Search results for: deep soil
3276 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks
Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer
Abstract:
New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics
Procedia PDF Downloads 1443275 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 2643274 Isolation and Characterization of Salt-Tolerance of Rhizobia under the Effects of Salinity
Authors: Sarra Sobti, Baelhadj Hamdi-Aïssa
Abstract:
The bacteria of the soil, usually called rhizobium, have a considerable importance in agriculture because of their capacity to fix the atmospheric nitrogen in symbiosis with the plants of the family of legumes. The present work was to study the effect of the salinity on growth and nodulation of alfalfa-rhizobia symbiosis at different agricultural experimental sites in Ouargla. The experiment was conducted in 3 steps. The first one was the isolation and characterization of the Rhizobia; next, the evolution of the isolates tolerance to salinity at three levels of NaCl (6, 8,12 and 16 g/L); and the last step was the evolution of the tolerance on symbiotic characteristics. The results showed that the phenotypic characterizations behave practically as Rhizobia spp, and the effects of salinity affect the symbiotic process. The tolerance to high levels of salinity and the survival and persistence in severe and harsh desert conditions make these rhizobia highly valuable inoculums to improve productivity of the leguminous plants cultivated under extreme environments.Keywords: rhizobia, symbiosis, salinity, tolerance, nodulation, soil, Medicago sativa L.
Procedia PDF Downloads 3233273 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 893272 Partial Replacement of Lateritic Soil with Crushed Rock Sand (Stone Dust) in Compressed Earth Brick Production
Authors: A. M. Jungudo, M. A. Lasan
Abstract:
Affordable housing has long been one of the basic necessities of life to man. The ever rising prices of building materials are one of the major causes of housing shortage in many developing countries. Breaching the gap of housing needs in developing countries like Nigeria is an awaiting task longing for attention. This is due to lack of research in the development of local materials that will suit the troubled economies of these countries. The use of earth material to meet the housing needs is a sustainable option and its material is freely available universally. However, people are doubtful of using the earth material due to its modest outlook and uncertain durability. This research aims at enhancing the durability of Compressed Earth Bricks (CEBs) using stone dust as a stabilizer. The result indicates that partial replacement of lateritic soil with stone dust at 30% improves its compressive strength along with abrasive resistance.Keywords: earth construction, durability, stone dust, sustainable
Procedia PDF Downloads 1343271 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 633270 KCBA, A Method for Feature Extraction of Colonoscopy Images
Authors: Vahid Bayrami Rad
Abstract:
In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature
Procedia PDF Downloads 593269 Alleviation of Salt Stress Effects on Solanum lycopersicum (L.) Plants Grown in a Saline Soil by Foliar Spray with Salicylic Acid
Authors: Saad Howladar
Abstract:
Salinity stress is one of the major abiotic stresses, restricting plant growth and crop productivity in different world regions, especially in arid and semi-arid regions, including Saudi Arabia. The tomato plant is proven to be moderately sensitive to salt stress. Therefore, two field experiments were conducted using tomato plants (Hybrid 6130) to evaluate the effect of four concentrations of salicylic acid (SA; 0, 20, 40, and 60 µM) applied as foliar spraying in improving plant tolerance to saline soil conditions. Tomato plant growth, yield, osmoprotectants, chloeophyll fluorescence, and ionic contents were determined. The results of this study displayed that growth and yield components and physiological attributes of water-sprayed plants (the control) grown under saline soil conditions were negatively impacted. However, under the adverse conditions of salinity, SA-treated plants had enhanced growth and yield components of tomato plants compared to the control. Free proline, soluble sugars, chlorophyll fluorescence, relative water content, membrane stability index, and nutrients contents (e.g., N, P, K⁺, and Ca²⁺) were also improved significantly, while Na⁺ content was significantly reduced in SA-applied tomato plants. SA at 40 µM was the best treatment, which could be recommended to use for salt-stressed tomato plants to enable them to tolerate the adverse conditions of saline soils.Keywords: tomatoes, salt stress, chlorophyll fluorescence, dehydration tolerance, osmoprotectants
Procedia PDF Downloads 1133268 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia
Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah
Abstract:
The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin
Procedia PDF Downloads 3623267 Simulation of Surface Runoff in Mahabad Dam Basin, Iran
Authors: Leila Khosravi
Abstract:
A major part of the drinking water in North West of Iran is supplied from Mahabad reservoir 80 km northwest of Mahabad. This reservoir collects water from 750 km-catchment which is undergoing accelerated changes due to deforestation and urbanization. The main objective of this study is to develop a catchment modeling platform which translates ongoing land-use changes, soil data, precipitation and evaporation into surface runoff of the river discharging into the reservoir: Soil and Water Assessment Tool, SWAT, model along with hydro -meteorological records of 1997–2011. A variety of statistical indices were used to evaluate the simulation results for both calibration and validation periods; among them, the robust Nash–Sutcliffe coefficients were found to be 0.52 and 0.62 in the calibration and validation periods, respectively. This project has developed a reliable modeling platform with the benchmark land physical conditions of the Mahabad dam basin.Keywords: simulation, surface runoff, Mahabad dam, SWAT model
Procedia PDF Downloads 2083266 Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation
Authors: Saif N. Al-Bahry, Yahya M. Al-Wahaibi, Abdulkadir E. Elshafie, Ali S. Al-Bemani, Sanket J. Joshi
Abstract:
Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills.Keywords: bioremediation, hydrocarbon pollution, spore-forming bacteria, bio-surfactant
Procedia PDF Downloads 2993265 Experience of Using Expanding Polyurethane Resin for Ground Improvement Under Existing Shallow Foundations on The Arabian Peninsula
Authors: Evgeny N. Zakharin, Bartosz Majewski
Abstract:
Foaming polyurethane is a ground improvement technology that is increasingly used for foundation stabilization with differential settlement and controlled foundation structure lifting. This technology differs from conventional mineral grout due to its injection composition, which provides high-pressure expansion quickly due to a chemical reaction. The technology has proven efficient in the typical geological conditions of the United Arab Emirates. An in-situ trial foundation load test has been proposed to objectively assess the deformative and load-bearing characteristics of the soil after injection. The article provides a detailed description of the experiment carried out in field conditions. Based on the practical experiment's results and its finite element modeling, the deformation modulus of the soil after treatment was determined, which was more than five times higher than the initial value.Keywords: chemical grout, expanding polyurethane resin, foundation remediation, ground improvement
Procedia PDF Downloads 703264 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 1303263 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 1433262 Construction of Strain Distribution Profiles of EDD Steel at Elevated Temperatures
Authors: K. Eshwara Prasad, R. Raman Goud, Swadesh Kumar Singh, N. Sateesh
Abstract:
In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretchforming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening COEFFICIENT (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy(r-) and strength coefficient of the material. Also the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.Keywords: FLD, microhardness, strain distribution profile, stretch forming
Procedia PDF Downloads 3293261 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost
Procedia PDF Downloads 233260 Punching Shear Behavior of RC Column Footing on Stabilized Ground
Authors: Sukanta K. Shill, Md. M. Hoque, Md. Shaifullah
Abstract:
An experiment on the punching of RC column footing, comparison of test result to established different codes for punching shear calculation of column footings is presented in the paper. The principal aim of this study is to investigate the punching shear behavior of an isolated column footing using brick aggregate as coarse aggregate. Consequence, a RC model footing was constructed on a stabilized soil and tested the footing under field condition. The test result yields that the experimental punching shear capacity is greater than all the theoretical punching shear capacities obtained by using different codes of practices. It can be stated that BNBC 1993, as well as ACI 318, 2002 code formulae are very conservative in predicting the punching shear resistance of RC footing, whereas the CEB-FIP MC, 1990 formula and Eurocode2 formula are less conservative in predicting the punching shear resistance of footing.Keywords: footing, punching shear, field condition, stabilized soil, brick aggregate
Procedia PDF Downloads 4133259 The Genesis of the Anomalous Sernio Fan (Valtellina, Northern Italy)
Authors: Erika De Finis, Paola Gattinoni, Laura Scesi
Abstract:
Massive rock avalanches formed some of the largest landslide deposits on Earth and they represent one of the major geohazards in high-relief mountains. This paper interprets a very large sedimentary fan (the Sernio fan, Valtellina, Northern Italy), located 20 Km SW from Val Pola Rock avalanche (1987), as the deposit of a partial collapse of a Deep Seated Gravitational Slope Deformation (DSGSD), afterwards eroded and buried by debris flows. The proposed emplacement sequence has been reconstructed based on geomorphological, structural and mechanical evidences. The Sernio fan is actually considered anomalous with reference to the very high ratio between the fan area (about 4.5km2) and the basin area (about 3km2). The morphology of the fan area is characterised by steep slopes (dip about 20%) and the fan apex is extended for 1.8 km inside the small catchment basin. This sedimentary fan was originated by a landslide that interested a part of a large deep-seated gravitational slope deformation, involving a wide area of about 55 km². The main controlling factor is tectonic and it is related to the proximity to regional fault systems and the consequent occurrence of fault weak rocks (GSI locally lower than 10 with compressive stress lower than 20MPa). Moreover, the fan deposit shows sedimentary evidences of recent debris flow events. The best current explanation of the Sernio fan involves an initial failure of some hundreds of Mm3. The run-out was quite limited because of the morphology of Valtellina’s valley floor, and the deposit filled the main valley forming a landslide dam, as confirmed by the lacustrine deposits detected upstream the fan. Nowadays the debris flow events represent the main hazard in the study area.Keywords: anomalous sedimentary fans, deep seated gravitational slope deformation, Italy, rock avalanche
Procedia PDF Downloads 4813258 Peg@GDF3:TB3+ – Rb Nanocomposites for Deep-Seated X-Ray Induced Photodynamic Therapy in Oncology
Authors: E.A. Kuchma
Abstract:
Photodynamic therapy (PDT) is considered an alternative and minimally invasive cancer treatment modality compared to chemotherapy and radiation therapy. PDT includes three main components: a photosensitizer (PS), oxygen, and a light source. PS is injected into the patient's body and then selectively accumulates in the tumor. However, the light used in PDT (spectral range 400–700 nm) is limited to superficial lesions, and the light penetration depth does not exceed a few cm. The problem of PDT (poor visible light transmission) can be solved by using X-rays. The penetration depth of X-rays is ten times greater than that of visible light. Therefore, X-ray radiation easily penetrates through the tissues of the body. The aim of this work is to develop universal nanocomposites for X-ray photodynamic therapy of deep and superficial tumors using scintillation nanoparticles of gadolinium fluoride (GdF3), doped with Tb3+, coated with a biocompatible coating (PEG) and photosensitizer RB (Rose Bengal). PEG@GdF3:Tb3+(15%) – RB could be used as an effective X-ray, UV, and photoluminescent mediator to excite a photosensitizer for generating reactive oxygen species (ROS) to kill tumor cells via photodynamic therapy. GdF3 nanoparticles can also be used as contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI).Keywords: X-ray induced photodynamic therapy, scintillating nanoparticle, radiosensitizer, photosensitizer
Procedia PDF Downloads 843257 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 813256 Oncological Consequences of Heavy Metal Deposits in Jos East, Plateau State, Nigeria
Authors: Jasini Waida, Usman Rilwan, S. I. Ikpughul, E. I. Ugwu
Abstract:
Carcinogenic substances are those that induce tumours (benign or malignant), increase their incidence or malignancy, or shorten the time of tumour occurrence when they get into the body through inhalation, injection, dermal application, or ingestion. Using X-Ray Fluorescence, this study reveals the accumulation of heavy metals in Jos East. The results of this study showed that the Geo-Accumulation Index (Igeo) of water for different heavy metals decreased in the order of Cd (0.15) > Cr and As (0.03) > Pb (-0.13) > Ni (-0.6). The soil content for different heavy metals decreased in the order of As and Cd (0.4) > Ni, Cr and Pb (0.2). The edible plants for different heavy metals decreased in the order of Cd (0.512) > As (0.25) > Pb (0.23) > Ni (0.01) > Ni (-0.06). 21% of these points are uncontaminated, except for a few points that are found within the uncontaminated to moderately contaminated level. It is possible to conclude that the area is uncontaminated to moderately contaminated, necessitating regulation. Hence, this study can be used as reference data for regulatory bodies like the Nigerian Nuclear Regulatory Authority (NNRA) and the rest.Keywords: heavy metals, soil, plants, water, contamination factor
Procedia PDF Downloads 923255 Strain DistributionProfiles of EDD Steel at Elevated Temperatures
Authors: Eshwara Prasad Koorapati, R. Raman Goud, Swadesh Kumar Singh
Abstract:
In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretch forming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening coefficient (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500 C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. Also, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.Keywords: FLD, micro hardness, strain distribution profile, stretch forming
Procedia PDF Downloads 4263254 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt
Authors: Youssouf Benmeriem
Abstract:
Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength
Procedia PDF Downloads 3883253 Biohydrogen Production from Rice Water Using Bacteria Isolated from Wetland Sediment
Authors: Jerry John T. M., Sylas V. P., Shijo Joy
Abstract:
Hydrogen is the most essential gas that can be used for many purposes. During the production of hydrogen using raw materials like Soil and leftover cooked rice water (kanjivellam), the major by-product formed is water. Soil is collected from three different places in kottayam district: Kallara, Meenachilar, and Athirampuzha. Collected samples are mixed with rice water and tested for traces of hydrogen using a biohydrogen sensor after 72 hours. The result was the presence of hydrogen in all the 3 samples. After streaking, PCR and gel electrophoresis detected the bacteria which produced the hydrogen. RGCB Thiruvananthapuram conducted the sequencing of the PCR resultant. And identified the bacterial strains. Five variants of Bacillus bacteria ( (1) Bacillus cereus strain JTM GenBank: OP278839.1 (2) Bacillus toyonensis strain JTM2 GenBank: OP278841.1 (3) Bacillus anthracis strain JTM_SR2989-3-R_H08 GenBank: OP278960.1 (4) Bacillus thuringiensis strain JRY1 GenBank: OP278976.1 (5) Bacillus anthracis strain JTM_SR2989-3-F_H07 GenBank: OP278959.1 ) are identified and successfully registered in NCBI Gen bank. These Bacillus bacteria are major types of Rhizobacteria that can form spores and can survive in the soil for a long time period under harsh environmental conditions. Also, plant growth is enhanced by PGPR (Plant growth promoting rhizobacteria) through the induction of systemic resistance, antibiosis, and competitive omission. The molecular sequencing was submitted to the NCBI Gen Bank, and the accession numbers were allotted for the bacterial cultures.Keywords: bio hydrogen production, bacterial bio hydrogen production, plant related to bacillus bacteria., bacillus bacteria study
Procedia PDF Downloads 693252 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 533251 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks
Authors: Muneeb Ullah, Daishihan, Xiadong Young
Abstract:
Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.Keywords: classification, deep learning, medical images, CXR, GAN.
Procedia PDF Downloads 1053250 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation
Authors: Sneha Thakur, Sanjeev Karmakar
Abstract:
This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level
Procedia PDF Downloads 833249 Numerical Analysis of Rapid Drawdown in Dams Based on Brazilian Standards
Authors: Renato Santos Paulinelli Raposo, Vinicius Resende Domingues, Manoel Porfirio Cordao Neto
Abstract:
Rapid drawdown is one of the cases referred to ground stability study in dam projects. Due to the complexity generated by the combination of loads and the difficulty in determining the parameters, analyses of rapid drawdown are usually performed considering the immediate reduction of water level upstream. The proposal of a simulation, considering the gradual reduction in water level upstream, requires knowledge of parameters about consolidation and those related to unsaturated soil. In this context, the purpose of this study is to understand the methodology of collection and analysis of parameters to simulate a rapid drawdown in dams. Using a numerical tool, the study is complemented with a hypothetical case study that can assist the practical use of data compiled. The referenced dam presents homogeneous section composed of clay soil, a height of 70 meters, a width of 12 meters, and upstream slope with inclination 1V:3H.Keywords: dam, GeoStudio, rapid drawdown, stability analysis
Procedia PDF Downloads 2543248 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach
Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak
Abstract:
Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity
Procedia PDF Downloads 1653247 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 193