Search results for: scope 3 emissions
893 The Impact of Ultrasonicator on the Vertical and Horizontal Mixing Profile of Petrol-Bioethanol
Authors: D. Nkazi, S. E. Iyuke, J. Mulopo
Abstract:
Increasing global energy demand as well as air quality concerns have in recent years led to the search for alternative clean fuels to replace fossil fuels. One such alternative is the blending of petrol with ethanol, which has numerous advantages such ethanol’s ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led to the study of ways of homogenizing the petrol-ethanol mixtures. During the blending process, volumes fraction of ethanol and petrol were studied with respect to the depth within the storage container to confirm homogenization of the blend and time of storage. The results reveal that the density of the mixture was constant. The binodal curve of the ternary diagram shows an increase of homogeneous region, indicating an improved of interaction between water and petrol. The concentration distribution in the reactor showed proof of cavitation formation since in both directions, the variation of concentration with both time and distance was found to be oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion flux, and energy and diffusion rates were found to be higher in the vertical direction compared to the horizontal direction. It was therefore concluded that ultrasonication creates cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The horizontal direction was found to be the diffusion rate limiting step which proposed that the blender should have a larger height to diameter ratio. It is, however, recommended that further studies be done on the rate-limiting step so as to have actual dimensions of the reactor.Keywords: ultrasonication, petrol, ethanol, concentration
Procedia PDF Downloads 365892 Present-Day Transformations and Trends in Rooftop Agriculture and Food Security
Authors: Kiara Lawrence, Nadine Ponnusamy, Clive Greenstone
Abstract:
One of the major challenges facing society today is food security. The risks to food security have increased significantly due to the evolving urban landscape, globalization, and a rising population. The cultivation of food is essential, particularly during times of crisis, such as a recession, and has long been a necessity for urban populations. In contemporary society, many urban residents are confronted with new challenges, including high levels of unemployment, which compel individuals to adopt alternative survival strategies, such as growing their own food. Recently, rooftop agriculture has made significant contributions to urban and national food security and has been utilized as a tool to mitigate the frequent and damaging disasters that many cities encounter. They have the potential to transform unused spaces into green, productive vegetable plots, while also providing urban residents with the opportunity to enjoy the benefits of gardening. Therefore, this study looks to investigate the evolving themes around rooftop agriculture and food security globally. A bibliometric review analysis was carried out on Scopus and Web of Science using the keywords “rooftop agriculture” OR “rooftop farming” OR “rooftop garden” AND “food security” between 2004 and 2024 to ensure a broader scope was covered around the chosen study. Vosviewer software was then utilized to analyze the extracted data to create network visualization maps based on keyword occurrences, co-author analysis, country analysis. There were only 37 relevant documents within the study parameters. Preliminary results indicate that much research focused on urban agriculture, food supply, green roof, sustainability and climate change. By analysing these aspects of rooftop agriculture and food security, the trends can identify gaps in literature and dictate future applications to assist in food security.Keywords: food security, rooftop agriculture, rooftop farming, rooftop garden
Procedia PDF Downloads 19891 Foreign Direct Investment, International Trade and Environment in Bangladesh: An Empirical Study
Authors: Shilpi Tripathi
Abstract:
After independence, Bangladesh had to learn to survive on its own without any economic crutches (aid). Foreign direct investment (FDI) became a crucial economic tool for the country to become economically independent. The government started removing restrictions to encourage foreign investment, economic growth, international trade, and the environment. FDI is considered as a way to bridge the saving-investment gap, reduce poverty, balance trade, create jobs for its vast labour force, increase foreign exchange earnings and acquire new modern technology and management skills in the country. At the same time, spillovers of foreign investments in Bangladesh, such as low wages (compared to laborers of developed countries), poor working conditions and unbridled exploitation of the domestic resources, environmental externalities, etc., cannot be ignored. The most important adverse implications of FDI inflows noticed are the environmental problems, which are further impacting the health and society of the country. This paper empirically studies the relationship between FDI, economic growth, international trade (exports and Imports), and the environment since 1996. The first part of the paper focuses on the background and trends of FDI, GDP, trade, and environment (CO₂). The second part focuses on the literature review on the relationship between all the variables. The last part of the paper examines the results of empirical analysis like co-integration and Granger causality. The findings of the paper reveal that a uni-directional relationship exists between FDI, CO₂, and international trade (exports and imports). The direction of the causality reveals that FDI inflow is one of the major contributors to high-volume international trade. At the same time, FDI and international trade both are contributing to carbon emissions in Bangladesh. The paper concludes with the policy recommendations that will ensure environmentally friendly trade, investment, and growth in Bangladesh for the future.Keywords: foreign direct investment, GDP, international trade, CO₂, Granger causality, environment
Procedia PDF Downloads 181890 An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel
Authors: S. Singh, P. Patel, D. Kachhadiya, Swapnil Dharaskar
Abstract:
The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel.Keywords: aluminium oxide nanoparticles, cobalt oxide nanoparticles, fuel additives, fuel characteristics
Procedia PDF Downloads 322889 Synthesis of Electrospun Polydimethylsiloxane (PDMS)/Polyvinylidene Fluoriure (PVDF) Nanofibrous Membranes for CO₂ Capture
Authors: Wen-Wen Wang, Qian Ye, Yi-Feng Lin
Abstract:
Carbon dioxide emissions are expected to increase continuously, resulting in climate change and global warming. As a result, CO₂ capture has attracted a large amount of research attention. Among the various CO₂ capture methods, membrane technology has proven to be highly efficient in capturing CO₂, because it can be scaled up, low energy consumptions and small area requirements for use by the gas separation. Various nanofibrous membranes were successfully prepared by a simple electrospinning process. The membrane contactor combined with chemical absorption and membrane process in the post-combustion CO₂ capture is used in this study. In a membrane contactor system, the highly porous and water-repellent nanofibrous membranes were used as a gas-liquid interface in a membrane contactor system for CO₂ absorption. In this work, we successfully prepared the polyvinylidene fluoride (PVDF) porous membranes with an electrospinning process. Afterwards, the as-prepared water-repellent PVDF porous membranes were used for the CO₂ capture application. However, the pristine PVDF nanofibrous membranes were wetted by the amine absorbents, resulting in the decrease in the CO₂ absorption flux, the hydrophobic polydimethylsiloxane (PDMS) materials were added into the PVDF nanofibrous membranes to improve the solvent resistance of the membranes. To increase the hydrophobic properties and CO₂ absorption flux, more hydrophobic surfaces of the PDMS/PVDF nanofibrous membranes are obtained by the grafting of fluoroalkylsilane (FAS) on the membranes surface. Furthermore, the highest CO₂ absorption flux of the PDMS/PVDF nanofibrous membranes is reached after the FAS modification with four times. The PDMS/PVDF nanofibrous membranes with 60 wt% PDMS addition can be a long and continuous operation of the CO₂ absorption and regeneration experiments. It demonstrates the as-prepared PDMS/PVDF nanofibrous membranes could potentially be used for large-scale CO₂ absorption during the post-combustion process in power plants.Keywords: CO₂ capture, electrospinning process, membrane contactor, nanofibrous membranes, PDMS/PVDF
Procedia PDF Downloads 274888 Plasma Ion Implantation Study: A Comparison between Tungsten and Tantalum as Plasma Facing Components
Authors: Tahreem Yousaf, Michael P. Bradley, Jerzy A. Szpunar
Abstract:
Currently, nuclear fusion is considered one of the most favorable options for future energy generation, due both to its abundant fuel and lack of emissions. For fusion power reactors, a major problem will be a suitable material choice for the Plasma Facing Components (PFCs) which will constitute the reactor first wall. Tungsten (W) has advantages as a PFC material because of its high melting point, low vapour pressure, high thermal conductivity and low retention of hydrogen isotopes. However, several adverse effects such as embrittlement, melting and morphological evolution have been observed in W when it is bombarded by low-energy and high-fluence helium (He) and deuterium (D) ions, as a simulation conditions adjacent to a fusion plasma. Recently, tantalum (Ta) also investigate as PFC and show better reluctance to nanostructure fuzz as compared to W under simulated fusion plasma conditions. But retention of D ions found high in Ta than W. Preparatory to plasma-based ion implantation studies, the effect of D and He ion impact on W and Ta is predicted by using the stopping and range of ions in the matter (SRIM) code. SRIM provided some theoretical results regarding projected range, ion concentration (at. %) and displacement damage (dpa) in W and Ta. The projected range for W under Irradiation of He and D ions with an energy of 3-keV and 1×fluence is determined 75Å and 135 Å and for Ta 85Å and 155Å, respectively. For both W and Ta samples, the maximum implanted peak for helium is predicted ~ 5.3 at. % at 12 nm and for De ions concentration peak is located near 3.1 at. % at 25 nm. For the same parameters, the displacement damage for He ions is observed in W ~ 0.65 dpa and Ta ~ 0.35 dpa at 5 nm. For D ions the displacement damage for W ~ 0.20 dpa at 8 nm and Ta ~ 0.175 dpa at 7 nm. The mean implantation depth is same for W and Ta, i.e. for He ions ~ 40 nm and D ions ~ 70 nm. From these results, we conclude that retention of D is high than He ions, but damage is low for Ta as compared to W. Further investigation still in progress regarding W and T.Keywords: helium and deuterium ion impact, plasma facing components, SRIM simulation, tungsten, tantalum
Procedia PDF Downloads 131887 The Methanotrophic Activity in a Landfill Bio-Cover through a Subzero Winter
Authors: Parvin Berenjkar, Qiuyan Yuan, Richard Sparling, Stan Lozecznik
Abstract:
Landfills highly contribute to anthropological global warming through CH₄ emissions. Landfills are usually capped by a conventional soil cover to control the migration of gases. Methane is consumed by CH₄-oxidizing microorganisms known as methanotrophs that naturally exist in the landfill soil cover. The growth of methanotrophs can be optimized in a bio-cover that typically consists of a gas distribution layer (GDL) to homogenize landfill gas fluxes and an overlying oxidation layer composed of suitable materials that support methanotrophic populations. Materials such as mature yard waste composts can provide an inexpensive and favourable porous support for the growth and activity of methanotrophs. In areas with seasonal cold climates, it is valuable to know if methanotrophs in a bio-cover can survive in winter until the next spring, and how deep they are active in the bio-cover to mitigate CH₄. In this study, a pilot bio-cover was constructed in a closed landfill cell in Winnipeg that has a very cold climate in Canada. The bio-cover has a surface area of 2.5 m x 3.5 m and 1.5 m of depth, filled with 50 cm of gravel as a GDL and 70 cm of biosolids compost amended with yard and leaf waste compost. The observed in situ potential of methanotrophs for CH₄ oxidation was investigated at a specific period of time from December 2016 to April 2017 as well as November 2017 to April 2018, when the transition to surface frost and thawing happens in the bio-cover. Compost samples taken from different depths of the bio-cover were incubated in the laboratory under standardized conditions; an optimal air: methane atmosphere, at 22ºC, but at in situ moisture content. Results showed that the methanotrophs were alive oxidizing methane without a lag, indicating that there was the potential for methanotrophic activity at some depths of the bio-cover.Keywords: bio-cover, global warming, landfill, methanotrophic activity
Procedia PDF Downloads 122886 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 318885 The Implications of Population Dynamics on the Environmental Issues: A Case behind Global Change in Climate
Authors: Simiso Fisokuhle Nyandeni
Abstract:
The environment is one of the major components of intergenerational equity under sustainability; however, this component has been facing a lot of issues/crises, which include those that are caused by natural systems due to the actions of humans. Although some of those environmental issues may occur from natural causes, however, climate change effects have shown to increase rapidly due to human behavior, which led to the increase in greenhouse emissions and the over-exploitation of natural resources that maintain an ecological balance in our environment. Based on the recent projections, the growing population tends to outstrip the environmental resources, and as a result, the rapid depletion of natural resources that maintain ecological balance within the environment has resulted in such environmental issues. This paper has adopted desktop analysis to address the main objective, which seeks to address the effects of population dynamics on environmental issues and what needs to be done to maintain the ecological balance between the growing population and the limited resources that are available; thus, the collective data sources were used to justify the literature in order to get adequate results to influence the potential findings. The major findings postulate that there is an ecological imbalance between limited resources available and the growing population; as a result, the environment is taking action against humanity through climate change impacts. Hence findings further outline that in order to prevent such impacts, there should be drastic interventions by the governments (all stakeholders should be involved in decision-making; Governmental or non-governmental institutions, scientists, researchers, etc.) around the world to maintain this ecological balance and also to prioritize the adaptation measures. Therefore, this paper seeks to examine the implications of population dynamics on the environmental issues and what needs to be done in order to maintain this ecological balance between the growing population and environmental resources; hence, this review will be based on the climate change context.Keywords: population dynamics, climate change, environment, sustainability
Procedia PDF Downloads 133884 Comparison of Mcgrath, Pentax, and Macintosh Laryngoscope in Normal and Cervical Immobilized Manikin by Novices
Authors: Jong Yeop Kim, In Kyong Yi, Hyun Jeong Kwak, Sook Young Lee, Sung Yong Park
Abstract:
Background: Several video laryngoscopes (VLs) were used to facilitate tracheal intubation in the normal and potentially difficult airway, especially by novice personnel. The aim of this study was to compare tracheal intubation performance regarding the time to intubation, glottic view, difficulty, and dental click, by a novice using McGrath VL, Pentax Airway Scope (AWS) and Macintosh laryngoscope in normal and cervical immobilized manikin models. Methods: Thirty-five anesthesia nurses without previous intubation experience were recruited. The participants performed endotracheal intubation in a manikin model at two simulated neck positions (normal and fixed neck via cervical immobilization), using three different devices (McGrath VL, Pentax AWS, and Macintosh direct laryngoscope) at three times each. Performance parameters included intubation time, success rate of intubation, Cormack Lehane laryngoscope grading, dental click, and subjective difficulty score. Results: Intubation time and success rate at the first attempt were not significantly different between the 3 groups in normal airway manikin. In the cervical immobilized manikin, the intubation time was shorter (p = 0.012) and the success rate with the first attempt was significantly higher (p < 0.001) when using McGrath VL and Pentax AWS compared with Macintosh laryngoscope. Both VLs showed less difficulty score (p < 0.001) and more Cormack Lehane grade I (p < 0.001). The incidence of dental clicks was higher with McGrath VL than Macintosh laryngoscope in the normal and cervical immobilized airway (p = 0.005, p < 0.001, respectively). Conclusion: McGrath VL and Pentax AWS resulted in shorter intubation time, higher first attempt success rate, compared with Macintosh laryngoscope by a novice intubator in a cervical immobilized manikin model. McGrath VL could be reduced the risk of dental injury compared with Macintosh laryngoscope in this scenario.Keywords: intubation, manikin, novice, videolaryngoscope
Procedia PDF Downloads 160883 Sustainable Design Features Implementing Public Rental Housing for Remodeling
Authors: So-Young Lee, Myoung-Won Oh, Soon-Cheol Eom, Yeon-Won Suh
Abstract:
Buildings produce more than one thirds of the total energy consumption and CO₂ emissions. Korean government agency pronounced and initiated Zero Energy Buildings policy for construction as of 2025. The net zero energy design features include passive (daylight, layout, materials, insulation, finishes, etc.) and active (renewable energy sources) elements. The Zero Energy House recently built in Nowon-gu, Korea is provided for 121 households as a public rental housing complex. However most of public rental housing did not include sustainable features which can reduce housing maintaining cost significantly including energy cost. It is necessary to implement net zero design features to the obsolete public rental housing during the remodeling procedure since it can reduce housing cost in long term. The purpose of this study is to investigate sustainable design elements implemented in Net Zero Energy House in Korea and passive and active housing design features in order to apply the sustainable features to the case public rental apartment for remodeling. Housing complex cases in this study are Nowan zero Energy house, Gangnam Bogemjari House, and public rental housings built in more than 20 years in Seoul areas. As results, energy consumption in public rental housing built in 5-years can be improved by exterior surfaces. Energy optimizing in case housing built in more than 20 years can be enhanced by renovated materials, insulation, replacement of windows, exterior finishes, lightings, gardening, water, renewable energy installation, Green IT except for sunlight and layout of buildings. Further life costing analysis is needed for energy optimizing for case housing alternatives.Keywords: affordable housing, remodeling, sustainable design, zero-energy house
Procedia PDF Downloads 194882 Effects of Foam Rolling with Different Application Volumes on the Isometric Force of the Calf Muscle with Consideration of Muscle Activity
Authors: T. Poppendieker, H. Maurer, C. Segieth
Abstract:
Over the past ten years, foam rolling has become a new trend in the fitness and health market. It is also a frequently used technique for self-massage. However, the scope of effects from foam rolling has only recently started to be researched and understood. The focus of this study is to examine the effects of prolonged foam rolling on muscle performance. Isometric muscle force was used as a parameter to determine an improving impact of the myofascial roller in two different application volumes. Besides the maximal muscle force, data were also collected on muscle activation during all tests. Twenty-four (17 females, 7 males) healthy students with an average age of 23.4 ± 2.8 years were recruited. The study followed a cross-over pre-/post design in which the order of conditions was counterbalanced. The subjects performed a one-minute and three-minute foam rolling application set on two separate days. Isometric maximal muscle force of the dominant calf was tested before and after the self-myofascial release application. The statistic software program SPSS 22 was used to analyze the data of the maximal isometric force of the calf muscle by a 2 x 2 (time of measurement x intervention) analysis of variance with repeated measures. The statistic significance level was set at p ≤ 0.05. Neither for the main effect of time of measurement (F(1,23) = .93, p = .36, f = .20) nor for the interaction of time of measurement x intervention (F(1,23) = 1.99, p = .17, f = 0.29) significant p-values were found. However, the effect size indicates a mean interaction effect with a tendency of greater pre-post improvements under the three-minute foam rolling condition. Changes in maximal force did not correlate with changes in EMG-activity (r = .02, p = .95 in the short and r = -.11, p = .65 in the long rolling condition). Results support findings of previous studies and suggest a positive potential for use of the foam roll as a means for keeping muscle force at least at the same performance level while leading to an increase in flexibility.Keywords: application volume differences, foam rolling, isometric maximal force, self-myofascial release
Procedia PDF Downloads 287881 Towards Sustainable Consumption: A Framework for Assessing Supplier's Commitment
Authors: O. O. Oguntoye
Abstract:
Product consumption constitutes an important consideration for sustainable development. Seeing how product consumption could be highly unsustainable, coupled with how existing policies on corporate responsibility do not particularly address the consumption aspect of product lifecycle, conducting this research became necessary. The research makes an attempt to provide a framework by which to gauge corporate responsibility of product suppliers in terms of their commitment towards the sustainable consumption of their products. Through an exploration of relevant literature, independently established ideas with which to assess a given product supplier were galvanised into a four-criterion framework. The criteria are: (1) Embeddedness of consumption as a factor in corporate sustainability policy, (2) Level of understanding of consumption behaviour, (3) Breadth of behaviour-influencing strategies adopted, and (4) Inclusiveness for all main dimensions of sustainability. This resulting framework was then applied in a case study involving a UK-based furniture supplier where interviews and content analysis of corporate documents were used as the mode for primary data collection. From the case study, it was found that the supplier had performed to different levels across the four themes of the assessment. Two major areas for improvement were however identified – one is for the furniture supplier to focus more proactively on understanding consumption behaviour and, two is for it to widen the scope of its current strategies for enhancing sustainable consumption of supplied furniture. As a generalisation, the framework presented here makes it possible for companies to reflect with a sense of guidance, how they have demonstrated commitment towards sustainable consumption through their values, culture, and operations. It also provides a foundation for developing standardized assessment which the current widely used frameworks such as the GRI, the Global Compact, and others do not cover. While these popularly used frameworks mainly focus on sustainability of companies within the production and supply chain management contexts (i.e. mostly ‘upstream’), the framework here provides an extension by bringing the ‘downstream’ or consumer bit into light.Keywords: corporate sustainability, design for sustainable consumption, extended producer responsibility, sustainable consumer behaviour
Procedia PDF Downloads 419880 Life Cycle Assessment of Residential Buildings: A Case Study in Canada
Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq
Abstract:
Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings
Procedia PDF Downloads 475879 Examining Pre-Consumer Textile Waste Recycling, Barriers to Implementation, and Participant Demographics: A Review of Literature
Authors: Madeline W. Miller
Abstract:
The global textile industry produces pollutants in the form of liquid discharge, solid waste, and emissions into the natural environment. Textile waste resulting from garment production and other manufacturing processes makes a significant contribution to the amount of waste landfilled globally. While the majority of curbside and other convenient recycling methods cater to post-consumer paper and plastics, pre-consumer textile waste is often discarded with trash and is commonly classified as ‘other’ in municipal solid waste breakdowns. On a larger scale, many clothing manufacturers and other companies utilizing textiles have not yet identified or began using the most sustainable methods for discarding their post-industrial, pre-consumer waste. To lessen the amount of waste sent to landfills, there are post-industrial, pre-consumer textile waste recycling methods that can be used to give textiles a new life. This process requires that textile and garment manufacturers redirect their waste to companies that use industrial machinery to shred or fiberize these materials in preparation for their second life. The goal of this literature review is to identify the recycling and reuse challenges faced by producers within the clothing and textile industry that prevent these companies from utilizing the described recycling methods, causing them to opt for landfill. The literature analyzed in this review reflects manufacturer sentiments toward waste disposal and recycling. The results of this review indicate that the cost of logistics is the determining factor when it comes to companies recycling their pre-consumer textile waste and that the most applicable and successful textile waste recycling methods require a company separate from the manufacturer to account for waste production, provide receptacles for waste, arrange waste transport, and identify a secondary use for the material at a price-point below that of traditional waste disposal service.Keywords: leadership demographics, post-industrial textile waste, pre-consumer textile waste, industrial shoddy
Procedia PDF Downloads 151878 Understanding the Semantic Network of Tourism Studies in Taiwan by Using Bibliometrics Analysis
Authors: Chun-Min Lin, Yuh-Jen Wu, Ching-Ting Chung
Abstract:
The formulation of tourism policies requires objective academic research and evidence as support, especially research from local academia. Taiwan is a small island, and its economic growth relies heavily on tourism revenue. Taiwanese government has been devoting to the promotion of the tourism industry over the past few decades. Scientific research outcomes by Taiwanese scholars may and will help lay the foundations for drafting future tourism policy by the government. In this study, a total of 120 full journal articles published between 2008 and 2016 from the Journal of Tourism and Leisure Studies (JTSL) were examined to explore the scientific research trend of tourism study in Taiwan. JTSL is one of the most important Taiwanese journals in the tourism discipline which focuses on tourism-related issues and uses traditional Chinese as the study language. The method of co-word analysis from bibliometrics approaches was employed for semantic analysis in this study. When analyzing Chinese words and phrases, word segmentation analysis is a crucial step. It must be carried out initially and precisely in order to obtain meaningful word or word chunks for further frequency calculation. A word segmentation system basing on N-gram algorithm was developed in this study to conduct semantic analysis, and 100 groups of meaningful phrases with the highest recurrent rates were located. Subsequently, co-word analysis was employed for semantic classification. The results showed that the themes of tourism research in Taiwan in recent years cover the scope of tourism education, environmental protection, hotel management, information technology, and senior tourism. The results can give insight on the related issues and serve as a reference for tourism-related policy making and follow-up research.Keywords: bibliometrics, co-word analysis, word segmentation, tourism research, policy
Procedia PDF Downloads 229877 The Feasibility Evaluation Of The Compressed Air Energy Storage System In The Porous Media Reservoir
Authors: Ming-Hong Chen
Abstract:
In the study, the mechanical and financial feasibility for the compressed air energy storage (CAES) system in the porous media reservoir in Taiwan is evaluated. In 2035, Taiwan aims to install 16.7 GW of wind power and 40 GW of photovoltaic (PV) capacity. However, renewable energy sources often generate more electricity than needed, particularly during winter. Consequently, Taiwan requires long-term, large-scale energy storage systems to ensure the security and stability of its power grid. Currently, the primary large-scale energy storage options are Pumped Hydro Storage (PHS) and Compressed Air Energy Storage (CAES). Taiwan has not ventured into CAES-related technologies due to geological and cost constraints. However, with the imperative of achieving net-zero carbon emissions by 2050, there's a substantial need for the development of a considerable amount of renewable energy. PHS has matured, boasting an overall installed capacity of 4.68 GW. CAES, presenting a similar scale and power generation duration to PHS, is now under consideration. Taiwan's geological composition, being a porous medium unlike salt caves, introduces flow field resistance affecting gas injection and extraction. This study employs a program analysis model to establish the system performance analysis capabilities of CAES. The finite volume model is then used to assess the impact of porous media, and the findings are fed back into the system performance analysis for correction. Subsequently, the financial implications are calculated and compared with existing literature. For Taiwan, the strategic development of CAES technology is crucial, not only for meeting energy needs but also for decentralizing energy allocation, a feature of great significance in regions lacking alternative natural resources.Keywords: compressed-air energy storage, efficiency, porous media, financial feasibility
Procedia PDF Downloads 67876 Potential of Rice Husk Ash as a Partial Cement Replacement in Concrete for Highways Application
Authors: Ash Ahmed, Fraser Hyndman, Heni Fitriani, John Kamau
Abstract:
The highway pavement is the biggest structural asset a government can construct and maintain. Concrete rigid pavements are used to carry traffic in large volumes across countries safely and efficiently. Pavement quality concrete mixes have high levels of cement which contribute to up to 10% of global CO₂ emissions. Currently the UK specifies (ground granulated blastfurnace slag) GGBS and (pulverised fuel ash) PFA to reduce the quantity of cement used in pavement construction. GGBS and PFA come from heavy industry that should not be relied upon to improve the sustainability of construction materials. This report shows that cement in pavement quality concrete can be replaced with rice husk ash (RHA) without causing adverse effects to the mechanical properties required for highways. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in highway pavement construction that is sourced from an environmentally friendly industry. The report investigates the properties of RHA mixes and compares them to existing pavement quality mixes already used and specified. The report found that sieving RHA and not grinding it gives the best performance. Due to the low density of RHA the investigation found that replacing cement by volume rather than weight provided the best results. Findings showed that CEM II mixed with 20% RHA meets the required specification for pavement quality concrete and mitigates using the comparative CEM I. The investigation also notes that RHA is observed to be more reactive with CEM II rather than CEM I and suits early strength gains required for pavement construction. The report concludes that RHA is a sustainable material that reduces the embodied CO₂ of pavement quality concrete, which is well suited for UK highway specifications and has the potential to improve the lives of people living in the developing countries.Keywords: pavement, pozzolan, rice husk ash, sustainable concrete
Procedia PDF Downloads 172875 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities
Authors: Mehmet Bulent Topkaya, Mustafa Yildirim
Abstract:
Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment
Procedia PDF Downloads 302874 Bioreactor Simulator Design: Measuring Built Environment Health and Ecological Implications from Post-Consumer Textiles
Authors: Julia DeVoy, Olivia Berlin
Abstract:
The United States exports over 1.6 billion pounds of post-consumer textiles every year, primarily to countries in the Global South. These textiles make their way to landfills and open-air dumps where they decompose, contaminating water systems and releasing harmful greenhouse gases. Through this inequitable system of waste disposal, countries with less political and economic power are coerced into accepting the environmental and health consequences of over-consumption in the Global North. Thus, the global trade of post-consumer textile waste represents a serious issue of environmental justice and a public health hazard. Our research located, characterizes, and quantifies the environmental and human health risks that occur when post-consumer textiles are left to decompose in landfills and open-air dumps in the Global South. In our work, we make use of United Nations International Trade Statistics data to map the global distribution of post-consumer textiles exported from the United States. Next, we present our landfill simulating reactor designed to measure toxicity of leachate resulting from the decomposition of textiles in developing countries and to quantify the related greenhouse gas emissions. This design makes use of low-cost and sustainable materials to promote frugal innovation and make landfill reactors more accessible. Finally, we describe how the data generated from these tools can be leveraged to inform individual consumer behaviors, local policies around textile waste disposal, and global advocacy efforts to mitigate the environmental harms caused by textile waste.Keywords: sustainability, textile design, public health, built environment
Procedia PDF Downloads 130873 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry
Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai
Abstract:
The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy
Procedia PDF Downloads 102872 Qualitative and Quantitative Methods in Multidisciplinary Fields Collection Development
Authors: Hui Wang
Abstract:
Traditional collection building approaches are limited in breadth and scope and are not necessarily suitable for multidisciplinary fields development in the institutes of the Chinese Academy of Sciences. The increasing of multidisciplinary fields researches require a viable approach to collection development in these libraries. This study uses qualitative and quantitative analysis to assess collection. The quantitative analysis consists of three levels of evaluation, which including realistic demand, potential demand and trend demand analysis. For one institute, three samples were separately selected from the object institute, more than one international top institutes in highly relative research fields and future research hotspots. Each sample contains an appropriate number of papers published in recent five years. Several keywords and the organization names were reasonably combined to search in commercial databases and the institutional repositories. The publishing information and citations in the bibliographies of these papers were selected to build the dataset. One weighted evaluation model and citation analysis were used to calculate the demand intensity index of every journal and book. Principal Investigator selector and database traffic provide a qualitative evidence to describe the demand frequency. The demand intensity, demand frequency and academic committee recommendations were comprehensively considered to recommend collection development. The collection gaps or weaknesses were ascertained by comparing the current collection and the recommend collection. This approach was applied in more than 80 institutes’ libraries in Chinese Academy of Sciences in the past three years. The evaluation results provided an important evidence for collections building in the second year. The latest user survey results showed that the updated collection’s capacity to support research in a multidisciplinary subject area have increased significantly.Keywords: citation analysis, collection assessment, collection development, quantitative analysis
Procedia PDF Downloads 219871 Effects of Climate Change and Land Use, Land Cover Change on Atmospheric Mercury
Authors: Shiliang Wu, Huanxin Zhang
Abstract:
Mercury has been well-known for its negative effects on wildlife, public health as well as the ecosystem. Once emitted into atmosphere, mercury can be transformed into different forms or enter the ecosystem through dry deposition or wet deposition. Some fraction of the mercury will be reemitted back into the atmosphere and be subject to the same cycle. In addition, the relatively long lifetime of elemental mercury in the atmosphere enables it to be transported long distances from source regions to receptor regions. Global change such as climate change and land use/land cover change impose significant challenges for mercury pollution control besides the efforts to regulate mercury anthropogenic emissions. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from changes in climate and land use/land cover on the global budget of mercury as well as its atmospheric transport, chemical transformation, and deposition. We carry out a suite of sensitivity model simulations to separate the impacts on atmospheric mercury associated with changes in climate and land use/land cover. Both climate change and land use/land cover change are found to have significant impacts on global mercury budget but through different pathways. Land use/land cover change primarily increase mercury dry deposition in northern mid-latitudes over continental regions and central Africa. Climate change enhances the mobilization of mercury from soil and ocean reservoir to the atmosphere. Also, dry deposition is enhanced over most continental areas while a change in future precipitation dominates the change in mercury wet deposition. We find that 2000-2050 climate change could increase the global atmospheric burden of mercury by 5% and mercury deposition by up to 40% in some regions. Changes in land use and land cover also increase mercury deposition over some continental regions, by up to 40%. The change in the lifetime of atmospheric mercury has important implications for long-range transport of mercury. Our case study shows that changes in climate and land use and cover could significantly affect the source-receptor relationships for mercury.Keywords: mercury, toxic pollutant, atmospheric transport, deposition, climate change
Procedia PDF Downloads 491870 Synthesis and Properties of Oxidized Corn Starch Based Wood Adhesive
Authors: Salise Oktay, Nilgun Kizilcan, Basak Bengu
Abstract:
At present, formaldehyde-based adhesives such as urea-formaldehyde (UF), melamine-formaldehyde (MF), melamine – urea-formaldehyde (MUF), etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non- renewable resources and also formaldehyde is classified as a probable human carcinogen (Group B1) by the U.S. Environmental Protection Agency (EPA). Therefore, there has been a growing interest in the development of environment-friendly, economically competitive, bio-based wood adhesives to meet wood-based panel industry requirements. In this study, like a formaldehyde-free adhesive, oxidized starch – urea wood adhesives was synthesized. In this scope, firstly, acid hydrolysis of corn starch was conducted and then acid thinned corn starch was oxidized by using hydrogen peroxide and CuSO₄ as an oxidizer and catalyst, respectively. Secondly, the polycondensation reaction between oxidized starch and urea conducted. Finally, nano – TiO₂ was added to the reaction system to strengthen the adhesive network. Solid content, viscosity, and gel time analyses of the prepared adhesive were performed to evaluate the adhesive processability. FTIR, DSC, TGA, SEM characterization techniques were used to investigate chemical structures, thermal, and morphological properties of the adhesive, respectively. Rheological analysis of the adhesive was also performed. In order to evaluate the quality of oxidized corn starch – urea adhesives, particleboards were produced in laboratory scale and mechanical and physical properties of the boards were investigated such as an internal bond, modulus of rupture, modulus of elasticity, formaldehyde emission, etc. The obtained results revealed that oxidized starch – urea adhesives were synthesized successfully and it can be a good potential candidate to use the wood-based panel industry with some developments.Keywords: nano-TiO₂, corn starch, formaldehyde emission, wood adhesives
Procedia PDF Downloads 151869 The Design of an Afghan Refugee Camp in Kerman City through Ecotech Architecture
Authors: Kourosh Ghaffari, Baghaei Azhang
Abstract:
This study aims to address two main questions whether a camp designed for refugees will affect their quality of life and how to effectively incorporate ecotech architecture into the architectural design of a refugee camp. The current study planned to ensure that the final design reflects the principles of ecotech architecture in most refugee camps. The design process has taken into account various factors, including flexibility, diversity in the camp space according to the ecotech approach, expandability in the building, spatial hierarchy in the design of camp spaces, and the assignment of territories and space sanctuaries to refugees. It should be noted that this study is not a research-oriented type of study and is only limited to collecting information and making hypotheses and questions related to the plan. The researchers attempted to provide a general summary of similar domestic and foreign examples and examine them in similar conditions using the ecotech architecture. The research method utilized in this study was qualitative. Afterwards, the climate studies of the target area, citing and paying attention to the criteria and points extracted from the theoretical framework, reaching the desired conclusion and examining similar examples were followed. Additionally, placement on the site, compliance with relevant standards and regulations, attention to the content and physical program, and addressing the idea and its evolution in all the details of the plan were presented. The data collection procedure included observation and library studies, and the design method was to determine and recognize the subject and examine similar samples. In conclusion, the principles of theoretical foundations, the design protocols in ecotech architecture and the scope of the study are dealt. Furthermore, the site analysis, the design process and the final plan are presented.Keywords: ecotech architecture, livable city, shelter, refugee camp
Procedia PDF Downloads 80868 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment
Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed
Abstract:
Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge
Procedia PDF Downloads 89867 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation
Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely
Abstract:
Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations
Procedia PDF Downloads 92866 Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency
Authors: Amey Kulkarni, Paavan Shetty, Amol Patil, B. Rajiv
Abstract:
Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor.Keywords: differential fuel flow meter, engine RPM, fuel efficiency, heavy construction compaction machine
Procedia PDF Downloads 291865 Evaluation of Heat of Hydration and Strength Development in Natural Pozzolan-Incorporated Cement from the Gulf Region
Authors: S. Al-Fadala, J. Chakkamalayath, S. Al-Bahar, A. Al-Aibani, S. Ahmed
Abstract:
Globally, the use of pozzolan in blended cement is gaining great interest due to the desirable effect of pozzolan from the environmental and energy conservation standpoint and the technical benefits they provide to the performance of cement. The deterioration of concrete structures in the marine environment and extreme climates demand the use of pozzolana cement in concrete construction in the Gulf region. Also, natural sources of cement clinker materials are limited in the Gulf region, and cement industry imports the raw materials for the production of Portland cement, resulting in an increase in the greenhouse gas effect due to the CO₂ emissions generated from transportation. Even though the Gulf region has vast deposits of natural pozzolana, it is not explored properly for the production of high performance concrete. Hence, an optimum use of regionally available natural pozzolana for the production of blended cement can result in sustainable construction. This paper investigates the effect of incorporating natural pozzolan sourced from the Gulf region on the performance of blended cement in terms of heat evolution and strength development. For this purpose, a locally produced Ordinary Portland Cement (OPC) and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (volcanic ash) were prepared on laboratory scale. The strength development and heat evolution were measured and quantified. Promising results of strength development were obtained for blends with the percentages of Volcanic Ash (VA) replacement varying from 10 to 30%. Results showed that the heat of hydration decreased with increase in percentage of replacement of OPC with VA, indicating increased retardation in hydration due to the addition of VA. This property could be used in mass concreting in which a reduction in heat of hydration is required to reduce cracking in concrete, especially in hot weather concreting.Keywords: blended cement, hot weather, hydration, volcanic ash
Procedia PDF Downloads 325864 In vitro Evaluation of the Anti-Methanogenic Properties of Australian Native and Some Exotic Plants with a View of Their Potential Role in Management of Ruminant Livestock Emissions
Authors: Philip Vercoe, Ali Hardan
Abstract:
Samples of 29 Australian wild natives and exotic plants were tested in vitro batch rumen culture system for their methanogenic characteristics and potential usage as feed or antimicrobial to enhance sustainable livestock ruminant production system. The plants were tested for their in vitro rumen fermentation end products properties which include: methane production, total gas pressure, concentrations of total volatile fatty acids, ammonia, and acetate to propionate ratio. All of the plants were produced less methane than the positive control (i.e., oaten chaff) in vitro. Nearly 50 % of plants inhibiting methane by over 50% in comparison to the control. Eremophila granitica had the strongest inhibitory effect about 92 % on methane production comparing with oaten chaff. The exotic weed Arctotheca calendula (Capeweed) had the highest concentration of volatile fatty acids production as well as the highest in total gas pressure among all plants and the control. Some of the acacia species have the lowest production of total gas pressure. The majority of the plants produced more ammonia than the oaten chaff control. The plant species that produced the most ammonia was Codonocarpus cotinifolius, producing over 3 times as much methane as oaten chaff control while the lowest was Eremophila galeata. There was strong positive correlation between methane production and total gas production as well as between total gas production and the concentration of VFA produced with R² = 0.74, R² = 0.84, respectively. While there was weak positive correlation between methane production and the acetate to propionate ratio as well as between the concentration of VFA produced and methane production with R² = 0.41, R² = 0.52, respectively.Keywords: in vitro Rumen Fermentation, methane, wild Australian native plants, forages
Procedia PDF Downloads 347