Search results for: highly sensitive
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5881

Search results for: highly sensitive

4171 CRM Cloud Computing: An Efficient and Cost Effective Tool to Improve Customer Interactions

Authors: Gaurangi Saxena, Ravindra Saxena

Abstract:

Lately, cloud computing is used to enhance the ability to attain corporate goals more effectively and efficiently at lower cost. This new computing paradigm “The Cloud Computing” has emerged as a powerful tool for optimum utilization of resources and gaining competitiveness through cost reduction and achieving business goals with greater flexibility. Realizing the importance of this new technique, most of the well known companies in computer industry like Microsoft, IBM, Google and Apple are spending millions of dollars in researching cloud computing and investigating the possibility of producing interface hardware for cloud computing systems. It is believed that by using the right middleware, a cloud computing system can execute all the programs a normal computer could run. Potentially, everything from most simple generic word processing software to highly specialized and customized programs designed for specific company could work successfully on a cloud computing system. A Cloud is a pool of virtualized computer resources. Clouds are not limited to grid environments, but also support “interactive user-facing applications” such as web applications and three-tier architectures. Cloud Computing is not a fundamentally new paradigm. It draws on existing technologies and approaches, such as utility Computing, Software-as-a-service, distributed computing, and centralized data centers. Some companies rent physical space to store servers and databases because they don’t have it available on site. Cloud computing gives these companies the option of storing data on someone else’s hardware, removing the need for physical space on the front end. Prominent service providers like Amazon, Google, SUN, IBM, Oracle, Salesforce etc. are extending computing infrastructures and platforms as a core for providing top-level services for computation, storage, database and applications. Application services could be email, office applications, finance, video, audio and data processing. By using cloud computing system a company can improve its customer relationship management. A CRM cloud computing system may be highly useful in delivering a sales team a blend of unique functionalities to improve agent/customer interactions. This paper attempts to first define the cloud computing as a tool for running business activities more effectively and efficiently at a lower cost; and then it distinguishes cloud computing with grid computing. Based on exhaustive literature review, authors discuss application of cloud computing in different disciplines of management especially in the field of marketing with special reference to use of cloud computing in CRM. Study concludes that CRM cloud computing platform helps a company track any data, such as orders, discounts, references, competitors and many more. By using CRM cloud computing, companies can improve its customer interactions and by serving them more efficiently that too at a lower cost can help gaining competitive advantage.

Keywords: cloud computing, competitive advantage, customer relationship management, grid computing

Procedia PDF Downloads 291
4170 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect

Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi

Abstract:

High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.

Keywords: integration, electrokinetic, on-chip, fluid pumping, microfluidic

Procedia PDF Downloads 278
4169 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications

Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin

Abstract:

A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.

Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors

Procedia PDF Downloads 358
4168 Dust and Soling Accumulation Effect on Photovoltaic Systems in Middle East and North Africa Region

Authors: Iyad Muslih, Azzah Alkhalailah, Ali Merdji

Abstract:

Photovoltaic efficiency is highly affected by dust accumulation; the dust particles prevent direct solar radiation from reaching the panel surface; therefore a reduction in output power will occur. A study of dust and soiling accumulation effect on the output power of PV panels was conducted for different periods of time from May to October in three countries of the MENA region, Jordan, Egypt, and Algeria, under local weather conditions. This study leads to build a more realistic equation to estimate the power reduction as a function of time. This logarithmic function shows the high reduction in power in the first days with 10% reduction in output power compared to the reference system, where it reaches a steady state value after 60 days to reach a maximum value of 30%.

Keywords: solar energy, PV system, soiling, MENA

Procedia PDF Downloads 205
4167 Characterization of Some Bread Wheat Genotypes for Drought Tolerance Using Molecular Markers

Authors: Begüm Terzi, Özlem Ateş Sönmezoğlu, Ahmet Yildirim

Abstract:

Drought is the most important factor that limiting the production and productivity of wheat in the world. The yield of wheat, which is one of the most important crop in the world, reduced depend on drought. Researches to minimize effects of drought are one of the most important about breeding of drought resistant varieties. In recent years, benefiting from the drought resistance wild species and rapid advances in molecular biology studies, researches about drought have been accelerated and number of studies were made on molecular plant breeding which included the molecular mechanisms related to drought resistance. The aim of the present study was characterization of some bread wheat lines for drought tolerance which commonly cultivated in different location of Turkey. In this study, registered 9 bread wheat varieties which on the physiological tests about drought tolerance and 10 bread wheat line has been developed by Transitional Zone Agricultural Research Institute were used. SSR, STS, RAPD and SNP markers that associated with drought tolerance were used. The polymorphisms of the markers were determined by screening of two control varieties. For these purpose 40 molecular markers were used and 12 markers of them were polymorphic among the drought tolerance and the drought sensitive varieties. Control varieties were screened using polymorphic markers. All the DNAs on the genotypes will be searched for the presence of QTLs mapped to different chromosomes. Result of the research, the studied genotypes will be grouped according to drought tolerance and will be detected drought tolerance varieties by molecular markers. In addition, the results will be compared also with physiological tests. The drought tolerant wheat genotypes may be used in breeding studies related to drought stress.

Keywords: bread wheat, drought, molecular marker, Triticum aestivum

Procedia PDF Downloads 368
4166 Impact of Herbicides on Soil Biology in Rapeseed

Authors: M. Eickermann, M. K. Class, J. Junk

Abstract:

Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.

Keywords: cropping system, dehydrogenase activity, herbicides, mechanical weed control, oilseed rape

Procedia PDF Downloads 232
4165 Zeolite 4A-confined Ni-Co Nanocluster: An Efficient and Durable Electrocatalyst for Alkaline Methanol Oxidation Reaction

Authors: Sarmistha Baruah, Akshai Kumar, Nageswara Rao Peela

Abstract:

The global energy crisis due to the dependence on fossil fuels and its limited reserves as well as environmental pollution are key concerns to the research communities. However, the implementation of alcohol-based fuel cells such as methanol is anticipated as a reliable source of future energy technology due to their high energy density, environment friendliness, ease of storage, transportation, etc. To drive the anodic methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs), an active and long-lasting catalyst is necessary for efficient energy conversion from methanol. Recently, transition metal-zeolite-based materials have been considered versatile catalysts for a variety of industrial and lab-scale processes. Large specific surface area, well-organized micropores, and adjustable acidity/basicity are characteristics of zeolites that make them excellent supports for immobilizing small-sized and highly dispersed metal species. Significant advancement in the production and characterization of well-defined metal clusters encapsulated within zeolite matrix has substantially expanded the library of materials available, and consequently, their catalytic efficacy. In this context, we developed bimetallic Ni-Co catalysts encapsulated within LTA (also known as 4A) zeolite via a method combined with the in-situ encapsulation of metal species using hydrothermal treatment followed by a chemical reduction process. The prepared catalyst was characterized using advanced characterization techniques, such as X-ray diffraction (XRD), field emission transmission electron microscope (FETEM), field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the catalyst for MOR was carried out in an alkaline medium at room temperature using techniques such as cyclic voltammetry (CV), and chronoamperometry (CA). The resulting catalyst exhibited better catalytic activity of 12.1 mA cm-2 at 1.12 V vs Ag/AgCl and retained remarkable stability (~77%) even after 1000 cycles CV test for the electro-oxidation of methanol in alkaline media without any significant microstructural changes. The high surface area, better Ni-Co species integration in the zeolite, and the ample amount of surface hydroxyl groups contribute to highly dispersed active sites and quick analyte diffusion, which provide notable MOR kinetics. Thus, this study will open up new possibilities to develop a noble metal-free zeolite-based electrocatalyst due to its simple synthesis steps, large-scale fabrication, improved stability, and efficient activity for DMFC application.

Keywords: alkaline media, bimetallic, encapsulation, methanol oxidation reaction, LTA zeolite.

Procedia PDF Downloads 45
4164 Effect of Mica Content in Sand on Site Response Analyses

Authors: Volkan Isbuga, Joman M. Mahmood, Ali Firat Cabalar

Abstract:

This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations.

Keywords: micaceous sands, site response, equivalent linear approach, SHAKE

Procedia PDF Downloads 316
4163 From Self-Regulation to Self-Efficacy: Student Empowerment in Translator Training

Authors: Paulina Pietrzak

Abstract:

The understanding of the role of the contemporary translator is fraught with contradictions and idealistic visions of individuals who, by definition, should be fully competent and versatile. In spite of the fact that lots of translation researchers have probed into the identification and exploration of the concept of translator competence, little study has been devoted to its metacognitive aspects. Due to the dynamic nature of the translator’s occupation, it is difficult to predict what specific skills will prove useful for novice translators in their professional career. Thus, it is crucial that the translator is self-regulated enough to adapt to changing job demands and effectively function in the contemporary, highly dynamic, translation market. The objective of the presentation is to investigate the role and nature of the translator’s self-regulation. It will also demonstrate the results of a pilot study into translation trainees’ self-regulatory skills and explore implications of these findings for translator training in relation to theories of student empowerment.

Keywords: cognitive translation research, translator competence, self-regulatory skills, translator training

Procedia PDF Downloads 197
4162 Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats

Authors: D. S. Mohale, A. P. Dewani, A. S.tripathi, A. V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days.

Keywords: malondialdehyde-thiobarbituric acid complex, levofloxacin, HPLC, oxidative stress

Procedia PDF Downloads 321
4161 Dielectric Properties of Thalium Selenide Thin Films at Radio Wave Frequencies

Authors: Onur Potok, Deniz Deger, Kemal Ulutas, Sahin Yakut, Deniz Bozoglu

Abstract:

Thalium Selenide (TlSe) is used for optoelectronic devices, pressure sensitive detectors, and gamma-ray detectors. The TlSe samples were grown as large single crystals using the Stockbarger-Bridgman method. The thin films, in the form of Al/TlSe/Al, were deposited on the microscope slide in different thicknesses (300-3000 Å) using thermal evaporation technique at 10-5 Torr. The dielectric properties of (TlSe) thin films, capacitance (C) and dielectric loss factor (tanδ), were measured in a frequency range of 10-105 Hz, and temperatures between 213K and 393K via Broadband Dielectric Spectroscopy analyzer. The dielectric constant (ε’) and the dielectric loss (ε’’) of the thin films were derived from measured parameters (C and tanδ). These results showed that the dielectric properties of TlSe thin films are frequency and temperature dependent. The capacitance and the dielectric constant decrease with increasing frequency and decreasing temperature. The dielectric loss of TlSe thin films decreases with increasing frequency, on the other hand, they increase with increasing temperature and increasing thicknesses. There is two relaxation region in the investigated frequency and temperature interval. These regions can be called as low and high-frequency dispersion regions. Low-frequency dispersion region can be attributed to the polarization of the main part of the chain structure of TlSe while high-frequency dispersion region can be attributed to the polarization of side parts of the structure.

Keywords: thin films, thallium selenide, dielectric spectroscopy, binary compounds

Procedia PDF Downloads 138
4160 Graft Copolymerization of Cellulose Acetate with Nitro-N-Amino Phenyl Maleimides

Authors: Azza. A. Al-Ghamdi, Abir. A. Abdel-Naby

Abstract:

The construction of Nitro -N-amino phenyl maleimide branches onto Cellulose acetate (CA) substrate by free radical graft copolymerization using benzoyl peroxide as initiator led to formation of highly thermal stable copolymers as shown from the results of gravimetric analysis (TGA). CA-g-2,4-dinitro amino phenyl maleimide exhibited higher thermal stability than the CA-g-4-nitro amino phenyl maleimide as shown from the initial decomposition temperature (To). This is due to the ability of nitro group to form hydrogen bonding with hydroxyl group of the glucopyranose ring which increases the crystallinity of polymeric matrix. The crystalline shapes representing the graft part are clearly distinct in the Emission scanning electron microscope (ESEM) morphology of the copolymer. A suggested reaction mechanism for the grafting process was also discussed.

Keywords: Cellulose acetate, Crystallinity, Graft copolymerization, Thermal properties

Procedia PDF Downloads 149
4159 Genomic and Proteomic Variation in Glycine Max Genotypes towards Salinity

Authors: Faheema Khan

Abstract:

In order to investigate the influence of genetic background on salt tolerance in Soybean (Glycine max) ten soybean genotypes released/notified in India were selected. (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712). The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and RAPD analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes however the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted for by plant physiological measures. The genetic polymorphisms between soybean genotypes differing in response to salt stress were characterized using 25 RAPD primers. These primers generated a total of 1640 amplification products, among which 1615 were found to be polymorphic. A very high degree of polymorphism (98.30%) was observed. UPGMA cluster analysis of genetic similarity indices grouped all the genotypes into two major clusters. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings. Our results show that RAPD technique is a sensitive, precise and efficient tool for genomic analysis in soybean genotypes.

Keywords: glycine max, NaCl, RAPD, proteomics

Procedia PDF Downloads 569
4158 Wettability Alter of a Sandstone Rock by Graphene Oxide Adsorption

Authors: J. Gómez, J. Rodriguez, N. Santos, E. Mejía-Ospino

Abstract:

The wettability of the minerals present in a reservoir is a determining property in the recovery factor. One of the strategies proposed to increase recovery is based on altering the wettability of oil reservoir rocks. Approximately 60% of world crude oil reservoirs have sandstone-type host rocks; for that, it is very important to develop efficient methodologies to alter the wettability of these rocks. In this study, the alteration of the wettability of a sandstone rock due to graphene oxide (GO) adsorption was evaluated. The effect of GO concentration, salinity, Ca2+ ions, and pH on interfacial tension and contact angle was determined. The results show that GO adsorption induces significant changes in rock wettability. For high GO concentrations and low salinity, pH proved to be a determining factor in the alteration of wettability. Under certain conditions, surface wettability changes from highly oleophilic (144,8°) to intermediate oil wettability (91,2°).

Keywords: enhanced oil recovery, graphene oxide, interfacial tension, nanofluid, wettability

Procedia PDF Downloads 93
4157 Measurement of Echocardiographic Ejection Fraction Reference Values and Evaluation between Body Weight and Ejection Fraction in Domestic Rabbits (Oryctolagus cuniculus)

Authors: Reza Behmanesh, Mohammad Nasrolahzadeh-Masouleh, Ehsan Khaksar, Saeed Bokaie

Abstract:

Domestic rabbits (Oryctolagus cuniculus) are an excellent model for cardiovascular research because the size of these animals is more suitable for study and experimentation than smaller animals. One of the most important diagnostic imaging methods is echocardiography, which is used today to evaluate the anatomical and functional cardiovascular system and is one of the most accurate and sensitive non-invasive methods for examining heart disease. Ventricular function indices can be assessed with cardiac imaging techniques. One of these important cardiac parameters is the ejection fraction (EF), which has a valuable place along with other involved parameters. EF is a measure of the percentage of blood that comes out of the heart with each contraction. For this study, 100 adult and young standard domestic rabbits, six months to one year old and of both sexes (50 female and 50 male rabbits) without anesthesia and sedation were used. In this study, the mean EF in domestic rabbits studied in males was 58.753 ± 6.889 and in females, 61.397 ± 6.530, which are comparable to the items mentioned in the valid books and the average size of EF measured in this study; there is no significant difference between this research and other research. There was no significant difference in the percentage of EF between most weight groups, but there was a significant difference (p < 0.05) in weight groups (2161–2320 g and 2481–2640 g). Echocardiographic EF reference values for domestic rabbits (Oryctolagus cuniculus) non-anesthetized are presented, providing reference values for future studies.

Keywords: echocardiography, ejection fraction, rabbit, heart

Procedia PDF Downloads 79
4156 Impact of Data and Model Choices to Urban Flood Risk Assessments

Authors: Abhishek Saha, Serene Tay, Gerard Pijcke

Abstract:

The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.

Keywords: flooding, DEM, shallow water equations, subgrid

Procedia PDF Downloads 124
4155 Bone Mineralization in Children with Wilson’s Disease

Authors: Shiamaa Eltantawy, Gihan Sobhy, Alif Alaam

Abstract:

Wilson disease, or hepatolenticular degeneration, is an autosomal recessive disease that results in excess copper buildup in the body. It primarily affects the liver and basal ganglia of the brain, but it can affect other organ systems. Musculoskeletal abnormalities, including premature osteoarthritis, skeletal deformity, and pathological bone fractures, can occasionally be found in WD patients with a hepatic or neurologic type. The aim was to assess the prevalence of osteoporosis and osteopenia in Wilson’s disease patients. This case-control study was conducted on ninety children recruited from the inpatient ward and outpatient clinic of the Paediatric Hepatology, Gastroenterology, and Nutrition department of the National Liver Institute at Menofia University, aged from 1 to 18 years. Males were 49, and females were 41. Children were divided into three groups: (Group I) consisted of thirty patients with WD; (Group II) consisted of thirty patients with chronic liver disease other than WD; (Group III) consisted of thirty age- and sex-matched healthy The exclusion criteria were patients with hyperparathyroidism, hyperthyroidism, renal failure, Cushing's syndrome, and patients on certain drugs such as chemotherapy, anticonvulsants, or steroids. All patients were subjected to the following: 1- Full history-taking and clinical examination. 2-Laboratory investigations: (FBC,ALT,AST,serum albumin, total protein, total serum bilirubin,direct bilirubin,alkaline phosphatase, prothrombin time, serum critine,parathyroid hormone, serum calcium, serum phosphrus). 3-Bone mineral density (BMD, gm/cm2) values were measured by dual-energy X-ray absorptiometry (DEXA). The results revealed that there was a highly statistically significant difference between the three groups regarding the DEXA scan, and there was no statistically significant difference between groups I and II, but the WD group had the lowest bone mineral density. The WD group had a large number of cases of osteopenia and osteoporosis, but there was no statistically significant difference with the group II mean, while a high statistically significant difference was found when compared to group III. In the WD group, there were 20 patients with osteopenia, 4 patients with osteoporosis, and 6 patients who were normal. The percentages were 66.7%, 13.3%, and 20%, respectively. Therefore, the largest number of cases in the WD group had osteopenia. There was no statistically significant difference found between WD patients on different treatment regimens regarding DEXA scan results (Z-Score). There was no statistically significant difference found between patients in the WD group (normal, osteopenic, or osteoporotic) regarding phosphorus (mg/dL), but there was a highly statistically significant difference found between them regarding ionised Ca (mmol/L). Therefore, there was a decrease in bone mineral density when the Ca level was decreased. In summary, Wilson disease is associated with bone demineralization. The largest number of cases in the WD group in our study had osteopenia (66.7%). Different treatment regimens (zinc monotherapy, Artamin, and zinc) as well as different laboratory parameters have no effect on bone mineralization in WD cases. Decreased ionised Ca is associated with low BMD in WD patients. Children with WD should be investigated for BMD.

Keywords: wilson disease, Bone mineral density, liver disease, osteoporosis

Procedia PDF Downloads 40
4154 Potential of Water Purification of Turbid Surface Water Sources in Remote Arid and Semi-Arid Rural Areas of Rajasthan by Moringa Oleifera (Drumstick) Tree Seeds

Authors: Pomila Sharma

Abstract:

Rajasthan is among regions with greatest climate sensitivity and lowest adaptive capabilities. In many parts of the Rajasthan surface water which can be highly turbid and contaminated with fecal coliform bacteria is used for drinking purposes. The majority rely almost exclusively upon traditional sources of highly turbid and untreated pathogenic surface water for their domestic water needs. In many parts of rural areas of Rajasthan, it is still difficult to obtain clean water, especially remote habitations with no groundwater due to quality issues or depletion and limited feasibility to connect with surface water schemes due to low density of population in these areas to justify large infrastructure investment. The most viable sources are rain water harvesting, community managed open wells, private wells, ponds and small-scale irrigation reservoirs have often been the main traditional sources of rural drinking water. Turbidity is conventionally removed by treating the water with expensive chemicals. This study has to investigate the use of crushed seeds from the tree Moringa oleifera (drumstick) as a natural alternative to conventional coagulant chemicals. The use of Moringa oleifera seed powder can produce potable water of higher quality than the original source. Moringa oleifera a native species of northern India, the tree is now grown extensively throughout the tropics and found in many countries of Africa, Asia & South America. The seeds of tree contains significant quantities of low molecular weight, water soluble proteins which carries the positive charge when the crushed seeds are added to water. This protein binds in raw water with negatively charged turbid water with bacteria, clay, algae, etc. Under proper mixing, these particles make flocks, which may be left to settle by gravity or be removed by filtration. Using Moringa oleifera as a replacement coagulation in such surface sources of arid and semi-arid areas can meet the need for water purification in remote places of Rajasthan state of India. The present study accesses to find out laboratory based investigation of the effect of seeds of Moringa tree on its coagulation effectiveness (purification) using turbid water samples of surface source of the Rajasthan state. In this study, moringa seed powder showed that filtering with seed powder may diminish water pollution and bacterial counts. Results showed Moringa oleifera seeds coagulate 90-95% of turbidity and color efficiently leading to an aesthetically clear supernatant & reduced about 85-90% of bacterial load reduction in samples.

Keywords: bacterial load, coagulant, turbidity, water purification

Procedia PDF Downloads 125
4153 Genetic and Non-Genetic Evaluation of Milk Yield and Litter Size of Awassi Sheep in Drylands

Authors: Khaled Al-Najjar, Ahmad Q. Al-Momani, Ahmed Elnahas, Reda Elsaid

Abstract:

The research was carried out using records of Awassi sheep bred in drylands at Al-Fjaj Station, Jordan. That aimed to study non-genetic factors affecting milk yield (MK), litter size at birth (LZB); estimate heritability, repeatability, and genetic and phenotypic correlation using SAS and MTDFREML programs. The results were as follows, the average MK and LZB were 92.84 (kg) and 1.16, respectively. MK was highly significantly affected by each parity, age of ewe, year of lambing, and lactation period, while only the year of lambing had a significant effect on LZB. The heritability and repeatability were 0.07 and 0.10 for MK, while it was 0.05 and 0.25 for LZB. The genetic and phenotypic correlations were 0.17 and 0.02 between MK and LZB, respectively. The research concluded that the herd is genetically homozygous and therefore needs to increase genetic variance by introducing LZB-improved rams and selecting females from dams who achieved at least four parties to increase returns in drylands.

Keywords: Awassi sheep, genetic parameters, litter size, milk yield

Procedia PDF Downloads 99
4152 Simulation and Analysis of Inverted Pendulum Controllers

Authors: Sheren H. Salah

Abstract:

The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control.

Keywords: Inverted Pendulum (IP) Proportional-Integral-Derivative (PID), Genetic Algorithm Control (GAs), Sliding Mode Control (SMC)

Procedia PDF Downloads 543
4151 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics

Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma

Abstract:

Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.

Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery

Procedia PDF Downloads 215
4150 Vibroacoustic Modulation with Chirp Signal

Authors: Dong Liu

Abstract:

By sending a high-frequency probe wave and a low-frequency pump wave to a specimen, the vibroacoustic method evaluates the defect’s severity according to the modulation index of the received signal. Many studies experimentally proved the significant sensitivity of the modulation index to the tiny contact type defect. However, it has also been found that the modulation index was highly affected by the frequency of probe or pump waves. Therefore, the chirp signal has been introduced to the VAM method since it can assess multiple frequencies in a relatively short time duration, so the robustness of the VAM method could be enhanced. Consequently, the signal processing method needs to be modified accordingly. Various studies utilized different algorithms or combinations of algorithms for processing the VAM signal method by chirp excitation. These signal process methods were compared and used for processing a VAM signal acquired from the steel samples.

Keywords: vibroacoustic modulation, nonlinear acoustic modulation, nonlinear acoustic NDT&E, signal processing, structural health monitoring

Procedia PDF Downloads 83
4149 Evaluation of DNA Microarray System in the Identification of Microorganisms Isolated from Blood

Authors: Merih Şimşek, Recep Keşli, Özgül Çetinkaya, Cengiz Demir, Adem Aslan

Abstract:

Bacteremia is a clinical entity with high morbidity and mortality rates when immediate diagnose, or treatment cannot be achieved. Microorganisms which can cause sepsis or bacteremia are easily isolated from blood cultures. Fifty-five positive blood cultures were included in this study. Microorganisms in 55 blood cultures were isolated by conventional microbiological methods; afterwards, microorganisms were defined in terms of the phenotypic aspects by the Vitek-2 system. The same microorganisms in all blood culture samples were defined in terms of genotypic aspects again by Multiplex-PCR DNA Low-Density Microarray System. At the end of the identification process, the DNA microarray system’s success in identification was evaluated based on the Vitek-2 system. The Vitek-2 system and DNA Microarray system were able to identify the same microorganisms in 53 samples; on the other hand, different microorganisms were identified in the 2 blood cultures by DNA Microarray system. The microorganisms identified by Vitek-2 system were found to be identical to 96.4 % of microorganisms identified by DNA Microarrays system. In addition to bacteria identified by Vitek-2, the presence of a second bacterium has been detected in 5 blood cultures by the DNA Microarray system. It was identified 18 of 55 positive blood culture as E.coli strains with both Vitek 2 and DNA microarray systems. The same identification numbers were found 6 and 8 for Acinetobacter baumanii, 10 and 10 for K.pneumoniae, 5 and 5 for S.aureus, 7 and 11 for Enterococcus spp, 5 and 5 for P.aeruginosa, 2 and 2 for C.albicans respectively. According to these results, DNA Microarray system requires both a technical device and experienced staff support; besides, it requires more expensive kits than Vitek-2. However, this method should be used in conjunction with conventional microbiological methods. Thus, large microbiology laboratories will produce faster, more sensitive and more successful results in the identification of cultured microorganisms.

Keywords: microarray, Vitek-2, blood culture, bacteremia

Procedia PDF Downloads 331
4148 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 44
4147 Cultural Stereotypes in EFL Classrooms and Their Implications on English Language Procedures in Cameroon

Authors: Eric Enongene Ekembe

Abstract:

Recent calls on EFL teaching posit the centrality of context factors and argue for a correlation between effectiveness in teaching with the learners’ culture in the EFL classroom. Context is not everything; it is defined with indicators of learners’ cultural artifacts and stereotypes in meaningful interactions in the language classroom. In keeping with this, it is difficult to universalise pedagogic procedures given that appropriate procedures are context-sensitive- and contexts differ. It is necessary to investigate what counts as cultural specificities or stereotypes of specific learners to reflect on how different language learning contexts affect or are affected by English language teaching procedures, most especially in under-represented cultures, which have appropriated the English language. This paper investigates cultural stereotypes of EFL learners in the culturally diverse Cameroon to examine how they mediate teaching and learning. Data collected on mixed-method basis from 83 EFL teachers and 1321 learners in Cameroon reveal a strong presence of typical cultural artifacts and stereotypes. Statistical analysis and thematic coding demonstrate that teaching procedures in place were insensitive to the cultural artifacts and stereotypes, resulting in trending tension between teachers and learners. The data equally reveal a serious contradiction between the communicative goals of language teaching and learning: what teachers held as effective teaching was diametrically opposed to success in learning. In keeping with this, the paper argues for a ‘decentred’ teacher preparation in Cameroon that is informed by systemic learners’ feedback. On this basis, applied linguistics has the urgent task of exploring dimensions of what actually counts as contextualized practice in ELT.

Keywords: cultural stereotypes, EFL, implications, procedures

Procedia PDF Downloads 111
4146 Valorization of Waste Reverse Osmosis Desalination Brine and Crystallization Sequence Approach for Kainite Recovery

Authors: Ayoub Bouazza, Ali Faddouli, Said Amal, Rachid Benhida, Khaoula Khaless

Abstract:

Brine waste generated from reverse osmosis (RO) desalination plants contains various valuable compounds, mainly salts, trace elements, and organic matter. These wastes are up to two times saltier than standard seawater. Therefore, there is a strong economic interest in recovering these salts. The current practice in desalination plants is to reject the brine back to the sea, which affects the marine ecosystem and the environment. Our study aims to bring forth a reliable management solution for the valorisation of waste brines. Natural evaporation, isothermal evaporation at 25°C and 50°C, and evaporation using continuous heating were used to crystallize valuable salts from a reverse osmosis desalination plant brine located on the Moroccan Atlantic coast. The crystallization sequence of the brine was studied in comparison with standard seawater. The X-Ray Diffraction (XRD) of the precipitated solid phases showed similar results, where halite was the main solid phase precipitated from both the brine and seawater. However, Jänecke diagram prediction, along with FREZCHEM simulations, showed that Kainite should crystallize before Epsomite and Carnallite. As the absence of kainite formation in many experiments in the literature has been related to the metastability of kainite and the critical relative humidity conditions, and the precipitation of K–Mg salts is very sensitive to climatic conditions. An evaporation process is proposed as a solution to achieve the predicted crystallization path and to affirm the recovery of Kainite.

Keywords: salts crystallization, reverse osmosis, solar evaporation, frezchem, ZLD

Procedia PDF Downloads 85
4145 Effect of Dust Rejected by Iron and Steel Complex on Roots of Bean Phaseolus vulgaris

Authors: Labiba Zerari Bourafa, Djebar Mohamed Reda, Berrebah Houria, Khadri Sihem, Chiheb Linda

Abstract:

The study of the effect of metal dust (pollutants) was performed on higher plant white beans Phaseolus vulgaris; the experience took place in cellular toxicology laboratory (in vitro culture). The seeds of the bean Phaseolus vulgaris are cultured in a metal contaminated dust medium (a single treatment by different increasing doses), at a rate of 10 seeds per box, for 10 days. The measurement of morpho-metric parameters is performed during the first 96 hours that follow the germination; while the dosage of the proline, the protein content and histological sections are formed on the tenth day (240 h). All morpho-metric and biochemical parameters measured were highly disturbed by metal dust; histological sections confirm this disurbance.

Keywords: conductive fabrics, metal dust, osmoticums, roots, Phaseolus vulgaris

Procedia PDF Downloads 360
4144 Bottom-up Quantification of Mega Inter-Basin Water Transfer Vulnerability to Climate Change

Authors: Enze Zhang

Abstract:

Large numbers of inter-basin water transfer (IBWT) projects are constructed or proposed all around the world as solutions to water distribution and supply problems. Nowadays, as climate change warms the atmosphere, alters the hydrologic cycle, and perturbs water availability, large scale IBWTs which are sensitive to these water-related changes may carry significant risk. Given this reality, IBWTs have elicited great controversy and assessments of vulnerability to climate change are urgently needed worldwide. In this paper, we consider the South-to-North Water Transfer Project (SNWTP) in China as a case study, and introduce a bottom-up vulnerability assessment framework. Key hazards and risks related to climate change that threaten future water availability for the SNWTP are firstly identified. Then a performance indicator is presented to quantify the vulnerability of IBWT by taking three main elements (i.e., sensitivity, adaptive capacity, and exposure degree) into account. A probabilistic Budyko model is adapted to estimate water availability responses to a wide range of possibilities for future climate conditions in each region of the study area. After bottom-up quantifying the vulnerability based on the estimated water availability, our findings confirm that SNWTP would greatly alleviate geographical imbalances in water availability under some moderate climate change scenarios but raises questions about whether it is a long-term solution because the donor basin has a high level of vulnerability due to extreme climate change.

Keywords: vulnerability, climate change, inter-basin water transfer, bottom-up

Procedia PDF Downloads 386
4143 A Model Architecture Transformation with Approach by Modeling: From UML to Multidimensional Schemas of Data Warehouses

Authors: Ouzayr Rabhi, Ibtissam Arrassen

Abstract:

To provide a complete analysis of the organization and to help decision-making, leaders need to have relevant data; Data Warehouses (DW) are designed to meet such needs. However, designing DW is not trivial and there is no formal method to derive a multidimensional schema from heterogeneous databases. In this article, we present a Model-Driven based approach concerning the design of data warehouses. We describe a multidimensional meta-model and also specify a set of transformations starting from a Unified Modeling Language (UML) metamodel. In this approach, the UML metamodel and the multidimensional one are both considered as a platform-independent model (PIM). The first meta-model is mapped into the second one through transformation rules carried out by the Query View Transformation (QVT) language. This proposal is validated through the application of our approach to generating a multidimensional schema of a Balanced Scorecard (BSC) DW. We are interested in the BSC perspectives, which are highly linked to the vision and the strategies of an organization.

Keywords: data warehouse, meta-model, model-driven architecture, transformation, UML

Procedia PDF Downloads 142
4142 Secure Authentication Scheme Based on Numerical Series Cryptography for Internet of Things

Authors: Maha Aladdin, Khaled Nagaty, Abeer Hamdy

Abstract:

The rapid advancement cellular networks and wireless networks have laid a solid basis for the Internet of Things. IoT has evolved into a unique standard that allows diverse physical devices to collaborate with one another. A service provider gives a variety of services that may be accessed via smart apps anywhere, at any time, and from any location over the Internet. Because of the public environment of mobile communication and the Internet, these services are highly vulnerable to a several malicious attacks, such as unauthorized disclosure by hostile attackers. As a result, the best option for overcoming these vulnerabilities is a strong authentication method. In this paper, a lightweight authentication scheme that is based on numerical series cryptography is proposed for the IoT environments. It allows mutual authentication between IoT devices Parametric study and formal proofs are utilized to illustrate that the pro-posed approach is resistant to a variety of security threats.

Keywords: internet of things, authentication, cryptography, security protocol

Procedia PDF Downloads 102