Search results for: artificial recharge of groundwater
977 Key Performance Indicators and the Model for Achieving Digital Inclusion for Smart Cities
Authors: Khalid Obaed Mahmod, Mesut Cevik
Abstract:
The term smart city has appeared recently and was accompanied by many definitions and concepts, but as a simplified and clear definition, it can be said that the smart city is a geographical location that has gained efficiency and flexibility in providing public services to citizens through its use of technological and communication technologies, and this is what distinguishes it from other cities. Smart cities connect the various components of the city through the main and sub-networks in addition to a set of applications and thus be able to collect data that is the basis for providing technological solutions to manage resources and provide services. The basis of the work of the smart city is the use of artificial intelligence and the technology of the Internet of Things. The work presents the concept of smart cities, the pillars, standards, and evaluation indicators on which smart cities depend, and the reasons that prompted the world to move towards its establishment. It also provides a simplified hypothetical way to measure the ideal smart city model by defining some indicators and key pillars, simulating them with logic circuits, and testing them to determine if the city can be considered an ideal smart city or not.Keywords: factors, indicators, logic gates, pillars, smart city
Procedia PDF Downloads 150976 Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters
Authors: Andrej Pilipović, Branislav Kovačević, Marina Milović, Lazar Kesić, Saša Pekeč, Leopold Poljaković-Pajnik, Saša Orlović
Abstract:
The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions.Keywords: clones, net photosynthesis, WUE, transpiration, stomatal conductance, SPAD
Procedia PDF Downloads 65975 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine
Authors: Mohammed Nabeel Khan, C. Perisamy
Abstract:
Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex
Procedia PDF Downloads 161974 Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle
Authors: Hassam Muazzam
Abstract:
This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location.Keywords: autonomous self-driven vehicle, obstacle avoidance, desired location, pythagoras theorem, neural network, remote location
Procedia PDF Downloads 409973 Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India
Authors: Chandrakant Gurav, Md Babar, Ajaykumar Asode
Abstract:
Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape.Keywords: GIS, Kohilla, morphometry, Shivbhadra, Yelganga
Procedia PDF Downloads 156972 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 411971 A Review on Water Models of Surface Water Environment
Authors: Shahbaz G. Hassan
Abstract:
Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.Keywords: empirical models, mathematical, statistical, water quality
Procedia PDF Downloads 264970 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation
Authors: Yonatan Sverdlov, Shimon Ullman
Abstract:
Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.Keywords: continual learning, life-long learning, neural analogies, adaptive modulation
Procedia PDF Downloads 70969 Modelling of Powered Roof Supports Work
Authors: Marcin Michalak
Abstract:
Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.Keywords: machine modelling, underground mining, coal mining, structure
Procedia PDF Downloads 368968 The Impact of Artificial Intelligence on Construction Engineering
Authors: Mina Fawzy Ishak Gad Elsaid
Abstract:
There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management
Procedia PDF Downloads 45967 The Impact of Artificial Intelligence on Construction Engineering
Authors: Haneen Joseph Habib Yeldoka
Abstract:
There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management
Procedia PDF Downloads 40966 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 90965 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 119964 Geological, Engineering Geological, and Hydrogeological Characteristics of the Knowledge Economic City, Al Madinah Al Munawarah, KSA
Authors: Mutasim A. M. Ez Eldin, Tareq Saeid Al Zahrani, Gabel Zamil Al-Barakati, Ibrahim Mohamed AlHarthi, Marwan Mohamed Al Saikhan, Waleed Abdel Aziz Al Aklouk, Waheed Mohamed Saeid Ba Amer
Abstract:
The Knowledge Economic City (KEC) of Al Madinah Al Munawarah is one of the major projects and represents a cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Tests (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to moderately (W3) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO₄²⁻) and chloride (Cl⁻) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be taken into consideration.Keywords: engineering geology, KEC, petrographic description, rock and soil investigations
Procedia PDF Downloads 83963 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: forced convection, square cylinder, nanofluid, neural network
Procedia PDF Downloads 320962 A Method for Reduction of Association Rules in Data Mining
Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa
Abstract:
The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.Keywords: data mining, association rules, rules reduction, artificial intelligence
Procedia PDF Downloads 161961 Transformer Design Optimization Using Artificial Intelligence Techniques
Authors: Zakir Husain
Abstract:
Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)
Procedia PDF Downloads 583960 Unmasking Virtual Empathy: A Philosophical Examination of AI-Mediated Emotional Practices in Healthcare
Authors: Eliana Bergamin
Abstract:
This philosophical inquiry, influenced by the seminal works of Annemarie Mol and Jeannette Pols, critically examines the transformative impact of artificial intelligence (AI) on emotional caregiving practices within virtual healthcare. Rooted in the traditions of philosophy of care, philosophy of emotions, and applied philosophy, this study seeks to unravel nuanced shifts in the moral and emotional fabric of healthcare mediated by AI-powered technologies. Departing from traditional empirical studies, the approach embraces the foundational principles of care ethics and phenomenology, offering a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. At its core, this research addresses the introduction of AI-powered technologies mediating emotional and care practices in the healthcare sector. By drawing on Mol and Pols' insights, the study offers a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. Anchored in ethnographic research within a pioneering private healthcare company in the Netherlands, this critical philosophical inquiry provides a unique lens into the dynamics of AI-mediated emotional practices. The study employs in-depth, semi-structured interviews with virtual caregivers and care receivers alongside ongoing ethnographic observations spanning approximately two and a half months. Delving into the lived experiences of those at the forefront of this technological evolution, the research aims to unravel subtle shifts in the emotional and moral landscape of healthcare, critically examining the implications of AI in reshaping the philosophy of care and human connection in virtual healthcare. Inspired by Mol and Pols' relational approach, the study prioritizes the lived experiences of individuals within the virtual healthcare landscape, offering a deeper understanding of the intertwining of technology, emotions, and the philosophy of care. In the realm of philosophy of care, the research elucidates how virtual tools, particularly those driven by AI, mediate emotions such as empathy, sympathy, and compassion—the bedrock of caregiving. Focusing on emotional nuances, the study contributes to the broader discourse on the ethics of care in the context of technological mediation. In the philosophy of emotions, the investigation examines how the introduction of AI alters the phenomenology of emotional experiences in caregiving. Exploring the interplay between human emotions and machine-mediated interactions, the nuanced analysis discerns implications for both caregivers and caretakers, contributing to the evolving understanding of emotional practices in a technologically mediated healthcare environment. Within applied philosophy, the study transcends empirical observations, positioning itself as a reflective exploration of the moral implications of AI in healthcare. The findings are intended to inform ethical considerations and policy formulations, bridging the gap between technological advancements and the enduring values of caregiving. In conclusion, this focused philosophical inquiry aims to provide a foundational understanding of the evolving landscape of virtual healthcare, drawing on the works of Mol and Pols to illuminate the essence of human connection, care, and empathy amid technological advancements.Keywords: applied philosophy, artificial intelligence, healthcare, philosophy of care, philosophy of emotions
Procedia PDF Downloads 58959 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 36958 Instant Fire Risk Assessment Using Artifical Neural Networks
Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan
Abstract:
Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index
Procedia PDF Downloads 137957 The Effect of Artificial Intelligence on Autism Attitudes and Laws
Authors: Nermin Noshi Esraeil Abdalla
Abstract:
Inclusive schooling offerings for college kids with Autism stays in its early developmental levels in Thailand. despite many greater youngsters with autism are attending schools since the Thai authorities brought the training Provision for human beings with Disabilities Act in 2008, the services students with autism and their families obtain are typically missing. This quantitative examine used attitude and Preparedness to educate college students with Autism Scale (APTSAS) to investigate 110 number one faculty teachers’ attitude and preparedness to educate college students with autism inside the widespread training school room. Descriptive statistical evaluation of the records discovered that scholar behavior changed into the most good sized factor in constructing teachers’ terrible attitudes students with autism. the majority of teachers additionally indicated that their pre-service schooling did not put together them to fulfill the mastering needs of children with autism especially, folks who are non-verbal. The take a look at is substantial and offers path for enhancing trainer education for inclusivity in Thailand.Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills
Procedia PDF Downloads 22956 Determination of Natural Gamma Radioactivity in Sand along the Black Sea Coastal Region of Giresun, North Turkey
Authors: A. Karadeniz, Belgin Kucukomeroglu
Abstract:
In this study natural gamma radioactivity levels are determined on sands along the coastal regions of Giresun/Turkey. The coast of Giresun about 290 km long in investigated to collect 101 sand samples. Natural and artificial radioactivity concentrations of sand samples were measured by using HPGe gamma spectrometry. The average activity concentrations of 238U, 232Th, 40K and 137Cs on sand samples of Giresun were found to be 10.83±2.92 Bq/kg, 21.28±3.22 Bq/kg, 6.42±1.06 Bq/kg, 230.94±10.67 Bq/kg respectively. The average activity concentrations for these radionuclides were compared with the reported data of other parts of Turkey and other countries. The average absorbed dose rate for Giresun was calculated to be 38.68 nGy/h respectively. This value is significantly lower than the World averaged value of 60 nGy/h. The external annual effective dose rate concentration in Giresun was found to be 0.047 mSv/y respectively. This result is much lower than the recommeded limit of 5 mSv/y. The external hazard dose rate for Giresun weas calculated to be 0.21 respectively. This result is much lower than the recommended limit of 1.0.Keywords: concentration, radioactivity, Giresun, natural gamma radioactivity
Procedia PDF Downloads 391955 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt
Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim
Abstract:
A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.Keywords: expert system, knowledge management, pipeline projects, risk mismanagement
Procedia PDF Downloads 311954 Applications of Green Technology and Biomimicry in Civil Engineering with a Maglev Car Elevator
Authors: Sameer Ansari, Suhas Nitsure
Abstract:
Biomimicry has made a big move into the built environment by adapting nature's solutions to human designs and inventions. We can examine numerous aspects of the built environment right from generating energy, fed by rainwater and powered by sun to over all land use impacts. This paper discusses the potential of a man made building which will work for the welfare of humans and reduce the impact of the harmful environment on us which we ourselves created for us. Building services inspired by nature such as building walls from homeostasis in organisms, natural ventilation from termites, artificial aggregates from natural aggregates, solar panels from photosynthesis and building structure itself compared to tree as a cantilever. Environmental services such as using CO2 as a feedstock for construction related activities, using Ornilux glasses and saving birds from collision with buildings, using prefabricated steel for fast building members- save time and also negligible waste as no formwork is used. Maglev inspired car elevators in building which is unique and giving all together new direction to technology.Keywords: biomimicry, green technology, maglev car elevator, civil engineering
Procedia PDF Downloads 576953 The Impact of Artificial Intelligence on Human Rights Priciples and Obligations
Authors: Rady Farag Aziz Ibrahim
Abstract:
The gap between Islamic terrorism and human rights has become an important issue in the fight against Islamic terrorism worldwide. This situation is repeated because terrorism and human rights are interconnected in such a way that when the former begins, the latter becomes subject to violence. This unknown relationship was recognized in the Vienna Declaration and Program of Action adopted at the International Conference on Human Rights held in Vienna on 25 June 1993, confirming that terrorist acts, in all their forms and manifestations, aim to destroy the rights of individuals. humanity to destroy. Therefore, Islamic terrorism is a violation of basic human rights. For this purpose, the first part of the article will focus on the relationship between terrorism and human rights and the synergy between these two concepts. The second part then explores the emerging concept of cyber threats and how they exist. Additionally, technology analysis will be conducted against threats based on human rights. This will be achieved through analysis of the concept of 'securitization' of human rights and by striking a balance between counter-terrorism measures and the protection of human rights at all costs. This article concludes with recommendations on how to balance terrorism and human rights today.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development
Procedia PDF Downloads 40952 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 154951 Antimicrobial Agents Produced by Yeasts
Authors: T. Büyüksırıt, H. Kuleaşan
Abstract:
Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.Keywords: antimicrobial agents, yeast, toxic protein, glycoprotein
Procedia PDF Downloads 362950 Electric Field Effect on the Rise of Single Bubbles during Boiling
Authors: N. Masoudnia, M. Fatahi
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single bubbles, electric field, boiling, effect
Procedia PDF Downloads 270949 Optimization of the Dam Management to Satisfy the Irrigation Demand: A Case Study in Algeria
Authors: Merouane Boudjerda, Bénina Touaibia, Mustapha K Mihoubi
Abstract:
In Algeria, water resources play a crucial role in economic development. But over the last decades, they are relatively limited and gradually decreasing to the detriment of agriculture. The agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Boukerdane dam’s reservoir system in North of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 34% to 60%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, Boukerdane dam, dynamic programming, artificial neural network
Procedia PDF Downloads 131948 The Fit of the Partial Pair Distribution Functions of BaMnFeF7 Fluoride Glass Using the Buckingham Potential by the Hybrid RMC Simulation
Authors: Sidi Mohamed Mesli, Mohamed Habchi, Arslane Boudghene Stambouli, Rafik Benallal
Abstract:
The BaMnMF7 (M=Fe,V, transition metal fluoride glass, assuming isomorphous replacement) have been structurally studied through the simultaneous simulation of their neutron diffraction patterns by reverse Monte Carlo (RMC) and by the Hybrid Reverse Monte Carlo (HRMC) analysis. This last is applied to remedy the problem of the artificial satellite peaks that appear in the partial pair distribution functions (PDFs) by the RMC simulation. The HRMC simulation is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in acceptance criteria. The idea of this work is to apply the Buckingham potential at the title glass by ignoring the van der Waals terms, in order to make a fit of the partial pair distribution functions and give the most possible realistic features. When displaying the partial PDFs, we suggest that the Buckingham potential is useful to describe average correlations especially in similar interactions.Keywords: fluoride glasses, RMC simulation, hybrid RMC simulation, Buckingham potential, partial pair distribution functions
Procedia PDF Downloads 503