Search results for: data comparison
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28646

Search results for: data comparison

26936 Facile Route for the Synthesis of NiO/ZnO Nanocomposite Used in Gas Sensors

Authors: Roussin Lontio Fomekong, John Lambi Ngolui, Arnaud Dercorte

Abstract:

Current years have seen increased interest in the synthesis of p/n metal oxide-based nano composites and their great potential in advanced applications, such as opto electronics, photo catalysis and gas sensors. The superior functional performances of the system combining p-type and n-types semiconducting oxyde in comparison to the corresponding single-phase metal oxides are mainly ascribed to the build-up of an inner electric field at the p/n junction interface.

Keywords: nanocomposite, semiconductors, p-n, heterojunction

Procedia PDF Downloads 531
26935 Determination of Measurement Uncertainty of the Diagnostic Meteorological Model CALMET

Authors: Nina Miklavčič, Urška Kugovnik, Natalia Galkina, Primož Ribarič, Rudi Vončina

Abstract:

Today, the need for weather predictions is deeply rooted in the everyday life of people as well as it is in industry. The forecasts influence final decision-making processes in multiple areas, from agriculture and prevention of natural disasters to air traffic regulations and solutions on a national level for health, security, and economic problems. Namely, in Slovenia, alongside other existing forms of application, weather forecasts are adopted for the prognosis of electrical current transmission through powerlines. Meteorological parameters are one of the key factors which need to be considered in estimations of the reliable supply of electrical energy to consumers. And like for any other measured value, the knowledge about measurement uncertainty is also critical for the secure and reliable supply of energy. The estimation of measurement uncertainty grants us a more accurate interpretation of data, a better quality of the end results, and even a possibility of improvement of weather forecast models. In the article, we focused on the estimation of measurement uncertainty of the diagnostic microscale meteorological model CALMET. For the purposes of our research, we used a network of meteorological stations spread in the area of our interest, which enables a side-by-side comparison of measured meteorological values with the values calculated with the help of CALMET and the measurement uncertainty estimation as a final result.

Keywords: uncertancy, meteorological model, meteorological measurment, CALMET

Procedia PDF Downloads 81
26934 A Normalized Non-Stationary Wavelet Based Analysis Approach for a Computer Assisted Classification of Laryngoscopic High-Speed Video Recordings

Authors: Mona K. Fehling, Jakob Unger, Dietmar J. Hecker, Bernhard Schick, Joerg Lohscheller

Abstract:

Voice disorders origin from disturbances of the vibration patterns of the two vocal folds located within the human larynx. Consequently, the visual examination of vocal fold vibrations is an integral part within the clinical diagnostic process. For an objective analysis of the vocal fold vibration patterns, the two-dimensional vocal fold dynamics are captured during sustained phonation using an endoscopic high-speed camera. In this work, we present an approach allowing a fully automatic analysis of the high-speed video data including a computerized classification of healthy and pathological voices. The approach bases on a wavelet-based analysis of so-called phonovibrograms (PVG), which are extracted from the high-speed videos and comprise the entire two-dimensional vibration pattern of each vocal fold individually. Using a principal component analysis (PCA) strategy a low-dimensional feature set is computed from each phonovibrogram. From the PCA-space clinically relevant measures can be derived that quantify objectively vibration abnormalities. In the first part of the work it will be shown that, using a machine learning approach, the derived measures are suitable to distinguish automatically between healthy and pathological voices. Within the approach the formation of the PCA-space and consequently the extracted quantitative measures depend on the clinical data, which were used to compute the principle components. Therefore, in the second part of the work we proposed a strategy to achieve a normalization of the PCA-space by registering the PCA-space to a coordinate system using a set of synthetically generated vibration patterns. The results show that owing to the normalization step potential ambiguousness of the parameter space can be eliminated. The normalization further allows a direct comparison of research results, which bases on PCA-spaces obtained from different clinical subjects.

Keywords: Wavelet-based analysis, Multiscale product, normalization, computer assisted classification, high-speed laryngoscopy, vocal fold analysis, phonovibrogram

Procedia PDF Downloads 265
26933 Investigation and Analysis on Pore Pressure Variation by Sonic Impedance under Influence of Compressional, Shear, and Stonely Waves in High Pressure Zones

Authors: Nouri, K., Ghassem Alaskari, M., K., Amiri Hazaveh, A., Nabi Bidhendi, M.

Abstract:

Pore pressure is one on the key Petrophysical parameter in exploration discussion and survey on hydrocarbon reservoir. Determination of pore pressure in various levels of drilling and integrity of drilling mud and high pressure zones in order to restrict blow-out and following damages are significant. The pore pressure is obtained by seismic and well logging data. In this study the pore pressure and over burden pressure through the matrix stress and Tarzaqi equation and other related formulas are calculated. By making a comparison on variation of density log in over normal pressure zones with change of sonic impedance under influence of compressional, shear, and Stonely waves, the correlation level of sonic impedance with density log is studied. The level of correlation and variation trend is recorded in sonic impedance under influence Stonely wave with density log that key factor in recording of over burden pressure and pore pressure in Tarzaqi equation is high. The transition time is in divert relation with porosity and fluid type in the formation and as a consequence to the pore pressure. The density log is a key factor in determination of pore pressure therefore sonic impedance under Stonley wave is denotes well the identification of high pressure besides other used factors.

Keywords: pore pressure, stonely wave, density log, sonic impedance, high pressure zone

Procedia PDF Downloads 396
26932 A Systematic Review of Pedometer-or Accelerometer-Based Interventions for Increasing Physical Activity in Low Socioeconomic Groups

Authors: Shaun G. Abbott, Rebecca C. Reynolds, James B. Etter, John B. F. de Wit

Abstract:

The benefits of physical activity (PA) on health are well documented. Low socioeconomic status (SES) is associated with poor health, with PA a suggested mediator. Pedometers and accelerometers offer an effective behavior change tool to increase PA levels. While the role of pedometer and accelerometer use in increasing PA is recognized in many populations, little is known in low-SES groups. We are aiming to assess the effectiveness of pedometer- and accelerometer-based interventions for increasing PA step count and improving subsequent health outcomes among low-SES groups of high-income countries. Medline, Embase, PsycINFO, CENTRAL and SportDiscus databases were searched to identify articles published before 10th July, 2015; using search terms developed from previous systematic reviews. Inclusion criteria are: low-SES participants classified by income, geography, education, occupation or ethnicity; study duration minimum 4 weeks; an intervention and control group; wearing of an unsealed pedometer or accelerometer to objectively measure PA as step counts per day for the duration of the study. We retrieved 2,142 articles from our database searches, after removal of duplicates. Two investigators independently reviewed titles and abstracts of these articles (50% each) and a combined 20% sample were reviewed to account for inter-assessor variation. We are currently verifying the full texts of 430 articles. Included studies will be critically appraised for risk of bias using guidelines suggested by the Cochrane Public Health Group. Two investigators will extract data concerning the intervention; study design; comparators; steps per day; participants; context and presence or absence of obesity and/or chronic disease. Heterogeneity amongst studies is anticipated, thus a narrative synthesis of data will be conducted with the simplification of selected results into percentage increases from baseline to allow for between-study comparison. Results will be presented at the conference in December if selected.

Keywords: accelerometer, pedometer, physical activity, socioeconomic, step count

Procedia PDF Downloads 331
26931 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink

Procedia PDF Downloads 277
26930 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 180
26929 English Title Adaptive Comparison of Outdoor and Indoor Social Security in Damaged Area and New Residential Complex with Two-Way Anova Case Study: Qasr-Al-Dasht and Moalem District in Shiraz

Authors: Homa Parmoon, Narges Hamzeh

Abstract:

Since today's urban spaces are disposed towards behavioral disorders and lack of security, both qualitative and quantitative aspects of security especially social and physical security are considered as basic necessities in urban planning. This research focused on the variable of place of living, examined social security in the old and new textures, and investigated the amount of residents’ social security in Shiraz including safety, financial, emotional and moral security. To this end, two neighborhoods in region 1 of Shiraz- Qasr-Al-Dasht (old texture) and Moalem (new texture)- were examined through a comparative study of 60 samples lived in two neighborhoods. Data were gathered through two-way ANOVA between the variables of residential context and internal and external security. This analysis represents the significance or insignificance of the model as well as the individual effects of each independent variable on the dependent variable. It was tested by ANCOVA and F-test. Research findings indicated place of living has a significant effect on families’ social security. The safety, financial, emotional, and moral security also represented a great impact on social security. As a result, it can be concluded that social security changes with the changing in place of living.

Keywords: social security, damaged area, two-way ANOVA, Shiraz

Procedia PDF Downloads 139
26928 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: differentially expressed genes, early and late-stages, gene ontology, non-small cell lung cancer transcriptomics

Procedia PDF Downloads 114
26927 The Effects of Billboard Content and Visible Distance on Driver Behavior

Authors: Arsalan Hassan Pour, Mansoureh Jeihani, Samira Ahangari

Abstract:

Distracted driving has been one of the most integral concerns surrounding our daily use of vehicles since the invention of the automobile. While much attention has been recently given to cell phones related distraction, commercial billboards along roads are also candidates for drivers' visual and cognitive distractions, as they may take drivers’ eyes from the road and their minds off the driving task to see, perceive and think about the billboard’s content. Using a driving simulator and a head-mounted eye-tracking system, speed change, acceleration, deceleration, throttle response, collision, lane changing, and offset from the center of the lane data along with gaze fixation duration and frequency data were collected in this study. Some 92 participants from a fairly diverse sociodemographic background drove on a simulated freeway in Baltimore, Maryland area and were exposed to three different billboards to investigate the effects of billboards on drivers’ behavior. Participants glanced at the billboards several times with different frequencies, the maximum of which occurred on the billboard with the highest cognitive load. About 74% of the participants didn’t look at billboards for more than two seconds at each glance except for the billboard with a short visible area. Analysis of variance (ANOVA) was performed to find the variations in driving behavior when they are invisible, readable, and post billboards area. The results show a slight difference in speed, throttle, brake, steering velocity, and lane changing, among different areas. Brake force and deviation from the center of the lane increased in the readable area in comparison with the visible area, and speed increased right after each billboard. The results indicated that billboards have a significant effect on driving performance and visual attention based on their content and visibility status. Generalized linear model (GLM) analysis showed no connection between participants’ age and driving experience with gaze duration. However, the visible distance of the billboard, gender, and billboard content had a significant effect on gaze duration.

Keywords: ANOVA, billboards, distracted driving, drivers' behavior, driving simulator, eye-Tracking system, GLM

Procedia PDF Downloads 128
26926 The Association between Food Security Status and Depression in Two Iranian Ethnic Groups Living in Northwest of Iran

Authors: A. Rezazadeh, N. Omidvar, H. Eini-Zinab

Abstract:

Food insecurity (FI) influences may result in poor physical and mental health outcomes. Minor ethnic group may experience higher level of FI, and this situation may be related with higher depression prevalence. The aim of this study was to determine the association of depression with food security status in major (Azeri) and minor (Kurdish) ethnicity living in Urmia, West Azerbaijan, north of Iran. In this cross-sectional study, 723 participants (427 women and 296 men) aged 20–64 years old, from two ethnic groups (445 Azeri and 278 Kurdish), were selected through a multi stage cluster systematic sampling. Depression rate was assessed by “Beck” short form questionnaire (validated in Iranians) through interviews. Household FI status (HFIS) was measured using adapted HFI access scale through face-to-face interviews at homes. Multinomial logistic regression was used to estimate odds ratios (OR) of depression across HFIS. Higher percent of Kurds had moderate and severe depression in comparison with Azeri group (73 [17.3%] vs. 86 [27.9%]). There were not any significant differences between the two ethnicities in mild depression. Also, of all the subjects, moderate-to-sever FI was more prevalent in Kurds (28.5%), compared to Azeri group (17.3%) [P < 0.01]. Kurdish ethnic group living in food security or mild FI households had lower chance to have symptom of severe depression in comparison to those with sever FI (OR=0.097; 95% CI: 0.02-0.47). However, there was no significant association between depression and HFI in Azeri group. Findings revealed that the severity of HFI was related with severity depression in minor studied ethnic groups. However, in Azeri ethnicity as a major group, other confounders may have influence on the relation with depression and FI, that were not studied in the present study.

Keywords: depression, ethnicity, food security status, Iran

Procedia PDF Downloads 210
26925 Oral Antibiotics in Trans-Rectal Prostate Biopsy and Its Efficacy to Reduce Infectious Complications: Systematic Review

Authors: Mohand Yaghi, O. Kehinde

Abstract:

Background: For the diagnosis of prostate cancer Trans-rectal prostate biopsy (TRPB) is used commonly, the procedure is associated with infective complications. There is evidence that antibiotics (ABx) decrease infective events after TRPB, but different regimens are used. Aim: To systematically review different regimens of prophylactic oral antibiotics in TRPB. Design: Medline, Embase, Clinical trials site, and Cochrane library were searched, experts were consulted about relevant studies. Randomized clinical trials (RCT) conducted in the last twenty years, which investigated different oral antibiotic regimens in TRPB, and compared their efficacy to reduce infectious complications were analyzed. Measurements: Primary outcomes were bacteriuria, urinary tract infection (UTI), fever, bacteremia, sepsis. Secondary outcomes were hospitalization rate, and the prevalence of ABx-resistant bacteria. Results: Nine trials were eligible with 3012 patients. Antibiotics prevented bacteriuria (3.5% vs. 9.88%), UTI (4.46% vs. 9.75%), and hospitalization (0.21% vs. 2.13%) significantly in comparison with placebo or no treatment. No significant difference was found in all outcomes of the review between the single dose regimen and the 3 days. The single dose regimen was as effective as the multiple dose except in Bacteriuria (6.75% vs. 3.25%), and the prevalence of ABx-resistant bacteria (1.57% vs. 0.27%). Quinolones reduced only UTI significantly in comparison with other antibiotics. Lastly, Ciprofloxacin is the best Quinolone to prevent UTI, and hospitalization. Conclusion: it is essential to prescribe prophylactic Antibiotics in TRPB. No conclusive evidence could be claimed about the superiority of the multiple or the 3 days regimens to the single dose regimen. Unexpectedly, ABx-resistant bacteria was identified more often in the single dose cohorts.

Keywords: infection, prostate cancer, sepsis, TRPB

Procedia PDF Downloads 368
26924 A Shift-Share Analysis: Manufacturing Employment Specialisation at uMhlathuze Local Municipality, South Africa

Authors: Mlondi Ndovela

Abstract:

Globally, the manufacturing employment has been declining and the South African manufacturing sector experiences the very same trend. Despite the commonality between the global and South African manufacturing trend, there is an understanding that local areas provide distinct contributions to the provincial/national economy. Therefore, the growth/decline of a particular manufacturing division in one local area may not be evident in another area since economic performances vary from region to region. In view of the above, the study employed the Esteban-Marquillas model of shift-share analysis (SSA) to conduct an empirical analysis of manufacturing employment performance at uMhlathuze Local Municipality in the KwaZulu-Natal province. The study set out two objectives; those are, to quantify uMhlathuze manufacturing jobs that are attributed to the provincial manufacturing employment trends and identify manufacturing divisions are growing/declining in terms of employment. To achieve these objectives, the study sampled manufacturing employment data from 2010 to 2017 and this data was categorised into ten manufacturing divisions. Furthermore, the Esteban-Marquillas model calculated manufacturing employment in terms of two effects, namely; provincial growth effect (PGE) and industrial mix effect (IME). The results show that even though uMhlathuze manufacturing sector has a positive PGE (+230), the municipality performed poorly in terms of IME (-291). A further analysis included other economic sectors of the municipality to draw employment performance comparison and the study found that agriculture; construction; trade, catering and accommodation; and transport, storage and communication, performed well above manufacturing sector in terms of PGE (+826) and IME (+532). This suggests that uMhlathuze manufacturing sector is not necessarily declining; however, other economic sectors are growing faster and bigger than it is, therefore, reducing the employment share of the manufacturing sector. To promote manufacturing growth from a policy standpoint, the government could create favourable macroeconomic policies such as import substitution policies and support labour-intensive manufacturing divisions. As a result, these macroeconomic policies can help to protect local manufacturing firms and stimulate the growth of manufacturing employment.

Keywords: allocation effect, Esteban-Marquillas model, manufacturing employment, regional competitive effect, shift-share analysis

Procedia PDF Downloads 141
26923 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 476
26922 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 535
26921 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 94
26920 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 243
26919 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 404
26918 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 234
26917 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 465
26916 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
26915 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 400
26914 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 147
26913 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58
26912 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant

Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg

Abstract:

Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.

Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal

Procedia PDF Downloads 295
26911 Comparison of Patient Stay at Withy Bush Same Day Emergency Care and Then Those at the Emergency Department

Authors: Joshua W. Edefo, Shafiul Azam, Murray D. Smith

Abstract:

Introduction: In April 2022, the Welsh Government introduced the six goals for urgent and emergency care programs. One of these goals was to provide access to clinically safe alternatives, leading to the establishment of the Same Day Emergency Care (SDEC) program. The SDEC initiative aims to offer viable options that maintain patient safety while avoiding unnecessary hospital stays. The aim of the study is to determine the duration of patient stay in SDEC and compare it with that of Emergency department (ED) stay to ascertain if one of the objectives of SDEC is achieved. Methods: Patient stays and attendance datasets were constructed from Withybush SDEC and ED patient records. These records were provided by Hywel Dda University Health Board Informatics. Some hypothetical pathways were identified, notably SDEC visits involving a single attendance and ED visits then immediately transferred to SDEC. Descriptive statistics were used to summarise the data, and hypothesis tests for mean differences used the student t-test. Propensity scoring was employed to match a set of ED patient stays to SDEC patient stays which were then used to determine the average treatment effect (ATE) to compare durations of stay in SDEC with ED. Regression methods were used to model the natural logarithm of the duration of SDEC attendance, and the level of statistical significance was set to 0.05. Results: SDEC visits involving a single attendance (170 of 384; 44.3%) is the most frequently observed pathway with patient length of stay at 256 minutes (95%CI 237.4 - 275.1). The next most frequently observed pathway of patient stay was SDEC attendance after presenting to ED (80 of 384; 20.8%) and gave the length of stay of 440 minutes (95%CI 351.6 - 529.2). Time spent in this pathway significantly increased by 184 minutes (95%CI 118.0 - 250.2, support for no difference p<0.001) compared to the most seen pathway. When SDEC data were compared with ED, the estimate for the ATE from SDEC single attendance was -272 minutes (95%CI -334.1 - -210.5; p<0.001), while that of ED then SDEC pathway was -50.6 min (95%CI -182.7-81.5; p=0.453). Conclusion: When patients are admitted to SDEC and successfully discharged, their stays are significantly shorter, approximately 4.5 hours, compared to patients who spend their entire stay in the Emergency Department. That difference vanishes when the patient stay includes a period spent previously in ED before transfer to SDEC.

Keywords: attendance, emergency-department, patient-stay, same-day-emergency-care

Procedia PDF Downloads 46
26910 In vivo Antiplatelet Activity Test of Wet Extract of Mimusops elengi L.'s Leaves on DDY Strain Mice as an Effort to Treat Atherosclerosis

Authors: Dewi Tristantini, Jason Jonathan

Abstract:

Coronary Artery Disease (CAD) is one of the deathliest diseases which is caused by atherosclerosis. Atherosclerosis is a disease that plaque builds up inside the arteries. Plaque is made up of fat, cholesterol, calcium, platelet, and other substances found in blood. The current treatment of atherosclerosis is to provide antiplatelet therapy treatment, but such treatments often cause gastrointestinal irritation, muscle pain and hormonal imbalance. Mimusops elengi L.’s leaves can be utilized as a natural and cheap antiplatelet’s source because it contains flavonoids such as quertecin. Antiplatelet aggregation effect of Mimusops elengi L.’s leaves’ wet extract was measured by bleeding time on DDY strain mice with the test substances were given orally during the period of 8 days. The bleeding time was measured on first day and 9th day. Empirically, the dose which is used for humans is 8.5 g of leaves in 600 ml of water. This dose is equivalent to 2.1 g of leaves in 350 ml of water for mice. The extract was divided into 3 doses for mice: 0.05 ml/day; 0.1 ml/day; 0.2 ml/day. After getting the percentage of the increase in bleeding time, data were analyzed by analysis of variance test (Anova), followed by individual comparison within the groups by LSD test. The test substances above respectively increased bleeding time 21%, 62%, and 128%. As the conclusion, the 0.02 ml/day dose of Mimusops elengi L.’s leaves’ wet extract could increase bleeding time better than clopidogrel as positive controls with 110% increase in bleeding time.

Keywords: antiplatelets, atheroschlerosis, bleeding time, Mimusops elengi

Procedia PDF Downloads 264
26909 Characterization of Fe Doped ZnO Synthesised by Sol-Gel and Combustion Routes

Authors: M. Ravindiran, P. Shankar

Abstract:

This paper deals with the comparison of two synthesis methods, namely, sol-gel, and combustion to prepare Fe doped ZnO nano material. Characterization results for structural, optical and magnetic properties were analyzed for the sol gel and combustion synthesis derived materials. Magnetic studies of the prepared compounds reveal that the combustion synthesis derived material has good magnetization of 50 emu/gm with a better hysteresis loop curve.

Keywords: DMS, combustion, ferromagnetic, synthesis methods

Procedia PDF Downloads 426
26908 Statistical Analysis to Compare between Smart City and Traditional Housing

Authors: Taha Anjamrooz, Sareh Rajabi, Ayman Alzaatreh

Abstract:

Smart cities are playing important roles in real life. Integration and automation between different features of modern cities and information technologies improve smart city efficiency, energy management, human and equipment resource management, life quality and better utilization of resources for the customers. One of difficulties in this path, is use, interface and link between software, hardware, and other IT technologies to develop and optimize processes in various business fields such as construction, supply chain management and transportation in parallel to cost-effective and resource reduction impacts. Also, Smart cities are certainly intended to demonstrate a vital role in offering a sustainable and efficient model for smart houses while mitigating environmental and ecological matters. Energy management is one of the most important matters within smart houses in the smart cities and communities, because of the sensitivity of energy systems, reduction in energy wastage and maximization in utilizing the required energy. Specially, the consumption of energy in the smart houses is important and considerable in the economic balance and energy management in smart city as it causes significant increment in energy-saving and energy-wastage reduction. This research paper develops features and concept of smart city in term of overall efficiency through various effective variables. The selected variables and observations are analyzed through data analysis processes to demonstrate the efficiency of smart city and compare the effectiveness of each variable. There are ten chosen variables in this study to improve overall efficiency of smart city through increasing effectiveness of smart houses using an automated solar photovoltaic system, RFID System, smart meter and other major elements by interfacing between software and hardware devices as well as IT technologies. Secondly to enhance aspect of energy management by energy-saving within smart house through efficient variables. The main objective of smart city and smart houses is to reproduce energy and increase its efficiency through selected variables with a comfortable and harmless atmosphere for the customers within a smart city in combination of control over the energy consumption in smart house using developed IT technologies. Initially the comparison between traditional housing and smart city samples is conducted to indicate more efficient system. Moreover, the main variables involved in measuring overall efficiency of system are analyzed through various processes to identify and prioritize the variables in accordance to their influence over the model. The result analysis of this model can be used as comparison and benchmarking with traditional life style to demonstrate the privileges of smart cities. Furthermore, due to expensive and expected shortage of natural resources in near future, insufficient and developed research study in the region, and available potential due to climate and governmental vision, the result and analysis of this study can be used as key indicator to select most effective variables or devices during construction phase and design

Keywords: smart city, traditional housing, RFID, photovoltaic system, energy efficiency, energy saving

Procedia PDF Downloads 113
26907 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 246