Search results for: metal stamping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2416

Search results for: metal stamping

706 Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree

Authors: Joe Modise, Bamidel Joseph Okoli, Nas Molefe, Imelda Ledwaba

Abstract:

The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner.

Keywords: Acacia decurrens, antioxidant, DPPH, ABTS, hyperaccumulation, Menstruum, ICP-OES, GC-MS, UV/visible

Procedia PDF Downloads 308
705 A Low-Cost Dye Solar Cells Based on Ordinary Glass as Substrates

Authors: Sangmo Jon, Ganghyok Kim, Kwanghyok Jong, Ilnam Jo, Hyangsun Kim, Kukhyon Pae, GyeChol Sin

Abstract:

The back contact dye solar cells (BCDSCs), in which the transparent conductive oxide (TCO) is omitted, have the potential to use intact low-cost general substrates such as glass, metal foil, and papers. Herein, we introduce a facile manufacturing method of a Ti back contact electrode for the BCDSCs. We found that the polylinkers such as poly(butyl titanate) have a strong binding property to make Ti particles connect with one another. A porous Ti film, which consists of Ti particles of ≤10㎛ size connected by a small amount of polylinkers, has an excellent low sheet resistance of 10 ohm sq⁻¹ for an efficient electron collection for DSCs. This Ti back contact electrode can be prepared by using a facile printing method under normal ambient conditions. Conjugating the new back contact electrode technology with the traditional monolithic structure using the carbon counter electrode, we fabricated all TCO-less DSCs. These four-layer structured DSCs consist of a dye-adsorbed nanocrystalline TiO₂ film on a glass substrate, a porous Ti back contact layer, a ZrO₂ spacer layer, and a carbon counter electrode in a layered structure. Under AM 1.5G and 100mWcm⁻² simulated sunlight illumination, the four-layer structured DSCs with N719 dyes and I⁻/I₃⁻ redox electrolytes achieved PCEs up to 5.21%.

Keywords: dye solar cells, TCO-less, back contact, printing, porous Ti film

Procedia PDF Downloads 54
704 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+

Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti

Abstract:

This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.

Keywords: additive manufacturing, numerical simulation, metallurgy, steel

Procedia PDF Downloads 51
703 Residual Affects of Humic Matter from Sub-Bituminous in Binding Aluminium at Oxisol to Increase Production of Upland Rice

Authors: Herviyanti, Gusnidar, M. Harianti

Abstract:

The objective of this research were: a) using low-rank coal (subbituminous) as main humate material sources because this material will not be anthracite, and cannot using to be an energy sources b) to examine residual effects of humic matter from subbituminous which was combined with P fertilizers to adsorp Al and Fe metal, improving soil fertility, and increasing P fertilizing efficiency and Oxisol productivity. Therefore, optimalization crop productivity of upland rice can be achieved. The experiment was designed using a 3 x 4 factorial with 3 replications in randomly groups design. The 1st factor was 3 ways incubating humate material with P-fertilizer, which are: I1 = Incubation of humate material 1 week, then incubation P-fertilizers 1 week; I2 = Incubation of humate materials and P fertilizers directly into the soil for 2 weeks; and I3 = humate material and P fertilizer mixed for 1 week, then incubation to the soil for 1 week. The 2nd factor was residual effects of humate material and P-fertilizer combination which are 4 doses H1 = 400 ppm (0.8 Mg/ha) + 100% R; H2 = 400 ppm + 75% R; H3 = 800 ppm (1.6 Mg/ha) + 100% R,; and H4 = 800 ppm + 75% R. The 2nd year research results showed that the best treatment was founded residue effect of 800 ppm humate material and 100% R P-fertilizer doses in I3 way incubation that is equal to 6.19 t ha-1 upland rice yield. However, this result is almost the same as residual effects of 800 ppm humate material + 75% R P-fertilizer doses and upland rice yield the 1st year. It was concluded that addition of humate material can given the efficiency of P-fertilizer using up to 25% until the 2nd season planted.

Keywords: humate materials, P-fertilizer, subbituminous, upland rice

Procedia PDF Downloads 363
702 Unsaturated Sites Constructed Grafted Polymer Nanoparticles to Promote CO₂ Separation in Mixed-Matrix Membranes

Authors: Boyu Li

Abstract:

Mixed matrix membranes (MMMs), as a separation technology, can improve CO₂ recycling efficiency and reduce the environmental impacts associated with huge emissions. Nevertheless, many challenges must be overcome to design excellent selectivity and permeability performance MMMs. Herein, this work demonstrates the design of nano-scale GNPs (Cu-BDC@PEG) with strong compatibility and high free friction volume (FFV) is an effective way to construct non-interfacial voids MMMs with a desirable combination of selectivity and permeability. Notably, the FFV boosted thanks to the chain length and shape of the GNPs. With this, the permeability and selectivity of Cu-BDC@PEG/PVDF MMMs had also been significantly improved. As such, compatible Cu-BDC@PEG proves very efficient for resolving challenges of MMMs with poor compatibility on the basis of the interfacial defect. Poly (Ethylene Glycol) (PEG) with oxygen groups can be finely coordinated with Cu-MOFs to disperse Cu-BDC@PEG homogenously and form hydrogen bonds with matrix to achieve continuous phase. The resultant MMMs exhibited a simultaneous enhancement of gas permeability (853.1 Barrer) and ideal CO₂/N selectivity (41.7), which has surpassed Robenson's upper bound. Moreover, Cu-BDC@PEG/PVDF has a high-temperature resistance and a long time sustainably. This attractive separation performance of Cu-BDC@PEG/PVDF offered an exciting platform for the development of composite membranes for sustainable CO₂ separations.

Keywords: metal organic framework, CO₂ separation, mixed matrix membrane, polymer

Procedia PDF Downloads 92
701 Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran

Authors: M. Bidi, H. Akhbari, S. Eslami, A. Bakhtiari

Abstract:

Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube.

Keywords: desalination, parabolic trough collector, direct steam production, solar water heater, design and construction

Procedia PDF Downloads 298
700 Materials for Electrically Driven Aircrafts: Highly Conductive Carbon-Fiber Reinforced Epoxy Composites

Authors: Simon Bard, Martin Demleitner, Florian Schonl, Volker Altstadt

Abstract:

For an electrically driven aircraft, whose engine is based on semiconductors, alternative materials are needed. The avoid hotspots in the materials thermally conductive polymers are necessary. Nevertheless, the mechanical properties of these materials should remain. Herein, the work of three years in a project with airbus and Siemens is presented. Different strategies have been pursued to achieve conductive fiber-reinforced composites: Metal-coated carbon fibers, pitch-based fibers and particle-loaded matrices have been investigated. In addition, a combination of copper-coated fibers and a conductive matrix has been successfully tested for its conductivity and mechanical properties. First, prepregs have been produced with a laboratory scale prepreg line, which can handle materials with maximum width of 300 mm. These materials have then been processed to fiber-reinforced laminates. For the PAN-fiber reinforced laminates, it could be shown that there is a strong dependency between fiber volume content and thermal conductivity. Laminates with 50 vol% of carbon fiber offer a conductivity of 0.6 W/mK, those with 66 vol% of fiber a thermal conductivity of 1 W/mK. With pitch-based fiber, the conductivity enhances to 1.5 W/mK for 61 vol% of fiber, compared to 0.81 W/mK with the same amount of fibers produced from PAN (+83% in conducitivity). The thermal conductivity of PAN-based composites with 50 vol% of fiber is at 0.6 W/mK, their nickel-coated counterparts with the same fiber volume content offer a conductivity of 1 W/mK, an increase of 66%.

Keywords: carbon, electric aircraft, polymer, thermal conductivity

Procedia PDF Downloads 147
699 Formation of Stable Aqueous Dispersions of Polyaniline-Silica Particles for Application in Anticorrosive Coatings on Steel

Authors: K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. Two forms of PANI are generally accepted to have effective protection of steel: the conducting emeraldine salt (ES) and the non-conducting emeraldine base (EB). The ability to intercept electrons at the metal surface and to transport them is typically attributed to ES, while the success of EB as an anticorrosive additive in the coating is attributed to its ability to oxidize and reduce in a reversible way. This electrochemical mechanism is probably combined with barrier effect against corrosion species. In this work, we describe the preparation of stable suspensions of colloidal PANI-SiO₂ particles, suitable for obtaining of composite anticorrosive coating on steel. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO₂ particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO₂ particles’ suspension against aggregation is realized at pH > 5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO₂ particles. We anticipate that incorporation of the small particles will provide a more homogeneous distribution in the coating matrix and will decrease the negative effect on barrier properties of the composite coating.

Keywords: particles, stable dispersion, composite coatings, corrosion protection

Procedia PDF Downloads 157
698 Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Based on 2D Van Der Waals Heterostructures

Authors: Yunpeng Xia, Jiajia Zha, Haoxin Huang, Hau Ping Chan, Chaoliang Tan

Abstract:

Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe₂ in different phases as the charge trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where the metallic 1T′-MoTe₂ or semiconducting 2H-MoTe₂ nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T′-MoTe₂ presents much better performance, including a larger memory window, faster switching speed (100 ns) and higher extinction ratio (107), than that of the device based on MoS₂/h-BN/2H-MoTe₂ heterostructure. Moreover, the device based on MoS₂/h-BN/1T′-MoTe₂ heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.

Keywords: crystal Phase, 2D van der Waals heretostructure, flash memory device, floating gate

Procedia PDF Downloads 25
697 A Novel Small-Molecule Inhibitor of Influenza a Virus Acts by Suppressing PA Endonuclease Activity of the Viral Polymerase

Authors: Shuafeng Yuan, Bojian Zheng

Abstract:

The RNA-dependent RNA polymerase of influenza a virus comprises conserved and independently folded subdomains with defined functionalities. The N-terminal domain of the PA subunit (PAN) harbors the endonuclease function so that it can serve as a desired target for drug discovery. To identify a class of anti-influenza inhibitors that impedes PAN endonuclease activity, a screening approach that integrated the fluorescence resonance energy transfer based endonuclease inhibitor assay with the DNA gel-based endonuclease inhibitor assay was conducted, followed by the evaluation of antiviral efficacies and potential cytotoxicity of the primary hits in vitro and in vivo. A small-molecule compound ANA-0 was identified as a potent inhibitor against the replication of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2, in cell cultures. Combinational treatment of zanamivir and ANA-0 exerted synergistic anti-influenza effect in vitro. Intranasal administration of ANA-0 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted ANA-0 bound the endonuclease cavity of PAN by interacting with the metal-binding and catalytic residues. In summary, ANA-0 shows potential to be developed to novel anti-influenza agents.

Keywords: anti-influenza, novel compound, inhibition of endonuclease, PA

Procedia PDF Downloads 229
696 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 337
695 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 307
694 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed, and Temperature of Incubator Shaker

Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar

Abstract:

Microbes have been used to solve environmental problems for many years. The use microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Processes by which microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida, pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P.putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of Pseudomonas putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to reduce ionic mercury from mercury nitrate solution. The overall levels of mercury removal in this study were between 80% and 90%. The information obtained in this study is of fundamental for understanding of the survival of P.putida ATTC 49128 in mercury solution. Thus, microbial mercury environmental pollutants removal is a potential biological treatment for waste water treatment especially in petrochemical industries in Malaysia.

Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical waste water

Procedia PDF Downloads 647
693 Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13

Authors: Vandana Bali, Manab B. Bera, Parmjit S. Panesar

Abstract:

Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm).

Keywords: Bacteriocin, biopreservation, corn steep liquor, Enterococcus faecium, waste utilization, whey

Procedia PDF Downloads 226
692 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L. Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates.

Keywords: non destructive, paint coating, thickness, infrared thermography, laser, heterogeneity

Procedia PDF Downloads 623
691 Nanostructured Transition Metal Oxides Doped Graphene for High Performance Solid-State Supercapacitor Electrodes

Authors: G. Nyongombe, Guy L. Kabongo, B. M. Mothudi, M. S. Dhlamini

Abstract:

A series of Transition Metals Oxides (TMOs) doped graphene were synthesized and successfully used as supercapacitor electrode materials. The as-synthesized materials exhibited exceptional electrochemical properties owing to the combined properties of its constituents; high surface area and good conductivity were achieved. Several analytical characterization techniques were employed to investigate the morphology, crystal structure atomic arrangement and elemental chemical state in the materials for which scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted, respectively. Moreover, the electrochemical properties of the as-synthesized materials were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Furthermore, the effect of doping concentration on the interlayer distance of the graphene materials and the charge transfer resistance are investigated and correlated to the exceptional current density which was multiplied by a factor of ~80 after TMOs doping in graphene. Finally, the resulting high capacitance obtained confirms the contribution of grapheme exceptional electronic conductivity and large surface area on the electrode materials. Such good-performing electrode materials are highly promising for supercapacitors and other energy storage devices.

Keywords: energy density, graphene, supercapacitors, TMOs

Procedia PDF Downloads 239
690 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts

Procedia PDF Downloads 510
689 Analgesic Efficacy of Opiorphin and Its Analogue

Authors: Preet Singh, Kavitha Kongara, Dave Harding, Neil Ward, Paul Chambers

Abstract:

The objective of this study was to compare the analgesic efficacy of opiorphin and its analogue with a mu-receptor agonist; morphine. Opiorphins (Gln-Arg-Phe-Ser-Arg) belong to the family of endogenous enkephalinase inhibitors, found in saliva of humans. They are inhibitors of two Zinc metal ectopeptidases (Neutral endopeptidase NEP, and amino-peptidase APN) which are responsible for the inactivation of the endogenous opioids; endorphins and enkephalins. Morphine and butorphanol exerts their analgesic effects by mimicking the actions of endorphins and enkephalins. The opiorphin analogue was synthesized based on the structure activity relationship of the amino acid sequence of opiorphin. The pharmacological profile of the analogue was tested by replacing Serine at position 4 with Proline. The hot plate and tail flick test were used to demonstrate the analgesic efficacy. There was a significant increase in the time for the tail flick response after an injection of opiorphin, which was similar to the morphine effect. There was no increase in time in the hot plate test after an injection of opiorphin. The results suggest that opiorphin works at spinal level only rather than both spinal and supraspinal. Further work is required to confirm our results. We did not find analgesic activity of the opiorphin analogue. Thus, Serine at position 4 is also important for its pharmacological action. Further work is required to illustrate the role of serine at position 4 in opiorphin.

Keywords: analgesic peptides, endogenous opioids, morphine, opiorphin

Procedia PDF Downloads 309
688 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 199
687 Magnetodielectric Studies of Substituted La₂NiMnO₆ Double Perovskites

Authors: Pravin M. Tirmali, Sagar M. Mane, Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

The La₂NiMnO₆ has been extensively studied for its ferromagnetic and magneto-dielectric properties. The La₂NiMnO₆ double perovskite is modified by partial substitution at B site by Fe transition metal. The La₂Ni₁₋ₓFeₓMnO₆ powder samples were synthesized by hydroxide co-precipitation method. The precipitate was dried and fine griended to form powder and pellet samples (2cm dia.) using hydraulic press. The powder and pellet samples of La₂Ni₁₋ₓFeₓMnO₆ were calcined at high temperature 1200°C to form a pure and stable composition. The nano polar regions (NPR) around Ni²⁺ or Mn⁴⁺ ions due to the cationic antisite disorder gives dielectric relaxation through their mutual interaction. The magneto-dielectric behavior is observed in substituted La₂NiMnO₆ shows Maxwell-Wagner and Debye relaxation due to grain boundary, interface and antisite defects. The magneto-dielectric properties of substituted La₂NiMnO₆ pellet sample were probed by Impedance spectroscopy measurements. The structural and magnetic investigations were also carried out by XRD, FESEM and VSM measurements of substituted La₂NiMnO₆ of powder samples. The synthesized La₂Ni₁₋ₓFeₓMnO₆ powder samples are polycrystalline and ferromagnetic in nature. The La₂Ni₁₋ₓFeₓMnO₆ samples exhibit ferromagnetic disorder with transition temperature near room temperature.

Keywords: La₂NiMnO₆, nano polar regions (NPR), antisite defects, magnetodielctric

Procedia PDF Downloads 189
686 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method

Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd

Abstract:

Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).

Keywords: MMC, milling operation and surface roughness, Taguchi method

Procedia PDF Downloads 516
685 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel

Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew

Abstract:

Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.

Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD

Procedia PDF Downloads 194
684 Highly Selective Conversion of CO2 to CO on Cu Nanoparticles

Authors: Rauf Razzaq, Kaiwu Dong, Muhammad Sharif, Ralf Jackstell, Matthias Beller

Abstract:

Carbon dioxide (CO2), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO2 using a heterogeneous system is regarded as an efficient process for CO2 valorization. In this regard CO2 reduction to CO via the reverse water gas shift reaction (RWGSR) has attracted much attention as a viable process for large scale commercial CO2 utilization. This process can generate syn-gas (CO+H2) which can provide an alternative route to direct CO2 conversion to methanol and/or liquid HCs from FT reaction. Herein, we report a highly active and selective silica supported copper catalyst with efficient CO2 reduction to CO in a slurry-bed batch autoclave reactor. The reactions were carried out at 200°C and 60 bar initial pressure with CO2/H2 ratio of 1:3 with varying temperature, pressure and fed-gas ratio. The gaseous phase products were analyzed using FID while the liquid products were analyzed by using FID detectors. It was found that Cu/SiO2 catalyst prepared using novel ammonia precipitation-urea gelation method achieved 26% CO2 conversion with a CO and methanol selectivity of 98 and 2% respectively. The high catalytic activity could be attributed to its strong metal-support interaction with highly dispersed and stabilized Cu+ species active for RWGSR. So, it can be concluded that reduction of CO2 to CO via RWGSR could address the problem of using CO2 gas in C1 chemistry.

Keywords: CO2 reduction, methanol, slurry reactor, synthesis gas

Procedia PDF Downloads 307
683 Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding

Authors: Changyong Liu, Junda Tong, Feng Xu, Ninggui Huang

Abstract:

In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels.

Keywords: conformal cooling channels, selective laser melting, cooling performance, injection molding

Procedia PDF Downloads 135
682 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production

Authors: N. Laosiripojana, P. Tepamatr

Abstract:

The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.

Keywords: bismuth, platinum, water gas shift, ceria

Procedia PDF Downloads 331
681 Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water

Authors: Chao Ding, Jun Shi, Huiping Deng

Abstract:

This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased.

Keywords: ammonia nitrogen, bio-microcapsules, ultrafiltration membrane, yeast-chitosan

Procedia PDF Downloads 328
680 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil

Abstract:

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Keywords: additive manufacturing, selective laser melting, SLM, surface roughness, stainless steel

Procedia PDF Downloads 118
679 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method

Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng

Abstract:

Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.

Keywords: shot peen forming, process parameter, response surface model, numerical simulation

Procedia PDF Downloads 62
678 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 120
677 Nano-Coating for Corrosion Prevention

Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani

Abstract:

Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.

Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating

Procedia PDF Downloads 453