Search results for: reduced modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7868

Search results for: reduced modeling

6158 Modeling of Timing in a Cyber Conflict to Inform Critical Infrastructure Defense

Authors: Brian Connett, Bryan O'Halloran

Abstract:

Systems assets within critical infrastructures were seemingly safe from the exploitation or attack by nefarious cyberspace actors. Now, critical infrastructure is a target and the resources to exploit the cyber physical systems exist. These resources are characterized in terms of patience, stealth, replication-ability and extraordinary robustness. System owners are obligated to maintain a high level of protection measures. The difficulty lies in knowing when to fortify a critical infrastructure against an impending attack. Models currently exist that demonstrate the value of knowing the attacker’s capabilities in the cyber realm and the strength of the target. The shortcomings of these models are that they are not designed to respond to the inherent fast timing of an attack, an impetus that can be derived based on open-source reporting, common knowledge of exploits of and the physical architecture of the infrastructure. A useful model will inform systems owners how to align infrastructure architecture in a manner that is responsive to the capability, willingness and timing of the attacker. This research group has used an existing theoretical model for estimating parameters, and through analysis, to develop a decision tool for would-be target owners. The continuation of the research develops further this model by estimating the variable parameters. Understanding these parameter estimations will uniquely position the decision maker to posture having revealed the vulnerabilities of an attacker’s, persistence and stealth. This research explores different approaches to improve on current attacker-defender models that focus on cyber threats. An existing foundational model takes the point of view of an attacker who must decide what cyber resource to use and when to use it to exploit a system vulnerability. It is valuable for estimating parameters for the model, and through analysis, develop a decision tool for would-be target owners.

Keywords: critical infrastructure, cyber physical systems, modeling, exploitation

Procedia PDF Downloads 192
6157 Geospatial Assessments on Impacts of Land Use Changes and Climate Change in Nigeria Forest Ecosystems

Authors: Samuel O. Akande

Abstract:

The human-induced climate change is likely to have severe consequences on forest ecosystems in Nigeria. Recent discussions and emphasis on issues concerning the environment justify the need for this research which examined deforestation monitoring in Oban Forest, Nigeria using Remote Sensing techniques. The Landsat images from TM (1986), ETM+ (2001) and OLI (2015) sensors were obtained from Landsat online archive and processed using Erdas Imagine 2014 and ArcGIS 10.3 to obtain the land use/land cover and Normalized Differential Vegetative Index (NDVI) values. Ground control points of deforested areas were collected for validation. It was observed that the forest cover decreased in area by about 689.14 km² between 1986 and 2015. The NDVI was used to determine the vegetation health of the forest and its implications on agricultural sustainability. The result showed that the total percentage of the healthy forest cover has reduced to about 45.9% from 1986 to 2015. The results obtained from analysed questionnaires shown that there was a positive correlation between the causes and effects of deforestation in the study area. The coefficient of determination value was calculated as R² ≥ 0.7, to ascertain the level of anthropogenic activities, such as fuelwood harvesting, intensive farming, and logging, urbanization, and engineering construction activities, responsible for deforestation in the study area. Similarly, temperature and rainfall data were obtained from Nigerian Meteorological Agency (NIMET) for the period of 1986 to 2015 in the study area. It was observed that there was a significant increase in temperature while rainfall decreased over the study area. Responses from the administered questionnaires also showed that futile destruction of forest ecosystem in Oban forest could be reduced to its barest minimum if fuelwood harvesting is disallowed. Thus, the projected impacts of climate change on Nigeria’s forest ecosystems and environmental stability is better imagined than experienced.

Keywords: deforestation, ecosystems, normalized differential vegetative index, sustainability

Procedia PDF Downloads 193
6156 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes

Authors: Sertac Arslan, Sezer Kefeli

Abstract:

In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (U

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows

Procedia PDF Downloads 188
6155 Digital Antimicrobial Thermometer for Axilliary Usage: A New Device for Measuring the Temperature of the Body for the Reduction of Cross-Infections

Authors: P. Efstathiou, E. Kouskouni, Z. Manolidou, K. Karageorgou, M. Tseroni, A. Efstathiou, V. Karyoti, I. Agrafa

Abstract:

Aim: The aim of this prospective comparative study is to evaluate the reduction of microbial flora on the surface of an axillary digital thermometer, made of antimicrobial copper, in relation with a common digital thermometer. Material – Methods: A brand new digital electronic thermometer implemented with antimicrobial copper (Cu 70% - Nic 30%, low lead) on the two edges of the device (top and bottom: World Patent Number WO2013064847 and Register Number by the Hellenic Copper Development Institute No 11/2012) was manufactured and a comparative study with common digital electronic thermometer was conducted on 18 ICU (Intensive Care Unit) patients of three different hospitals. The thermometry was performed in accordance with the projected International Nursing Protocols for body temperature measurement. A total of 216 microbiological samples were taken from the axillary area of the patients, using both of the investigated body temperature devises. Simultaneously the “Halo” phenomenon (phenomenon “Stefanis”) was studied at the non-antimicrobial copper-implemented parts of the antimicrobial digital electronic thermometer. Results: In all samples collected from the surface of the antimicrobial electronic digital thermometer, the reduction of microbial flora (Klebsiella spp, Staphylococcus aureus, Staphylococcus epidermitis, Candida spp, Pneudomonas spp) was progressively reduced to 99% in two hours after the thermometry. The above flora was found in the axillary cavity remained the same in common thermometer. The statistical analysis (SPSS 21) showed a statistically significant reduction of the microbial load (N = 216, < 0.05). Conclusions: The hospital-acquired infections are linked to the transfer of pathogens due to the multi-usage of medical devices from both health professionals and patients, such as axillary thermometers. The use of antimicrobial digital electronic thermometer minimizes microbes' transportation between patients and health professionals while having all the conditions of reliability, proper functioning, security, ease of use and reduced cost.

Keywords: antimicrobial copper, cross infections, digital thermometers, ICU

Procedia PDF Downloads 403
6154 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 160
6153 An Approach to Automate the Modeling of Life Cycle Inventory Data: Case Study on Electrical and Electronic Equipment Products

Authors: Axelle Bertrand, Tom Bauer, Carole Charbuillet, Martin Bonte, Marie Voyer, Nicolas Perry

Abstract:

The complexity of Life Cycle Assessment (LCA) can be identified as the ultimate obstacle to massification. Due to these obstacles, the diffusion of eco-design and LCA methods in the manufacturing sectors could be impossible. This article addresses the research question: How to adapt the LCA method to generalize it massively and improve its performance? This paper aims to develop an approach for automating LCA in order to carry out assessments on a massive scale. To answer this, we proceeded in three steps: First, an analysis of the literature to identify existing automation methods. Given the constraints of large-scale manual processing, it was necessary to define a new approach, drawing inspiration from certain methods and combining them with new ideas and improvements. In a second part, our development of automated construction is presented (reconciliation and implementation of data). Finally, the LCA case study of a conduit is presented to demonstrate the feature-based approach offered by the developed tool. A computerized environment supports effective and efficient decision-making related to materials and processes, facilitating the process of data mapping and hence product modeling. This method is also able to complete the LCA process on its own within minutes. Thus, the calculations and the LCA report are automatically generated. The tool developed has shown that automation by code is a viable solution to meet LCA's massification objectives. It has major advantages over the traditional LCA method and overcomes the complexity of LCA. Indeed, the case study demonstrated the time savings associated with this methodology and, therefore, the opportunity to increase the number of LCA reports generated and, therefore, to meet regulatory requirements. Moreover, this approach also presents the potential of the proposed method for a wide range of applications.

Keywords: automation, EEE, life cycle assessment, life cycle inventory, massively

Procedia PDF Downloads 90
6152 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 516
6151 Scenario Analysis to Assess the Competitiveness of Hydrogen in Securing the Italian Energy System

Authors: Gianvito Colucci, Valeria Di Cosmo, Matteo Nicoli, Orsola Maria Robasto, Laura Savoldi

Abstract:

The hydrogen value chain deployment is likely to be boosted in the near term by the energy security measures planned by European countries to face the recent energy crisis. In this context, some countries are recognized to have a crucial role in the geopolitics of hydrogen as importers, consumers and exporters. According to the European Hydrogen Backbone Initiative, Italy would be part of one of the 5 corridors that will shape the European hydrogen market. However, the set targets are very ambitious and require large investments to rapidly develop effective hydrogen policies: in this regard, scenario analysis is becoming increasingly important to support energy planning, and energy system optimization models appear to be suitable tools to quantitively carry on that kind of analysis. The work aims to assess the competitiveness of hydrogen in contributing to the Italian energy security in the coming years, under different price and import conditions, using the energy system model TEMOA-Italy. A wide spectrum of hydrogen technologies is included in the analysis, covering the production, storage, delivery, and end-uses stages. National production from fossil fuels with and without CCS, as well as electrolysis and import of low-carbon hydrogen from North Africa, are the supply solutions that would compete with other ones, such as natural gas, biomethane and electricity value chains, to satisfy sectoral energy needs (transport, industry, buildings, agriculture). Scenario analysis is then used to study the competition under different price and import conditions. The use of TEMOA-Italy allows the work to catch the interaction between the economy and technological detail, which is much needed in the energy policies assessment, while the transparency of the analysis and of the results is ensured by the full accessibility of the TEMOA open-source modeling framework.

Keywords: energy security, energy system optimization models, hydrogen, natural gas, open-source modeling, scenario analysis, TEMOA

Procedia PDF Downloads 116
6150 Exploring the Role of Immune-Modulators in Pathogen Recognition Receptor NOD2 Mediated Protection against Visceral Leishmaniasis

Authors: Junaid Jibran Jawed, Prasanta Saini, Subrata Majumdar

Abstract:

Background: Leishmania donovani infection causes severe host immune-suppression through the modulation of pathogen recognition receptors. Apart from TLRs (Toll Like Receptor), recent studies focus on the important contribution of NLR (NOD-Like Receptor) family member NOD1 and NOD2 as these receptors are capable of triggering host innate immunity. The aim of this study was to decipher the role of NOD1/NOD2 receptors during experimental visceral leishmaniasis (VL) and the important link between host failure and parasite evasion strategy. Method: The status of NOD1 and NOD2 receptors were analysed in uninfected and infected cells through western blotting and RT-PCR. The active contributions of these receptors in reducing parasite burden were confirmed by siRNA mediated silencing, and over-expression studies and the parasite numbers were calculated through microscopic examination of the Giemsa-stained slides. In-vivo studies were done by using non-toxic dose of Mw (Mycobacterium indicus pranii), Ara-LAM(Arabinoasylated lipoarabinomannan) along with MDP (Muramyl dipeptide) administration. Result: Leishmania donovani infection of the macrophages reduced the expression of NOD2 receptors whereas NOD1 remain unaffected. MDP, a NOD2-ligand, treatment during over-expression of NOD2, reduced the parasite burden effectively which was associated with increased pro-inflammatory cytokine generation and NO production. In experimental mouse model, Ara-LAM treatment increased the expression of NOD2 and in combination with MDP it showed active therapeutic potential against VL and found to be more effective than Mw which was already reported to be involved in NOD2 modulation. Conclusion: This work explores the essential contribution of NOD2 during experimental VL and mechanistic understanding of Ara-LAM + MDP combination therapy to work against this disease and highlighted NOD2 as an essential therapeutic target.

Keywords: Ara-LAM (Arabinoacylated Lipoarabinomannan), NOD2 (nucleotide binding oligomerization receptor 2), MDP (muramyl di peptide), visceral Leishmaniasis

Procedia PDF Downloads 175
6149 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage

Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani

Abstract:

Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.

Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis

Procedia PDF Downloads 82
6148 Application of Computational Fluid Dynamics in the Analysis of Water Flow in Rice Leaves

Authors: Marcio Mesquita, Diogo Henrique Morato de Moraes, Henrique Fonseca Elias de Oliveira, Rilner Alves Flores, Mateus Rodrigues Ferreira, Dalva Graciano Ribeiro

Abstract:

This study aimed to analyze the movement of water in irrigated and non-irrigated rice (Oryza sativa L.) leaves, from the xylem to the stomata, through numerical simulations. Through three-dimensional modeling, it was possible to determine how the spacing of parenchyma cells and the permeability of these cells influence the apoplastic flow and the opening of the stomata. The thickness of the cuticle and the number of vascular bundles are greater in plants subjected to water stress, indicating an adaptive response of plants to environments with water deficit. In addition, numerical simulations revealed that the opening of the stomata, the permeability of the parenchyma cells and the cell spacing have significant impacts on the energy loss and the speed of water movement. It was observed that a more open stoma facilitates water flow, decreasing the resistance and energy required for transport, while higher levels of permeability reduce energy loss, indicating that a more permeable tissue allows for more efficient water transport. Furthermore, it was possible to note that stomatal aperture, parenchyma permeability and cell spacing are crucial factors in the efficient water management of plants, especially under water stress conditions. These insights are essential for the development of more effective agricultural management strategies and for the breeding of plant varieties that are more resistant to adverse growing conditions. Computed fluid dynamics has allowed us to overcome the limitations of conventional techniques by providing a means to visualize and understand the complex hydrodynamic processes within the vascular system of plants.

Keywords: numerical modeling, vascular anatomy, vascular hydrodynamics, xylem, Oryza sativa L.

Procedia PDF Downloads 17
6147 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 94
6146 Nanomaterials Based Biosensing Chip for Non-Invasive Detection of Oral Cancer

Authors: Suveen Kumar

Abstract:

Oral cancer (OC) is the sixth most death causing cancer in world which includes tumour of lips, floor of the mouth, tongue, palate, cheeks, sinuses, throat, etc. Conventionally, the techniques used for OC detection are toluidine blue staining, biopsy, liquid-based cytology, visual attachments, etc., however these are limited by their highly invasive nature, low sensitivity, time consumption, sophisticated instrument handling, sample processing and high cost. Therefore, we developed biosensing chips for non-invasive detection of OC via CYFRA-21-1 biomarker. CYFRA-21-1 (molecular weight: 40 kDa) is secreted in saliva of OC patients which is a non-invasive biological fluid with a cut-off value of 3.8 ng mL-1, above which the subjects will be suffering from oral cancer. Therefore, in first work, 3-aminopropyl triethoxy silane (APTES) functionalized zirconia (ZrO2) nanoparticles (APTES/nZrO2) were used to successfully detect CYFRA-21-1 in a linear detection range (LDR) of 2-16 ng mL-1 with sensitivity of 2.2 µA mL ng-1. Successively, APTES/nZrO2-RGO was employed to prevent agglomeration of ZrO2 by providing high surface area reduced graphene oxide (RGO) support and much wider LDR (2-22 ng mL-1) was obtained with remarkable limit of detection (LOD) as 0.12 ng mL-1. Further, APTES/nY2O3/ITO platform was used for oral cancer bioseneor development. The developed biosensor (BSA/anti-CYFRA-21-1/APTES/nY2O3/ITO) have wider LDR (0.01-50 ng mL-1) with remarkable limit of detection (LOD) as 0.01 ng mL-1. To improve the sensitivity of the biosensing platform, nanocomposite of yattria stabilized nanostructured zirconia-reduced graphene oxide (nYZR) based biosensor has been developed. The developed biosensing chip having ability to detect CYFRA-21-1 biomolecules in the range of 0.01-50 ng mL-1, LOD of 7.2 pg mL-1 with sensitivity of 200 µA mL ng-1. Further, the applicability of the fabricated biosensing chips were also checked through real sample (saliva) analysis of OC patients and the obtained results showed good correlation with the standard protein detection enzyme linked immunosorbent assay (ELISA) technique.

Keywords: non-invasive, oral cancer, nanomaterials, biosensor, biochip

Procedia PDF Downloads 127
6145 The Role of Building Information Modeling as a Design Teaching Method in Architecture, Engineering and Construction Schools in Brazil

Authors: Aline V. Arroteia, Gustavo G. Do Amaral, Simone Z. Kikuti, Norberto C. S. Moura, Silvio B. Melhado

Abstract:

Despite the significant advances made by the construction industry in recent years, the crystalized absence of integration between the design and construction phases is still an evident and costly problem in building construction. Globally, the construction industry has sought to adopt collaborative practices through new technologies to mitigate impacts of this fragmented process and to optimize its production. In this new technological business environment, professionals are required to develop new methodologies based on the notion of collaboration and integration of information throughout the building lifecycle. This scenario also represents the industry’s reality in developing nations, and the increasing need for overall efficiency has demanded new educational alternatives at the undergraduate and post-graduate levels. In countries like Brazil, it is the common understanding that Architecture, Engineering and Building Construction educational programs are being required to review the traditional design pedagogical processes to promote a comprehensive notion about integration and simultaneity between the phases of the project. In this context, the coherent inclusion of computation design to all segments of the educational programs of construction related professionals represents a significant research topic that, in fact, can affect the industry practice. Thus, the main objective of the present study was to comparatively measure the effectiveness of the Building Information Modeling courses offered by the University of Sao Paulo, the most important academic institution in Brazil, at the Schools of Architecture and Civil Engineering and the courses offered in well recognized BIM research institutions, such as the School of Design in the College of Architecture of the Georgia Institute of Technology, USA, to evaluate the dissemination of BIM knowledge amongst students in post graduate level. The qualitative research methodology was developed based on the analysis of the program and activities proposed by two BIM courses offered in each of the above-mentioned institutions, which were used as case studies. The data collection instruments were a student questionnaire, semi-structured interviews, participatory evaluation and pedagogical practices. The found results have detected a broad heterogeneity of the students regarding their professional experience, hours dedicated to training, and especially in relation to their general knowledge of BIM technology and its applications. The research observed that BIM is mostly understood as an operational tool and not as methodological project development approach, relevant to the whole building life cycle. The present research offers in its conclusion an assessment about the importance of the incorporation of BIM, with efficiency and in its totality, as a teaching method in undergraduate and graduate courses in the Brazilian architecture, engineering and building construction schools.

Keywords: building information modeling (BIM), BIM education, BIM process, design teaching

Procedia PDF Downloads 154
6144 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 418
6143 The Effects of Inoculation and N Fertilization on Soybean (Glycine max (L.) Merr.) Seed Yield and Protein Concentration under Drought Stress

Authors: Oqba Basal, Andras Szabo

Abstract:

Using mineral fertilization is increasing worldwide, as it is claimed to be majorly responsible for achieving high yields; however, the negative impacts of mineral fertilization on soil and environment are becoming more obvious, with alternative methods being more necessary and applicable, especially with the current climatic changes which have imposed serious abiotic stresses, such as drought. An experiment was made during 2017 growing season in Debrecen, Hungary to investigate the effects of inoculation and N fertilization on the seed yield and protein concentration of the soybean (Glycine max (L.) Merr.) cultivar (Panonia Kincse) under three different irrigation regimes: severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Three N fertilizer rates were applied: no N fertilizer (0 N), 35 kg ha⁻¹ of N fertilizer (35 N) and 105 kg ha⁻¹ of N fertilizer (105 N). Half of the seeds in each treatment was inoculated with Bradyrhizobium japonicum inoculant, and the other half was not inoculated. The results showed significant differences in the seed yield associated with inoculation, irrigation and the interaction between them, whereas there were no significant differences in the seed yield associated with fertilization alone or in interaction with inoculation or irrigation or both. When seeds were inoculated, yield was increased when (35 N) was applied compared to (0 N) but not significantly; however, the high rate of N fertilizer (105 N) reduced the yield to a level even less than (0 N). When seeds were not inoculated, the highest rate of N increased the yield the most compared to the other two N fertilizer rates whenever the drought was present (moderate or severe). Under severe drought stress, inoculation was positively and significantly correlated with yield; however, adding N fertilizer increased the yield of uninoculated plants compared to the inoculated ones, regardless of the rate of N fertilizer. Protein concentration in the seeds was significantly affected by irrigation and by fertilization, but not by inoculation. Protein concentration increased as the N fertilization rate increased, regardless of the inoculation or irrigation treatments; moreover, increasing the N rate reduced the correlation coefficient of protein concentration with the irrigation. It was concluded that adding N fertilizer is not always recommended, especially when seeds are inoculated before being sown; however, it is very important under severe drought stress to sustain yield. Enhanced protein concentrations could be achieved by applying N fertilization, whether the seeds were pre-inoculated or not.

Keywords: drought stress, N fertilization, protein concentration, soybean

Procedia PDF Downloads 154
6142 Stability of Pump Station Cavern in Chagrin Shale with Time

Authors: Mohammad Moridzadeh, Mohammad Djavid, Barry Doyle

Abstract:

An assessment of the long-term stability of a cavern in Chagrin shale excavated by the sequential excavation method was performed during and after construction. During the excavation of the cavern, deformations of rock mass were measured at the surface of excavation and within the rock mass by surface and deep measurement instruments. Rock deformations were measured during construction which appeared to result from the as-built excavation sequence that had potentially disturbed the rock and its behavior. Also some additional time dependent rock deformations were observed during and post excavation. Several opinions have been expressed to explain this time dependent deformation including stress changes induced by excavation, strain softening (or creep) in the beddings with and without clay and creep of the shaley rock under compressive stresses. In order to analyze and replicate rock behavior observed during excavation, including current and post excavation elastic, plastic, and time dependent deformation, Finite Element Analysis (FEA) was performed. The analysis was also intended to estimate long term deformation of the rock mass around the excavation. Rock mass behavior including time dependent deformation was measured by means of rock surface convergence points, MPBXs, extended creep testing on the long anchors, and load history data from load cells attached to several long anchors. Direct creep testing of Chagrin Shale was performed on core samples from the wall of the Pump Room. Results of these measurements were used to calibrate the FEA of the excavation. These analyses incorporate time dependent constitutive modeling for the rock to evaluate the potential long term movement in the roof, walls, and invert of the cavern. The modeling was performed due to the concerns regarding the unanticipated behavior of the rock mass as well as the forecast of long term deformation and stability of rock around the excavation.

Keywords: Cavern, Chagrin shale, creep, finite element.

Procedia PDF Downloads 352
6141 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method

Authors: Rahim Jafari, Tuba Okutucu-Özyurt

Abstract:

The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.

Keywords: microchannel, boiling, Cahn-Hilliard method, simulation

Procedia PDF Downloads 424
6140 Structural Correlates of Reduced Malicious Pleasure in Huntington's Disease

Authors: Sandra Baez, Mariana Pino, Mildred Berrio, Hernando Santamaria-Garcia, Lucas Sedeno, Adolfo Garcia, Sol Fittipaldi, Agustin Ibanez

Abstract:

Schadenfreude refers to the perceiver’s experience of pleasure at another’s misfortune. This is a multidetermined emotion which can be evoked by hostile feelings and envy. The experience of Schadenfreude engages mechanisms implicated in diverse social cognitive processes. For instance, Schadenfreude involves heightened reward processing, accompanied by increased striatal engagement and it interacts with mentalizing and perspective-taking abilities. Patients with Huntington's disease (HD) exhibit reductions of Schadenfreude experience, suggesting a role of striatal degeneration in such an impairment. However, no study has directly assessed the relationship between regional brain atrophy in HD and reduced Schadenfreude. This study investigated whether gray matter (GM) atrophy in HD patients correlates with ratings of Schadenfreude. First, we compared the performance of 20 HD patients and 23 controls on an experimental task designed to trigger Schadenfreude and envy (another social emotion acting as a control condition). Second, we compared GM volume between groups. Third, we examined brain regions where atrophy might be associated with specific impairments in the patients. Results showed that while both groups showed similar ratings of envy, HD patients reported lower Schadenfreude. The latter pattern was related to atrophy in regions of the reward system (ventral striatum) and the mentalizing network (precuneus and superior parietal lobule). Our results shed light on the intertwining of reward and socioemotional processes in Schadenfreude, while offering novel evidence about their neural correlates. In addition, our results open the door to future studies investigating social emotion processing in other clinical populations characterized by striatal or mentalizing network impairments (e.g., Parkinson’s disease, schizophrenia, autism spectrum disorders).

Keywords: envy, Gray matter atrophy, Huntigton's disease, Schadenfreude, social emotions

Procedia PDF Downloads 336
6139 Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves

Authors: M. Alkhalidi, S. Neelamani, Z. Al-Zaqah

Abstract:

This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance.

Keywords: random waves, regular waves, relative water depth, relative wave height, single breakwater, twin breakwater, wave steepness

Procedia PDF Downloads 327
6138 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 156
6137 Modulation of Receptor-Activation Due to Hydrogen Bond Formation

Authors: Sourav Ray, Christoph Stein, Marcus Weber

Abstract:

A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.

Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation

Procedia PDF Downloads 175
6136 The Gasoil Hydrofining Kinetics Constants Identification

Authors: C. Patrascioiu, V. Matei, N. Nicolae

Abstract:

The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.

Keywords: hydrofining, kinetic, modeling, optimization

Procedia PDF Downloads 438
6135 Mathematical Modeling and Analysis of COVID-19 Pandemic

Authors: Thomas Wetere

Abstract:

Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.

Keywords: modeling, COVID-19, MCMC, stability

Procedia PDF Downloads 114
6134 A 3D Numerical Environmental Modeling Approach For Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design

Authors: J. X. Dong, C. J. An, Z. Chen, E. H. Owens, M. C. Boufadel, E. Taylor, K. Lee

Abstract:

Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to the ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental mesoscale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to those obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.

Keywords: dissolved petroleum hydrocarbons, environmental multimedia model, finite volume method, sensitivity analysis, total petroleum hydrocarbons

Procedia PDF Downloads 217
6133 Numerical Modeling of Turbulent Natural Convection in a Square Cavity

Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian

Abstract:

A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.

Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence

Procedia PDF Downloads 341
6132 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 103
6131 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact

Authors: Guillaume Richard, Sarra Zaied

Abstract:

Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.

Keywords: marine litter, advection-diffusion equation, sea current, numerical model

Procedia PDF Downloads 87
6130 Constructing a Probabilistic Ontology from a DBLP Data

Authors: Emna Hlel, Salma Jamousi, Abdelmajid Ben Hamadou

Abstract:

Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model.

Keywords: classical ontology, probabilistic ontology, uncertainty, Bayesian network

Procedia PDF Downloads 347
6129 Determination of Stress-Strain Curve of Duplex Stainless Steel Welds

Authors: Carolina Payares-Asprino

Abstract:

Dual-phase duplex stainless steel comprised of ferrite and austenite has shown high strength and corrosion resistance in many aggressive environments. Joining duplex alloys is challenging due to several embrittling precipitates and metallurgical changes during the welding process. The welding parameters strongly influence the quality of a weld joint. Therefore, it is necessary to quantify the weld bead’s integral properties as a function of welding parameters, especially when part of the weld bead is removed through a machining process due to aesthetic reasons or to couple the elements in the in-service structure. The present study uses the existing stress-strain model to predict the stress-strain curves for duplex stainless-steel welds under different welding conditions. Having mathematical expressions that predict the shape of the stress-strain curve is advantageous since it reduces the experimental work in obtaining the tensile test. In analysis and design, such stress-strain modeling simplifies the time of operations by being integrated into calculation tools, such as the finite element program codes. The elastic zone and the plastic zone of the curve can be defined by specific parameters, generating expressions that simulate the curve with great precision. There are empirical equations that describe the stress-strain curves. However, they only refer to the stress-strain curve for the stainless steel, but not when the material is under the welding process. It is a significant contribution to the applications of duplex stainless steel welds. For this study, a 3x3 matrix with a low, medium, and high level for each of the welding parameters were applied, giving a total of 27 weld bead plates. Two tensile specimens were manufactured from each welded plate, resulting in 54 tensile specimens for testing. When evaluating the four models used to predict the stress-strain curve in the welded specimens, only one model (Rasmussen) presented a good correlation in predicting the strain stress curve.

Keywords: duplex stainless steels, modeling, stress-stress curve, tensile test, welding

Procedia PDF Downloads 167