Search results for: competitive strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4936

Search results for: competitive strength

3226 Possibilistic Aggregations in the Investment Decision Making

Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze

Abstract:

This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.

Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty

Procedia PDF Downloads 551
3225 Institutional Segmantation and Country Clustering: Implications for Multinational Enterprises Over Standardized Management

Authors: Jung-Hoon Han, Jooyoung Kwak

Abstract:

Distances between cultures, institutions are gaining academic attention once again since the classical debate on the validity of globalization. Despite the incessant efforts to define international segments with various concepts, no significant attempts have been made considering the institutional dimensions. Resource-based theory and institutional theory provides useful insights in assessing market environment and understanding when and how MNEs loose or gain advantages. This study consists of two parts: identifying institutional clusters and predicting the effect of MNEs’ origin on the applicability of competitive advantages. MNEs in one country cluster are expected to use similar management systems.

Keywords: institutional theory, resource-based theory, institutional environment, cultural dimensions, cluster analysis, standardized management

Procedia PDF Downloads 482
3224 Abdominal Exercises Can Modify Abdominal Function in Postpartum Women: A Randomized Control Trial Comparing Curl-up to Drawing-in Combined With Diaphragmatic Aspiration

Authors: Yollande Sènan Djivoh, Dominique de Jaeger

Abstract:

Background: Abdominal exercises are commonly practised nowadays. Specific techniques of abdominal muscles strengthening like hypopressive exercises have recently emerged and their practice is encouraged against the practice of Curl-up especially in postpartum. The acute and the training effects of these exercises did not allow to advise one exercise to the detriment of another. However, physiotherapists remain reluctant to perform Curl-up with postpartum women because of its potential harmful effect on the pelvic floor. Design: This study was a randomized control trial registered under the number PACTR202110679363984. Objective: to observe the training effect of two experimental protocols (Curl-up versus Drawing-in+Diaphragmatic aspiration) on the abdominal wall (interrecti distance, rectus and transversus abdominis thickness, abdominal strength) in Beninese postpartum women. Pelvic floor function (tone, endurance, urinary incontinence) will be assessed to evaluate potential side effects of exercises on the pelvic floor. Method: Postpartum women diagnosed with diastasis recti were randomly assigned to one of three groups (Curl-up, Drawingin+Diaphragmatic aspiration and control). Abdominal and pelvic floor parameters were assessed before and at the end of the 6-week protocol. The interrecti distance and the abdominal muscles thickness were assessed by ultrasound and abdominal strength by dynamometer. Pelvic floor tone and strength were assessed with Biofeedback and urinary incontinence was quantified by pad test. To compare the results between the three groups and the two measurements, a two-way Anova test with repeated measures was used (p<0.05). When interaction was significant, a posthoc using Student t test, with Bonferroni correction, was used to compare the three groups regarding the difference (end value minus initial value). To complete these results, a paired Student t test was used to compare in each group the initial and end values. Results: Fifty-eight women participated in this study, divided in three groups with similar characteristics regarding their age (29±5 years), parity (2±1 children), BMI (26±4 kg/m2 ), time since the last birth (10±2 weeks), weight of their baby at birth (330±50 grams). Time effect and interaction were significant (p<0.001) for all abdominal parameters. Experimental groups improved more than control group. Curl-up group improved more (p=0.001) than Drawing-in+Diaphragmatic aspiration group regarding the interrecti distance (9.3±4.2 mm versus 6.6±4.6 mm) and abdominal strength (20.4±16.4 Newton versus 11.4±12.8 Newton). Drawingin+Diaphragmatic aspiration group improved (0.8±0.7 mm) more than Curl-up group (0.5±0.7 mm) regarding the transversus abdominis thickness (p=0.001). Only Curl-up group improved (p<0.001) the rectus abdominis thickness (1.5±1.2 mm). For pelvic floor parameters, both experimental groups improved (p=0.01) except for tone which improved (p=0.03) only in Drawing-in+Diaphragmatic aspiration group from 19.9±4.1 cmH2O to 22.2±4.5 cmH2O. Conclusion: Curl-up was more efficient to improve abdominal function than Drawingin+Diaphragmatic aspiration. However, these exercises are complementary. None of them degraded the pelvic floor, but Drawing-in+Diaphragmatic aspiration improved further the pelvic floor function. Clinical implications: Curl-up, Drawing-in and Diaphragmatic aspiration can be used for the management of abdominal function in postpartum women. Exercises must be chosen considering the specific needs of each woman’s abdominal and pelvic floor function.

Keywords: curl-up, drawing-in, diaphragmatic aspiration, hypopressive exercise, postpartum women

Procedia PDF Downloads 79
3223 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System

Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi

Abstract:

In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.

Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building

Procedia PDF Downloads 140
3222 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis

Procedia PDF Downloads 129
3221 Measurements of Service Quality vs Customer Satisfaction in Government Owned Retail Store at Kochi

Authors: N. S. Ajisha

Abstract:

In today’s competitive world the quality of the service you deliver is one of the important factor that determine customer satisfaction. Service quality is considered to be one important determinant to evaluate customer satisfaction and the relationship between service quality and customer satisfaction is considered as the foundation in researches on customer satisfaction. This research examines to do a gap analysis between the perception and expectation of the services delivered and find relation between the service quality and customer satisfaction. Service quality is found out here using the SERVQUAL model. And it finds out the dimension of service quality which is more important to measure customer satisfaction. The dimensions which we measure using SERVQUAL include the tangibles, reliability, responsiveness, assurance, and empathy. This study involves primary data collection like market survey.

Keywords: customer satisfaction, service quality, retail service quality, Kochi

Procedia PDF Downloads 550
3220 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials

Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner

Abstract:

Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.

Keywords: CO₂ curing, carbonation, CCU, steel slag

Procedia PDF Downloads 103
3219 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: W. H. El Garaihy, A. Nassef, S. Samy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation

Procedia PDF Downloads 431
3218 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study

Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar

Abstract:

Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.

Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis

Procedia PDF Downloads 57
3217 Model Evaluation of Action Potential Block in Whole-Animal Nerves Induced by Ultrashort, High-Intensity Electric Pulses

Authors: Jiahui Song

Abstract:

There have been decades of research into the action potential block in nerves. To our best knowledge electrical voltages can reversibly block the conduction of action potentials across whole animal nerves. Blocking biological electrical signaling pathways can have a variety of applications in muscular and sensory incapacitation and clinical research, including urethral pressure reduction and relieving chronic pain relief from a peripheral nerve injury. The cessation ability has been used in muscle activation and fatigue reduction. Ultrashort, high-intensity electric pulses modulate the membrane conductivity to block nerve conduction through the electroporation process. Nanopore formation on the membrane surface would increase the local membrane conductivity and effectively "short-out" the trans-membrane potential of a nerve that inhibits action potential propagation. This block would be similar in concept to stopping the propagation of an air-pressure wave down a "leaky" pipe. This research focuses on a distributed electrical model with an additional time-dependent membrane conductance to calculate the poration induced by the ultrashort, high-intensity electric pulses. The changes in membrane conductivity are used to predict changes in action potential transmission. A "strength-duration (SD)" curve is generated for action potential blockage and would be used as a design guide for benchmarking safety thresholds or setting the pulse voltage and/or durations necessary for neuro-muscular incapacitation.

Keywords: action potential, ultrashort, high-intensity, nerve, strength-duration

Procedia PDF Downloads 8
3216 Bulk/Hull Cavitation Induced by Underwater Explosion: Effect of Material Elasticity and Surface Curvature

Authors: Wenfeng Xie

Abstract:

Bulk/hull cavitation evolution induced by an underwater explosion (UNDEX) near a free surface (bulk) or a deformable structure (hull) is numerically investigated using a multiphase compressible fluid solver coupled with a one-fluid cavitation model. A series of two-dimensional computations is conducted with varying material elasticity and surface curvature. Results suggest that material elasticity and surface curvature influence the peak pressures generated from UNDEX shock and cavitation collapse, as well as the bulk/hull cavitation regions near the surface. Results also show that such effects can be different for bulk cavitation generated from UNDEX-free surface interaction and for hull cavitation generated from UNDEX-structure interaction. More importantly, results demonstrate that shock wave focusing caused by a concave solid surface can lead to a larger cavitation region and thus intensify the cavitation reload. The findings can be linked to the strength and the direction of reflected waves from the structural surface and reflected waves from the expanding bubble surface, which are functions of material elasticity and surface curvature. Shockwave focusing effects are also observed for axisymmetric simulations, but the strength of the pressure contours for the axisymmetric simulations is less than those for the 2D simulations due to the difference between the initial shock energy. The current method is limited to two-dimensional or axisymmetric applications. Moreover, the thermal effects are neglected and the liquid is not allowed to sustain tension in the cavitation model.

Keywords: cavitation, UNDEX, fluid-structure interaction, multiphase

Procedia PDF Downloads 181
3215 Seismic Response of Structures of Reinforced Concrete Buildings: Regular and Irregular Configurations

Authors: Abdelhammid Chibane

Abstract:

Often, for architectural reasons or designs, several buildings have a non-uniform profile in elevation. Depending on the configuration of the construction and the arrangements structural elements, the non-uniform profile in elevation (the recess) is considered concept of a combination of non-uniform distributions of strength, stiffness, weight and geometry along the height of irregular structures. Therefore, this type of configuration can induce irregular distribution load causing a serious concentration stresses at the discontinuity. This therefore requires a serious behavioral treatment buildings in an earthquake. If appropriate measures are not taken into account, structural irregularity may become a major source of damage during earthquakesEarth. In the past, several research investigations have identified differences in dynamic response of irregular and regular porches. Among the most notable differences are the increments of displacements and ductility applications in floors located above the level of the shoulder and an increase in the contribution of the higher modes cisaillement1 efforts, ..., 10. The para -ssismiques codes recommend the methods of analysis Dynamic (or modal history) to establish the forces of calculation instead of the static method equivalent, which is basically applicable only to regular structures without major discontinuities in the mass, rigidity and strength along the height 11, 12 .To investigate the effects of irregular profiles on the structures, the main objective of this study was the assessment of the inelastic response, in terms of applications of ductility four types of non-uniform multi-stage structures subjected to relatively severe earthquakes. In the This study, only the parallel responses are analyzed setback.

Keywords: buildings, concentration stresses, ductility, ductility, designs, irregular structures

Procedia PDF Downloads 258
3214 Bio Composites for Substituting Synthetic Packaging Materials

Authors: Menonjyoti Kalita, Pradip Baishya

Abstract:

In recent times, the world has been facing serious environmental concerns and issues, such as sustainability and cost, due to the overproduction of synthetic materials and their participation in degrading the environment by means of industrial waste and non-biodegradable characteristics. As such, biocomposites come in handy to ease such troubles. Bio-based composites are promising materials for future applications for substituting synthetic packaging materials. The challenge of making packaging materials lighter, safer and cheaper leads to investigating advanced materials with desired properties. Also, awareness of environmental issues forces researchers and manufacturers to spend effort on composite and bio-composite materials fields. This paper explores and tests some nature-friendly materials has been done which can replace low-density plastics. The materials selected included sugarcane bagasse, areca palm, and bamboo leaves. Sugarcane bagasse bamboo leaves and areca palm sheath are the primary material or natural fibre for testing. These products were processed, and the tensile strength of the processed parts was tested in Micro UTM; it was found that areca palm can be used as a good building material in replacement to polypropylene and even could be used in the production of furniture with the help of epoxy resin. And for bamboo leaves, it was found that bamboo and cotton, when blended in a 50:50 ratio, it has great tensile strength. For areca, it was found that areca fibres can be a good substitute for polypropylene, which can be used in building construction as binding material and also other products.

Keywords: biodegradable characteristics, bio-composites, areca palm sheath, polypropylene, micro UTM

Procedia PDF Downloads 88
3213 Culture Medium Design Based on Whey for the Growth and Bacteriocin Production of Strains of Pediococcus pentosaceus

Authors: Carolina Gutierrez-Cortes, Hector Suarez, Gustavo Buitrago

Abstract:

Bacteriocins are antimicrobial peptides produced by bacteria as a competitive strategy for substrate and habitat. Those peptides have a potential use as food biopreservatives due to their antimicrobial activity against foodborne pathogens, avoiding the use of additives that can be harmful to consumers. The industrial production of bacteriocins is currently expensive; one of the options to be competitive is the development of economic culture media, for example, with the use of agro-industrial wastes such as whey. This study evaluated the growth and production of bacteriocins from four strains: Pediococcus pentosaceus 63, Pediococcus pentosaceus 145, Pediococcus pentosaceus 146 and Pediococcus pentosaceus 147 isolated from ‘minas cheese’ (artisanal cheese made from raw milk in the state of Minas Gerais, Brazil) in order to select a strain with growth at high rates and higher antimicrobial activity against Listeria monocytogenes 104 after incubation on the culture medium designed with whey and other components. The media used were: MRS broth, modified MRS broth (using different sources of carbon and nitrogen and different amounts of micronutrients) and a culture medium designed by a factorial design using whey and other components. The final biomass concentrations of the four strains in MRS broth after 24 hours of incubation were very similar 9.25, 9.33, 9.25 and 9.22 (log CFU/mL) for P. pentosaceus 63, P. pentosaceus 145, P. pentosaceus 146 and P. pentosaceus 147 respectively. In the same assays, antimicrobial activity of 3200 AU/mL for the first three and of 12800 AU/mL for P. pentosaceus 147 were obtained. Culture of P. pentosaceus 63 on modified MRS broth, showed the effect of some sources of carbon on the activity of bacteriocin, obtaining 12800 AU/mL with dextrose and 25600 AU/mL with maltose. Cultures of P. pentosaceus 145, 146 and 147 with these same sugars presented activity of 12800 AU/mL. It was observed that the modified MRS medium using whey increased the antimicrobial activity of the strains at 16000, 6400, 16000 and 19200 AU/mL for each strain respectively, keeping the biomass at values close to 9 log units. About nitrogen sources, it was observed that the combination of peptone (10 g /L), meat extract (10 g/L) and yeast extract (5 g/L) promoted the highest activity (12800 AU/mL), and in all cases MgSO4, MnSO4, K2HPO4 and ammonium citrate at low concentrations adversely affected bacteriocin production. Because P. pentosaceus 147 showed the highest antimicrobial activity in the presence of whey, it was used to evaluate the culture medium (peptone (10 g/L), meat extract (8 g/L), yeast extract (2 g/L), Tween® 80 (1 g/L), ammonium citrate (2 g/L), sodium acetate (5 g/L), MgSO4 (0.2 g/L), MnSO4 (0.04 g/L)). With the designed medium added with whey, 9.34 log units of biomass concentration and 19200 AU/mL were achieved for P. pentosaceus 147. The above suggest that the new medium promotes the antimicrobial activity of P. pentosaceus 147 allowing the use of an economic medium using whey.

Keywords: antimicrobial activity, bacteriocins, pediococcus, whey

Procedia PDF Downloads 223
3212 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application

Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim

Abstract:

One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.

Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure

Procedia PDF Downloads 172
3211 Association between Healthy Eating Index-2015 Scores and the Probability of Sarcopenia in Community-Dwelling Iranian Elderly

Authors: Zahra Esmaeily, Zahra Tajari, Shahrzad Daei, Mahshid Rezaei, Atefeh Eyvazkhani, Marjan Mansouri Dara, Ahmad Reza Dorosty Motlagh, Andriko Palmowski

Abstract:

Objective: Sarcopenia (SPA) is associated with frailty and disability in the elderly. Adherence to current dietary guidelines in addition to physical activity could play a role in the prevention of muscle wasting and weakness. The Healthy Eating Index-2015 (HEI) is a tool to assess diet quality as recommended in the U.S. Dietary Guidelines for Americans. This study aimed to investigate whether there is a relationship between HEI scores and the probability of SPA (PS) among the Tehran elderly. Method: A previously validated semi-quantitative food frequency questionnaire was used to assess HEI and the dietary intake of randomly selected elderly people living in Tehran, Iran. Handgrip strength (HGS) was measured to evaluate the PS. Statistical evaluation included descriptive analysis and standard test procedures. Result: 201 subjects were included. Those probably suffering from SPA (as determined by HGS) had significantly lower HEI scores (p = 0.02). After adjusting for confounders, HEI scores and HGS were still significantly associated (adjusted R2 = 0.56, slope β = 0.03, P = 0.09). Elderly people with a low probability of SPA consumed more monounsaturated and polyunsaturated fatty acids (P = 0.06) and ingested less added sugars and saturated fats (P = 0.01 and P = 0.02, respectively). Conclusion: In this cross-sectional study, HEI scores are associated with the probability of SPA. Adhering to current dietary guidelines might contribute to ameliorating muscle strength and mass in aging individuals.

Keywords: aging, HEI-2015, Iranian, sarcopenic

Procedia PDF Downloads 201
3210 Stability of Concrete Moment Resisting Frames in View of Current Codes Requirements

Authors: Mahmoud A. Mahmoud, Ashraf Osman

Abstract:

In this study, the different approaches currently followed by design codes to assess the stability of buildings utilizing concrete moment resisting frames structural system are evaluated. For such purpose, a parametric study was performed. It involved analyzing group of concrete moment resisting frames having different slenderness ratios (height/width ratios), designed for different lateral loads to vertical loads ratios and constructed using ordinary reinforced concrete and high strength concrete for stability check and overall buckling using code approaches and computer buckling analysis. The objectives were to examine the influence of such parameters that directly linked to frames’ lateral stiffness on the buildings’ stability and evaluates the code approach in view of buckling analysis results. Based on this study, it was concluded that, the most susceptible buildings to instability and magnification of second order effects are buildings having high aspect ratios (height/width ratio), having low lateral to vertical loads ratio and utilizing construction materials of high strength. In addition, the study showed that the instability limits imposed by codes are mainly mathematical to ensure reliable analysis not a physical ones and that they are in general conservative. Also, it has been shown that the upper limit set by one of the codes that second order moment for structural elements should be limited to 1.4 the first order moment is not justified, instead, the overall story check is more reliable.

Keywords: buckling, lateral stability, p-delta, second order

Procedia PDF Downloads 254
3209 Bioethanol Production from Wild Sorghum (Sorghum arundinacieum) and Spear Grass (Heteropogon contortus)

Authors: Adeyinka Adesanya, Isaac Bamgboye

Abstract:

There is a growing need to develop the processes to produce renewable fuels and chemicals due to the economic, political, and environmental concerns associated with fossil fuels. Lignocellulosic biomass is an excellent renewable feedstock because it is both abundant and inexpensive. This project aims at producing bioethanol from lignocellulosic plants (Sorghum Arundinacieum and Heteropogon Contortus) by biochemical means, computing the energy audit of the process and determining the fuel properties of the produced ethanol. Acid pretreatment (0.5% H2SO4 solution) and enzymatic hydrolysis (using malted barley as enzyme source) were employed. The ethanol yield of wild sorghum was found to be 20% while that of spear grass was 15%. The fuel properties of the bioethanol from wild sorghum are 1.227 centipoise for viscosity, 1.10 g/cm3 for density, 0.90 for specific gravity, 78 °C for boiling point and the cloud point was found to be below -30 °C. That of spear grass was 1.206 centipoise for viscosity, 0.93 g/cm3 for density 1.08 specific gravity, 78 °C for boiling point and the cloud point was also found to be below -30 °C. The energy audit shows that about 64 % of the total energy was used up during pretreatment, while product recovery which was done manually demanded about 31 % of the total energy. Enzymatic hydrolysis, fermentation, and distillation total energy input were 1.95 %, 1.49 % and 1.04 % respectively, the alcoholometric strength of bioethanol from wild sorghum was found to be 47 % and the alcoholometric strength of bioethanol from spear grass was 72 %. Also, the energy efficiency of the bioethanol production for both grasses was 3.85 %.

Keywords: lignocellulosic biomass, wild sorghum, spear grass, biochemical conversion

Procedia PDF Downloads 232
3208 In Vitro Morphogenic Response of the Alginate Encapsulated Nodal Segment and Antioxidative Enzymes Analysis during Acclimatization of Cassia Angustifolia Vahl

Authors: Iram Siddique

Abstract:

Synthetic seed technology is an alternative to traditional micropropagation for production and delivery of cloned plantlets. Synthetic seeds were produced by encapsulating nodal segments of C. angustifolia in calcium alginate gel. 3% (w/v) sodium alginate and 100 mM CaCl2. 2H2O were found most suitable for encapsulation of nodal segments. Synthetic seeds cultured on half strength Murashige and Skoog (MS) medium supplemented with thidiazuron (5.0 µM) + indole -3- acetic acid (1.0 µM) produced maximum number of shoots (10.9 ± 0.78) after 8 weeks of culture exhibiting (78%) in vitro conversion response. Encapsulated nodal segments demonstrated successful regeneration after different period (1-6 weeks) of cold storage at 4 °C. The synthetic seeds stored at 4 °C for a period of 4 weeks resulted in maximum conversion frequency (93%) after 8 weeks when placed back to regeneration medium. The isolated shoots when cultured on half strength MS medium supplemented with 1.0 µM indole -3- butyric acid (IBA), produced healthy roots and plantlets with well developed shoot and roots were successfully hardened off in plastic pots containing sterile soilrite inside the growth chamber and gradually transferred to greenhouse where they grew well with 85% survival rate. Changes in the content of photosynthetic pigments, net photosynthetic rate (PN), superoxide dismutase (SOD) and catalase (CAT) activity in C. angustifolia indicated the adaptation of micropropagated plants to ex vitro conditions.

Keywords: biochemical studies, nodal segments, rooting, synthetic seeds, thidiazuron

Procedia PDF Downloads 359
3207 Importance of Internship in Technical Education

Authors: R. Vishalakshi, P. Chaithra, M. Dakshayini

Abstract:

An engineering degree is not a ticket that automatically provides a job. The competition for good jobs is going steep as the global economy and outsourcing is increasing. It is not sufficient to be simply more qualified. In this competitive world, it is important to stand out from everyone else. Going to college and getting a degree is the foremost important step. At the same time, students should be competent enough to face this technically growing and challenging world. So the classroom learning can be greatly enhanced by working with real-time applications. In this paper, we discuss how it can be realized by getting internships with the companies, where students actually get an opportunity to work in real work environment with live problems along with co-workers. Also presents case studies of how the practical industry work experience helps them in constructing their future carrier path.

Keywords: real work environment, industry work experience, internship, college students

Procedia PDF Downloads 445
3206 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members

Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim

Abstract:

In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length

Procedia PDF Downloads 292
3205 Microwave Security System in Museums: Design and Implementation

Authors: Dalia Elsheakh, Hala Elsadek

Abstract:

The objective of this paper is to propose a competitive microwave security system that can be applied with reasonable price at museums in Egypt, considering the priceless elements in 23 Egyptian museums countrywide and the lack of good recent security systems even in big ones. The system main goal is to detect valuable targets to ensure their presence in the pre-defined positions in order to protect them from being stolen. The system is based on real time microwave scanning for the required space volume through transmitting RF waves at consecutive angles and detecting the back scattered waves from required objects to detect their existence at pre-specified locations.

Keywords: microwave security system, object locating system, real time locating system (RTLS), antenna array, array electronic scanning

Procedia PDF Downloads 343
3204 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling

Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar

Abstract:

The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.

Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength

Procedia PDF Downloads 69
3203 The Influence of Coarse Aggregate Morphology on Concrete Workability: A Case Study with Algerian Crushed Limestone

Authors: Ahmed Boufedah Badissi, Ahmed Beroual, Farid Boursas

Abstract:

This research aims to elucidate the role of coarse aggregate in influencing the fresh properties of normal-strength concrete. Specifically, it is aimed to identify the optimal gradation of coarse aggregate to enhance workability. While existing literature discusses the impact of aggregate granularity on concrete workability, more numerical data or models need to quantify the relationship between workability, granularity, and coarse aggregate shape. The main objective is to create a model that describes how coarse aggregate morphology contributes to fresh concrete properties. To investigate the effect of coarse aggregate gradation on Normal Strength Concrete (NSC) workability, various combinations of coarse aggregates (4/22.4 mm) were produced in the laboratory, utilizing three elementary classes: finer coarse aggregate 4/8 mm (Fca), medium coarse aggregate 8/16 mm (Mca), and coarser coarse aggregate 16/22.4 mm (Cca). We introduced a factor, FCR (Finer to Coarser coarse aggregate Ratio), as a numerical parameter to provide a quantitative evaluation and more detailed results analysis. Quantitative characterization parameters for coarse aggregate morphology were established, exploring the influence of particle size distribution, specific surface, and aggregate shape on workability. The research findings are significant for establishing correlations between coarse aggregate morphology and concrete properties. FCR emerges as a valuable tool for predicting the impact of aggregate gradation variations on concrete. The results of this study create a valuable database for construction professionals and concrete producers, affirming that the fresh properties of NSC are intricately linked to coarse aggregate morphology, particularly gradation.

Keywords: morphology, coarse aggregate, workability, fresh properties, gradation

Procedia PDF Downloads 59
3202 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites

Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre

Abstract:

The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.

Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel

Procedia PDF Downloads 92
3201 Study of the Mental Toughness of the Basketball Players

Authors: Jaswinder Singh

Abstract:

The purpose of the study was to compare the mental toughness between male and female basketball players of District shri muktsar sahib Panjab. A sample of fifty male players (N=50) age ranging 18 to 25 years and Fifty female player(N=50) age ranging 18 to 25 years. The Data was collected by using mental toughness questionnaire developed by Goldberg (1998). The t-test was applied to assess the differences male and female basketball players. The level of significance was set at 0.05. Study revealed that there were significant differences male and female basketball players with regard to Rebound Ability, Ability to Handle Pressure, Confidence and Overall Mental Toughness and insignificant differences with regard to Concentration and Motivation.

Keywords: mental toughness, basketball, psychological, competitive

Procedia PDF Downloads 251
3200 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method

Procedia PDF Downloads 233
3199 Release Management with Continuous Delivery: A Case Study

Authors: A. Maruf Aytekin

Abstract:

We present our approach on using continuous delivery pattern for release management. One of the key practices of agile and lean teams is the continuous delivery of new features to stakeholders. The main benefits of this approach lie in the ability to release new applications rapidly which has real strategic impact on the competitive advantage of an organization. Organizations that successfully implement Continuous Delivery have the ability to evolve rapidly to support innovation, provide stable and reliable software in more efficient ways, decrease the amount of resources need for maintenance, and lower the software delivery time and costs. One of the objectives of this paper is to elaborate a case study where IT division of Central Securities Depository Institution (MKK) of Turkey apply Continuous Delivery pattern to improve release management process.

Keywords: automation, continuous delivery, deployment, release management

Procedia PDF Downloads 251
3198 Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit

Authors: Omid Gholipoor Bashiri, Ghafur Mosavi, Aliasghar Behnamghader, Seyed Mahmood Rabiee

Abstract:

Objective: To determine the effect of selected bone graft on the compression properties of radial bone in rabbit. Design-Experimental in vivo study. Animals: A total of 45 adult male New Zealand white rabbits. Procedures: The rabbits were anesthetized and a one-cm-full thickness piece of radial bone was removed using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on the basis of the material used to fill the bone defect: group 1: the paste of bone cement calcium phosphate; group II: the paste of calcium phosphate mixture with type I collagen; group III: tricalcium phosphate mixed with hydroxyapatite (TCP & HP) with 5% porosity; group IV: the same scaffold as group III with 10% porosity; and group V: the same scaffold as group III and IV with 20% porosity, with 9 rabbits in each group. Subsequently subdivided into 3 subgroups of 3 rabbits each. Results: There was a significant increase in compression properties of radial bone in the group II and V in 2nd and 3rd months as compared with groups I, III and IV. The mean endurable crack-strength in group II and V were slightly higher than that of normal radius (P<0.05). Conclusion and clinical relevance: Application of calcium phosphate paste with type I collagen and scaffold of tricalcium phosphate with hydroxyapatite having 20% porosity indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.

Keywords: calcium phosphate, tricalcium phosphate, hydroxyapatite, radial bone, compressive properties, porosity, type i collagen, rabbit

Procedia PDF Downloads 448
3197 Predatory Pricing at Services Markets: Incentives, Mechanisms, Standards of Proving, and Remedies

Authors: Mykola G. Boichuk

Abstract:

The paper concerns predatory pricing incentives and mechanisms in the markets of services, as well as its anti-competitive effects. As cost estimation at services markets is more complex in comparison to markets of goods, predatory pricing is more difficult to detect in the provision of services. For instance, this is often the case for professional services, which is analyzed in the paper. The special attention is given to employment markets as de-facto main supply markets for professional services markets. Also, the paper concerns such instances as travel agents' services, where predatory pricing may have implications not only on competition but on a wider range of public interest as well. Thus, the paper develops on effective ways to apply competition law rules on predatory pricing to the provision of services.

Keywords: employment markets, predatory pricing, services markets, unfair competition

Procedia PDF Downloads 322