionally, the Density Functional Theory analysis of optimized structures investigated their physical descriptors, FMO, ESP and MEP, which correlated with biological evaluation.Keywords: synthesis, green chemistry, antitumor activity, DFT study
Procedia PDF Downloads 845591 De Novo Assembly and Characterization of the Transcriptome from the Fluoroacetate Producing Plant, Dichapetalum Cymosum
Authors: Selisha A. Sooklal, Phelelani Mpangase, Shaun Aron, Karl Rumbold
Abstract:
Organically bound fluorine (C-F bond) is extremely rare in nature. Despite this, the first fluorinated secondary metabolite, fluoroacetate, was isolated from the plant Dichapetalum cymosum (commonly known as Gifblaar). However, the enzyme responsible for fluorination (fluorinase) in Gifblaar was never isolated and very little progress has been achieved in understanding this process in higher plants. Fluorinated compounds have vast applications in the pharmaceutical, agrochemical and fine chemicals industries. Consequently, an enzyme capable of catalysing a C-F bond has great potential as a biocatalyst in the industry considering that the field of fluorination is virtually synthetic. As with any biocatalyst, a range of these enzymes are required. Therefore, it is imperative to expand the exploration for novel fluorinases. This study aimed to gain molecular insights into secondary metabolite biosynthesis in Gifblaar using a high-throughput sequencing-based approach. Mechanical wounding studies were performed using Gifblaar leaf tissue in order to induce expression of the fluorinase. The transcriptome of the wounded and unwounded plant was then sequenced on the Illumina HiSeq platform. A total of 26.4 million short sequence reads were assembled into 77 845 transcripts using Trinity. Overall, 68.6 % of transcripts were annotated with gene identities using public databases (SwissProt, TrEMBL, GO, COG, Pfam, EC) with an E-value threshold of 1E-05. Sequences exhibited the greatest homology to the model plant, Arabidopsis thaliana (27 %). A total of 244 annotated transcripts were found to be differentially expressed between the wounded and unwounded plant. In addition, secondary metabolic pathways present in Gifblaar were successfully reconstructed using Pathway tools. Due to lack of genetic information for plant fluorinases, a transcript failed to be annotated as a fluorinating enzyme. Thus, a local database containing the 5 existing bacterial fluorinases was created. Fifteen transcripts having homology to partial regions of existing fluorinases were found. In efforts to obtain the full coding sequence of the Gifblaar fluorinase, primers were designed targeting the regions of homology and genome walking will be performed to amplify the unknown regions. This is the first genetic data available for Gifblaar. It has provided novel insights into the mechanisms of metabolite biosynthesis and will allow for the discovery of the first eukaryotic fluorinase.Keywords: biocatalyst, fluorinase, gifblaar, transcriptome
Procedia PDF Downloads 2775590 Analysis of Chatterjea Type F-Contraction in F-Metric Space and Application
Authors: Awais Asif
Abstract:
This article investigates fixed point theorems of Chatterjea type F-contraction in the setting of F-metric space. We relax the conditions of F-contraction and define modified F-contraction for two mappings. The study provides fixed point results for both single-valued and multivalued mappings. The results are further extended to common fixed point theorems for two mappings. Moreover, to discuss the applicability of our results, an application is provided, which shows the role of our results in finding the solution to functional equations in dynamic programming. Our results generalize and extend the existing results in the literature.Keywords: Chatterjea type F-contraction, F-cauchy sequence, F-convergent, multi valued mappings
Procedia PDF Downloads 1435589 Identification of the Alkaloids of the Belladone (Atropa belladonna L.) and Evaluation of Their Inhibitory Effects Against Some Microbial Strains
Authors: Ait Slimane-Ait Kaki Sabrina, Foudi Lamia
Abstract:
The present work consists of the study of the bio-ecology and the therapeutic effects of the belladone (Atropa belladonna L.). It is a medicinal plant of the Solanacées family, herbaceous, robust 0.5 up to 1.50 m high. The phytochemical analysis of leaves revealed alkaloids, tannins, catechin, coumarins, mucilages, saponins, starch, and reducing compounds. The experimental study concerns the extraction and characterization of belladonna alkaloids. Analysis of the purified extract by staining tests confirmed the presence of tropane alkaloids. The dosage chromatography revealed the presence of components that have been identified atropine, scopolamine and hyoscyamine. Evaluation of antimicrobial and antifungal alkaloids from the methanol extract and aqueous extract of belladonna on pathogenic germs showed a positive bactericidal against strains of Escherichia coli and Staphylococcus aureus. Our preliminary results allow us an overall assessment of the medicinal value of Atropa belladonna.Keywords: belladone, alkaloid, antibacterial activity, antifungal activity
Procedia PDF Downloads 4975588 Effect of Prone Trunk Extension on Scapular and Thoracic Kinematics, and Activity during Scapular Posterior Tilting Exercise in Subjects with Round Shoulder Posture
Authors: A-Reum Shin, Heon-Seock Cynn, Ji-Hyun Lee, Da-Eun Kim
Abstract:
Round shoulder posture (RSP) is a position of scapular protraction and elevation, which may appear as scapular winging, and humeral internal rotation. Flexed posture (FP) may also affect RSP because FP is characterized by hyperkyphosis, forward head posture, and height reduction. The aim of this study was to investigate the effect of scapular posterior tilting exercise with prone trunk extension on round shoulder posture, activities of lower trapezius and serratus anterior, flexed posture, and thoracic erector spinae activity in subjects with round shoulder posture. Fifteen subjects with round shoulder posture were recruited in this study. Activities of lower trapezius, serratus anterior and thoracic erector spinae were measured during both scapular posterior tilting exercise and scapular posterior tilting exercise with prone trunk extension using electromyography, and round shoulder posture and flexed posture were measured immediately after each exercises using caliper. When the prone trunk extension was applied, the round shoulder posture and flexed posture significantly decreased, activities of lower trapezius and thoracic erector spinae significantly increased (p < 0.05) compared with the scapular posterior tilting exercise alone. There was no significant difference in serratus anterior activity between two exercises. Thus, prone trunk extension could be effective method to improve round shoulder posture during scapular posterior tilting exercise in subjects with round shoulder posture.Keywords: flexed posture, prone trunk extension, round shoulder posture, scapular posterior tilting
Procedia PDF Downloads 2135587 Evaluation of Antagonistic and Aggregation Property of Probiotic Lactic Acid Bacteria Isolated from Bovine Milk
Authors: Alazar Nebyou, Sujata Pandit
Abstract:
Lactic acid bacteria (LAB) are essential ingredients in probiotic foods, intestinal microflora, and dairy products that are capable of coping up with harsh gastrointestinal tract conditions and are available in a variety of environments. The objective of this study is to evaluate the probiotic property of LAB isolated from bovine milk. Milk samples were collected from local dairy farms. Samples were obtained using sterile test tubes and transported to a laboratory in the icebox for further biochemical characterization. Preliminary physiological and biochemical identification of LAB isolates was conducted by growing on MRS agar after ten-fold serial dilution. Seven of the best isolates were selected for the evaluation of the probiotic property. The LAB isolates were checked for resistance to antibiotics and their antimicrobial activity by disc diffusion assay and agar well diffusion assay respectively. Bile salt hydrolase activity of isolates was studied by growing isolates in a BSH medium with bile salt. Cell surface property of isolates was assayed by studying their autoaggregation and coaggregation percentage with S. aerues. All isolates were found BSH positive. In addition, BCM2 and BGM1 were susceptible to all antibiotic disks except BBM1 which was resistant to all antibiotic disks. BCM1 and BGM1 had the highest autoaggregation and coaggregation potential respectively. Since all LAB isolates showed gastrointestinal tolerance and good cell surface property they could be considered as good potential probiotic candidates for treatment and probiotic starter culture preparation.Keywords: probiotic, aggregation, lactic acid bacteria, antimicrobial activity
Procedia PDF Downloads 2155586 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product
Authors: Devendra Sillu, Shekhar Agnihotri
Abstract:
The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery
Procedia PDF Downloads 1335585 Optimization of Transmission Loss on a Series-Coupled Muffler by Taguchi Method
Authors: Jing-Fung Lin, Jer-Jia Sheu
Abstract:
In this study, an approach has been developed for the noise reduction of a muffler. The transmission loss (TL) in the muffler is maximized by the use of a double-chamber muffler, and a baffle with a hole is inserted between chambers. Taguchi method is used to optimize the design for the acoustical performance of the muffler. The TL performance is evaluated by COMSOL software. The excellent parameter combination for the maximum TL is attained as high as 35.30 dB in a wide frequency range from 10 Hz to 1400 Hz. The influence sequence of four parameters on TL is determined by the range analysis. The effects of length and expansion ratio of the first chamber on TL performance for the excellent program were discussed. Comparisons of the TL results from different designs are made.Keywords: acoustics, baffle, chamber, muffler, Taguchi method, transmission loss
Procedia PDF Downloads 1155584 Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye
Authors: B. Benalioua, I. Benyamina, M. Mansour, A. Bentouami, B. Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, doping
Procedia PDF Downloads 4155583 Intentional Learning vs Incidental Learning
Authors: Shahbaz Ahmed
Abstract:
This study is conducted to demonstrate the knowledge of intentional learning and incidental learning. Hypothesis of this experiment is intentional learning is better than incidental learning, participants were demonstrated and were asked to learn the 10 nonsense syllables in a specific sequence from the colored cards in the end they were asked to recall the background color of each card instead of nonsense syllables. Independent variables of the experiment are the colored cards containing nonsense syllables which are to be memorized by the participants, dependent variables are the number of correct responses made by the participant. The findings of the experiment concluded that intentional learning is better than incidental learning, hence hypothesis is proved.Keywords: intentional learning, incidental learning, non-sense syllable cards, score sheets
Procedia PDF Downloads 5355582 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli
Authors: B. Chandar, M. K. Ramasamy, P. Madasamy
Abstract:
The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1
Procedia PDF Downloads 4575581 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms
Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian
Abstract:
Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm
Procedia PDF Downloads 1445580 Synthesis, Characterization and Catecholase Study of Novel Bidentate Schiff Base Derived from Dehydroacetic Acid
Authors: Salima Tabti, Chaima Maouche, Tinhinene Louaileche, Amel Djedouani, Ismail Warad
Abstract:
Novel Schiff base ligand HL has been synthesized by condensation of aromatic amine and DHA. It was characterized by UV-Vis, FT-IR, SM, NMR (1H, 13C) and also by single-crystal X-ray diffraction. The crystal structure shows that compound crystallized in a triclinic system in P-1 space group and with a two unit per cell (Z = 2).The asymmetric unit, contains one independent molecules, the conformation is determined by an intermolecular N-H…O hydrogen bond with an S(6) ring motif. The molecule have an (E) conformation about the C=N bond. The dihedral angles between the phenyl and pyran ring planes is 89.37 (1), the two plans are approximately perpendicular. The catecholase activity of is situ copper complexes of this ligand has been investigated against catechol. The progress of the oxidation reactions was closely monitored over time following the strong peak of catechol using UV-Vis. Oxidation rates were determined from the initial slope of absorbance. time plots, then analyzed by Michaelis-Menten equations. Catechol oxidation reactions were realized using different concentrations of copper acetate and ligand (L/Cu: 1/1, 1/2, 2/1). The results show that all complexes were able to catalyze the oxidation of catechol. Acetate complexes have the highest activity. Catalysis is a branch of chemical kinetics that, more generally, studies the influence of all physical or chemical factors determining reaction rates. It solves a lot of problems in the chemistry reaction process, especially for a green, economic and less polluting chemistry. For this reason, the search for new catalysts for known organic reactions, occupies a very advanced place in the themes proposed by the chemists.Keywords: dehydroacetic acid, catechol, copper, catecholase activity, x-ray
Procedia PDF Downloads 1115579 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis
Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi
Abstract:
Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.Keywords: antibacterial, flavonoid, corn silk, acne
Procedia PDF Downloads 5105578 Visual Search Based Indoor Localization in Low Light via RGB-D Camera
Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng
Abstract:
Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.Keywords: indoor navigation, low light, RGB-D camera, vision based
Procedia PDF Downloads 4645577 Mycorrhizal Autochthonous Consortium Induced Defense-Related Mechanisms of Olive Trees against Verticillium dahliae
Authors: Hanane Boutaj, Abdelilah Meddich, Said Wahbi, Zainab El Alaoui-Talibi, Allal Douira, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar
Abstract:
The present work aims to investigate the effect of arbuscular mycorrhizal fungi (AMF) in improving the olive tree resistance to Verticillium wilt caused by Verticillium dahliae. Inoculated plants with a mycorrhizal autochthonous consortium 'Rhizolive consortium' and pure strain 'Glomus irregulare' were infected after three months with V. dahliae. The improving of olive tree resistance was determined through disease severity, incidence, and defoliation. On the other hand, the defense mechanisms of olive plants were evaluated through lignin content, phenylalanine ammonia lyase (PAL) activity, and polyphenol content. The results revealed that both AMF significantly (p < 0.05) reduced disease development and the rate of defoliation in infected olive plants. Moreover, the contents of lignin were boosted after mycorrhizal inoculation in both the roots and the stems of olive plants, which remained significantly (p < 0.001) higher after the 90th days of V. dahliae inoculation. PAL activity was increased after V. dahliae inoculation in the stems of 'Rhizolive consortium' treatment that were 17 times higher than those in the roots of olive plants. The polyphenol content in the stems was about twice higher than those in the roots. The reduction of disease severity was accompanied by increased levels of lignin content, PAL activity, and polyphenol content, particularly in the stems of olive plants, indicating the strengthening of the olive plant immune system against V. dahliae.Keywords: olive tree, Mycorrhizal autochthonous consortium, Glomus irregulare, Verticillium dahliae, defense mechanisms
Procedia PDF Downloads 1185576 Synergistic Effect of Doxorubicin-Loaded Silver Nanoparticles – Polymeric Conjugates on Breast Cancer Cells
Authors: Nancy M. El-Baz, Laila Ziko, Rania Siam, Wael Mamdouh
Abstract:
Cancer is one of the most devastating diseases, and has over than 10 million new cases annually worldwide. Despite the effectiveness of chemotherapeutic agents, their systemic toxicity and non-selective anticancer actions represent the main obstacles facing cancer curability. Due to the effective enhanced permeability and retention (EPR) effect of nanomaterials, nanoparticles (NPs) have been used as drug nanocarriers providing targeted cancer drug delivery systems. In addition, several inorganic nanoparticles such as silver (AgNPs) nanoparticles demonstrated a potent anticancer activity against different cancers. The present study aimed at formulating core-shell inorganic NPs-based combinatorial therapy based on combining the anticancer activity of AgNPs along with doxorubicin (DOX) and evaluating their cytotoxicity on MCF-7 breast cancer cells. These inorganic NPs-based combinatorial therapies were designed to (i) Target and kill cancer cells with high selectivity, (ii) Have an improved efficacy/toxicity balance, and (iii) Have an enhanced therapeutic index when compared to the original non-modified DOX with much lower dosage The in-vitro cytotoxicity studies demonstrated that the NPs-based combinatorial therapy achieved the same efficacy of non-modified DOX on breast cancer cell line, but with 96% reduced dose. Such reduction in DOX dose revealed that the combination between DOX and NPs possess a synergic anticancer activity against breast cancer. We believe that this is the first report on a synergic anticancer effect at very low dose of DOX against MCF-7 cells. Future studies on NPs-based combinatorial therapy may aid in formulating novel and significantly more effective cancer therapeutics.Keywords: nanoparticles-based combinatorial therapy, silver nanoparticles, doxorubicin, breast cancer
Procedia PDF Downloads 4375575 Analyzing Antimicrobial Power of Cotula cinerea Essential Oil: Case of Western Algeria
Authors: A. Abdenbi, B. Dennai, B. Touati, M. Bouaaza, A. Saad
Abstract:
The essential oils of many plants have become popular in recent years and their bioactive principles have recently won several industry sectors, however their use as antibacterial and anti fungal agents has been reported. This study focuses on the physico chemical and phyto chemical with a study of the antimicrobial activity of essential oils of aromatic and medicinal plant of southwest Algeria, this essential oil was obtained by hydro-distillation of aerial parts of Cotula cinerea, belonging to the Asteraceae family, it is very extensive in the spring season in a region called Kenadza road, located 12km from Bechar. Variable anti fungal activity of the essential oil of Cotula cinerea (yield 2%) were revealed about four fungal strains, the minimum inhibitory concentrations of essential oils were determined by the method of dilution in agar. Significant fungal sensitivity of Penicillium sp with an inhibition of 32.3 mm area.Keywords: Cotula cinerea, essential oil, physico- chemical analysis and phyto- chemical, anti fungal power
Procedia PDF Downloads 4145574 Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions
Authors: M. Abdel-Hamid, P. Saporito, R. V. Mateiu, A. Osman, E. Romeih, H. Jenssen
Abstract:
Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa.Keywords: camel milk, whey proteins, antibacterial peptide, anti-biofilm
Procedia PDF Downloads 2215573 Predicting Aggregation Propensity from Low-Temperature Conformational Fluctuations
Authors: Hamza Javar Magnier, Robin Curtis
Abstract:
There have been rapid advances in the upstream processing of protein therapeutics, which has shifted the bottleneck to downstream purification and formulation. Finding liquid formulations with shelf lives of up to two years is increasingly difficult for some of the newer therapeutics, which have been engineered for activity, but their formulations are often viscous, can phase separate, and have a high propensity for irreversible aggregation1. We explore means to develop improved predictive ability from a better understanding of how protein-protein interactions on formulation conditions (pH, ionic strength, buffer type, presence of excipients) and how these impact upon the initial steps in protein self-association and aggregation. In this work, we study the initial steps in the aggregation pathways using a minimal protein model based on square-well potentials and discontinuous molecular dynamics. The effect of model parameters, including range of interaction, stiffness, chain length, and chain sequence, implies that protein models fold according to various pathways. By reducing the range of interactions, the folding- and collapse- transition come together, and follow a single-step folding pathway from the denatured to the native state2. After parameterizing the model interaction-parameters, we developed an understanding of low-temperature conformational properties and fluctuations, and the correlation to the folding transition of proteins in isolation. The model fluctuations increase with temperature. We observe a low-temperature point, below which large fluctuations are frozen out. This implies that fluctuations at low-temperature can be correlated to the folding transition at the melting temperature. Because proteins “breath” at low temperatures, defining a native-state as a single structure with conserved contacts and a fixed three-dimensional structure is misleading. Rather, we introduce a new definition of a native-state ensemble based on our understanding of the core conservation, which takes into account the native fluctuations at low temperatures. This approach permits the study of a large range of length and time scales needed to link the molecular interactions to the macroscopically observed behaviour. In addition, these models studied are parameterized by fitting to experimentally observed protein-protein interactions characterized in terms of osmotic second virial coefficients.Keywords: protein folding, native-ensemble, conformational fluctuation, aggregation
Procedia PDF Downloads 3635572 In vitro Antioxidant Properties and Phytochemistry of Some Philippine Creeping Medicinal Plants
Authors: Richard I. Licayan, Aisle Janne B. Dagpin, Romeo M. Del Rosario, Nenita D. Palmes
Abstract:
Hiptage benghalensis, Antigonon leptopus, Macroptillium atropurpureum, and Dioscorea bulbifera L. are herbal weeds that have been used by traditional healers in rural communities in the Philippines as medicine. In this study, the basic pharmacological components of the crude secondary metabolites extracted from the four herbal weeds and their in vitro antioxidant properties was investigated to provide baseline data for the possible development of these metabolites in pharmaceutical products. Qualitative screening of the secondary metabolites showed that alkaloids, tannins, saponins, steroids, and flavonoids were present in their leaf extracts. All of the plant extracts showed varied antioxidant activity. The greatest DPPH radical scavenging activity was observed in H. begnhalensis (84.64%), followed by A. leptopus (68.21%), M. atropurpureum (26.62%), and D. bulbifera L. (19.04%). The FRAP assay revealed that H. benghalensis had the highest antioxidant activity (8.32 mg/g) while ABTS assay showed that M. atropurpureum had the strongest scavenging ability of free radicals (0.0842 mg Trolox/g). The total flavonoid content (TFC) analysis showed that D. bulbifera L. had the highest TFC (420.35 mg quercetin per gram-dried material). The total phenolic content (TPC) of the four herbal weeds showed large variations, between 26.56±0.160 and 55.91±0.087 mg GAE/g dried material. The plant leaf extracts arranged in increasing values of TPC are H. benghalensis (26.565) < A. leptopus (37.29) < D. bulbifera L. (46.81) < M. atropurpureum (55.91). The obtained results may support their use in herbal medicine and as baseline data for the development of new drugs and standardized phytomedicines.Keywords: antioxidant properties, total flavonoids, total phenolics, creeping herbal weeds
Procedia PDF Downloads 7325571 The Impact of the Variation of Sky View Factor on Landscape Degree of Enclosure of Urban Blue and Green Belt
Authors: Yi-Chun Huang, Kuan-Yun Chen, Chuang-Hung Lin
Abstract:
Urban Green Belt and Blue is a part of the city landscape, it is an important constituent element of the urban environment and appearance. The Hsinchu East Gate Moat is situated in the center of the city, which not only has a wealth of historical and cultural resources, but also combines the Green Belt and the Blue Belt qualities at the same time. The Moat runs more than a thousand meters through the vital Green Belt and the Blue Belt in downtown, and each section is presented in different qualities of moat from south to north. The water area and the green belt of surroundings are presented linear and banded spread. The water body and the rich diverse river banks form an urban green belt of rich layers. The watercourse with green belt design lets users have connections with blue belts in different ways; therefore, the integration of Hsinchu East Gate and moat have become one of the unique urban landscapes in Taiwan. The study is based on the fact-finding case of Hsinchu East Gate Moat where situated in northern Taiwan, to research the impact between the SVF variation of the city and spatial sequence of Urban Green Belt and Blue landscape and visual analysis by constituent cross-section, and then comparing the influence of different leaf area index – the variable ecological factors to the degree of enclosure. We proceed to survey the landscape design of open space, to measure existing structural features of the plant canopy which contain the height of plants and branches, the crown diameter, breast-height diameter through access to diagram of Geographic Information Systems (GIS) and on-the-spot actual measurement. The north and south districts of blue green belt areas are divided 20 meters into a unit from East Gate Roundabout as the epicenter, and to set up a survey points to measure the SVF above the survey points; then we proceed to quantitative analysis from the data to calculate open landscape degree of enclosure. The results can be reference for the composition of future river landscape and the practical operation for dynamic space planning of blue and green belt landscape.Keywords: sky view factor, degree of enclosure, spatial sequence, leaf area indices
Procedia PDF Downloads 5565570 Antioxidant Potency of Ethanolic Extracts from Selected Aromatic Plants by in vitro Spectrophotometric Analysis
Authors: Tatjana Kadifkova Panovska, Svetlana Kulevanova, Blagica Jovanova
Abstract:
Biological systems possess the ability to neutralize the excess of reactive oxygen species (ROS) and to protect cells from destructive alterations. However, many pathological conditions (cardiovascular diseases, autoimmune disorders, cancer) are associated with inflammatory processes that generate an excessive amount of reactive oxygen species (ROS) that shift the balance between endogenous antioxidant systems and free oxygen radicals in favor of the latter, leading to oxidative stress. Therefore, an additional source of natural compounds with antioxidant properties that will reduce the amount of ROS in cells is much needed despite their broad utilization; many plant species remain largely unexplored. Therefore, the purpose of the present study is to investigate the antioxidant activity of twenty-five selected medicinal and aromatic plant species. The antioxidant activity of the ethanol extracts was evaluated with in vitro assays: 2,2’-diphenyl-1-pycryl-hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), non-site-specific- (NSSOH) and site-specific hydroxyl radical-2-deoxy-D-ribose degradation (SSOH) assays. The Folin-Ciocalteu method and AlCl3 method were performed to determine total phenolic content (TPC) and total flavonoid content (TFC). All examined plant extracts manifested antioxidant activity to a different extent. Cinnamomum verum J.Presl bark and Ocimum basilicum L. Herba demonstrated strong radical scavenging activity and reducing power with the DPPH and FRAP assay, respectively. Additionally, significant hydroxyl scavenging potential and metal chelating properties were observed using the NSSOH and SSOH assays. Furthermore, significant variations were determined in the total polyphenolic content (TPC) and total flavonoid content (TFC), with Cinnamomum verum and Ocimum basilicum showing the highest amount of total polyphenols. The considerably strong radical scavenging activity, hydroxyl scavenging potential and reducing power for the species mentioned above suggest of a presence of highly bioactive phytochemical compounds, predominantly polyphenols. Since flavonoids are the most abundant group of polyphenols that possess a large number of available reactive OH groups in their structure, it is considered that they are the main contributors to the radical scavenging properties of the examined plant extracts. This observation is supported by the positive correlation between the radical scavenging activity and the total polyphenolic and flavonoid content obtained in the current research. The observations from the current research nominate Cinnamomum verum bark and Ocimum basilicum herba as potential sources of bioactive compounds that could be utilized as antioxidative additives in the food and pharmaceutical industries. Moreover, the present study will help the researchers as basic data for future research in exploiting the hidden potential of these important plants that have not been explored so far.Keywords: ethanol extracts, radical scavenging activity, reducing power, total polyphenols.
Procedia PDF Downloads 2005569 Polysulfide as Active ‘Stealth’ Polymers with Additional Anti-Inflammatory Activity
Authors: Farah El Mohtadi, Richard d'Arcy, Nicola Tirelli
Abstract:
Since 40 years, poly (ethylene glycol) (PEG) has been the gold standard in biomaterials and drug delivery, because of its combination of chemical and biological inertness. However, the possibility of its breakdown under oxidative conditions and the demonstrated development of anti-PEG antibodies highlight the necessity to develop carriers based on materials with increased stability in a challenging biological environment. Here, we describe the synthesis of polysulfide via anionic ring-opening polymerization. In vitro, the synthesized polymer was characterized by low toxicity and a level of complement activation (in human plasma) and macrophage uptake slightly lower than PEG and poly (2‐methyl-2‐oxazoline) (PMOX), of a similar size. Importantly, and differently from PEG, on activated macrophages, the synthesized polymer showed a strong and dose-dependent ROS scavenging activity, which resulted in the corresponding reduction of cytokine production. Therefore, the results from these studies show that polysulfide is highly biocompatible and are potential candidates to be used as an alternative to PEG for various applications in nanomedicine.Keywords: PEG, low toxicity, ROS scavenging, biocompatible
Procedia PDF Downloads 1325568 Toluene Methylation with Methanol Using Synthesized HZSM-5 Catalysts Modified by Silylation and Dealumination
Authors: Weerachit Pulsawas, Thirasak Rirksomboon
Abstract:
Due to its abundance from catalytic reforming and thermal cracking of naphtha, toluene could become more value-added compound if it is converted into xylenes, particularly p-xylene, via toluene methylation. Attractively, toluene methylation with methanol is an alternative route to produce xylenes in the absence of other hydrocarbon by-products for which appropriate catalyst would be utilized. In this study, HZSM-5 catalysts with Si/Al molar ratio of 100 were synthesized via hydrothermal treatment and modified by either chemical liquid deposition using tetraethyl-orthosilicate or dealumination with steam. The modified catalysts were characterized by several techniques and tested for their catalytic activity in a continuous down-flow fixed bed reactor. Various operating conditions including WHSV’s of 5 to 20 h-1, reaction temperatures of 400 to 500 °C, and toluene-to-methanol molar ratios (T/M) of 1 to 4 were investigated for attaining possible highest p-xylene selectivity. As a result, the catalytic activity of parent HZSM-5 with temperature of 400 °C, T/M of 4 and WHSV of 24 h-1 showed 65.36% in p-xylene selectivity and 11.90% in toluene conversion as demonstrated for 4 h on stream.Keywords: toluene methylaion, HZSM-5, silylation, dealumination
Procedia PDF Downloads 1955567 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 1765566 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, resovist, field strength, relaxivity, signal intensity
Procedia PDF Downloads 3525565 Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)
Authors: Christiana Ene Ogwuche, Joseph Amupitan, George Ndukwe, Rachael Ayo
Abstract:
Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug.Keywords: Maesobotrya barteri, medicinal plant, bioactivity, petroleum spirit extract, butellinic acid, oleanilic acid
Procedia PDF Downloads 2045564 Triggering Apoptosis to Uproot Breast Cancer: HPLC-MS/MS Profiling, in-vitro and in-silico Fascinating Results of Polyphenolics in Pomegranate Rind Extract
Authors: Alaa M. Badr Eldin, Mayar M. Shahen, Mohammed S. Sedeek, Marwa I. Ezzat, Sawsan M. ElSonbaty, Muhammed A. Saad, Manal S. Afifi, Omar M. Sabry
Abstract:
Using HPLC-MS/MS technique, 133 polyphenolic compounds were identified in the methanol extract of pomegranate rind (Punica granatum L.). In-vitro cytotoxic activity against breast cancer cell line MCF-7 was investigated, with an IC50 of 54 ug/ml. In-silico molecular docking using ellagic acid, gallagic acid, and Punicalagin as model compounds identified in pomegranate rind extract confirmed the intriguing anti-estrogenic action of the key polyphenolic components in pomegranate rind extract. Surprisingly, taxol showed low activity compared to pomegranate compounds as ERα antagonist and ERβ agonist. Pomegranate rind extract enhanced apoptosis of breast cancer cells through upregulation of the caspase-3 expression and downregulation of NF-κB transcription factor.Keywords: HPLC-MS/MS, pomegranate rind, cytotoxicity, MCF-7, ER, caspase-3, NF-kB
Procedia PDF Downloads 116