Search results for: android; data visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25652

Search results for: android; data visualization

23942 Establishment of Bit Selective Mode Storage Covert Channel in VANETs

Authors: Amarpreet Singh, Kimi Manchanda

Abstract:

Intended for providing the security in the VANETS (Vehicular Ad hoc Network) scenario, the covert storage channel is implemented through data transmitted between the sender and the receiver. Covert channels are the logical links which are used for the communication purpose and hiding the secure data from the intruders. This paper refers to the Establishment of bit selective mode covert storage channels in VANETS. In this scenario, the data is being transmitted with two modes i.e. the normal mode and the covert mode. During the communication between vehicles in this scenario, the controlling of bits is possible through the optional bits of IPV6 Header Format. This implementation is fulfilled with the help of Network simulator.

Keywords: covert mode, normal mode, VANET, OBU, on-board unit

Procedia PDF Downloads 369
23941 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 137
23940 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data

Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Abstract:

Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e., meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.

Keywords: deadline missing, historical data, mobile robots, prediction mechanism

Procedia PDF Downloads 403
23939 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network

Authors: Jui-Chen Huang, Shou-Hsiung Cheng

Abstract:

This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.

Keywords: fall, fuzzy neural network, health belief model, telecare, willingness

Procedia PDF Downloads 202
23938 Effect of Viscous Dissipation on 3-D MHD Casson Flow in Presence of Chemical Reaction: A Numerical Study

Authors: Bandari Shanker, Alfunsa Prathiba

Abstract:

The influence of viscous dissipation on MHD Casson 3-D fluid flow in two perpendicular directions past a linearly stretching sheet in the presence of a chemical reaction is explored in this work. For exceptional circumstances, self-similar solutions are obtained and compared to the given data. The enhancement in the values Ecert number the temperature boundary layer increases. Further, the current findings are observed to be in great accord with the existing data. In both directions, non - dimensional velocities and stress distribution are achieved. The relevant data are graphed and explained quantitatively in relation to changes in the Casson fluid parameter as well as other fluid flow parameters.

Keywords: viscous dissipation, 3-D Casson flow, chemical reaction, Ecert number

Procedia PDF Downloads 195
23937 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 127
23936 Improving Fine Motor Skills in the Hands of Children with ASD with Applying the Fine Motor Activities in Montessori Method of Education

Authors: Yeganeh Faraji, Ned Faraji

Abstract:

The aim of the present study is to search for the effects of training on improving fine hand skills in children with autistic spectrum disorder through the case study statistic method. The sample group was selected by the available sampling method and included four participants. The methodology of this research was a single-subject semi-experimental of AB design. The data were gathered by natural observation. In the next stage, the data were recorded on data record sheets and then presented on diagrams. The sample group was evaluated by an assessment which the researcher created based on Lincoln-Oseretsky’ motor development scale in two pre-test and post-test phases. In order to promote fingers’ fine movement, the Montessori method was applied. Collecting and analyzing data which were shown by the data presentation method and diagrams, proved that it had no significant effect on improving fingers’ fine movement. Therefore, based on the current research findings, it is suggested that future researchers can apply various teaching methods and different tests for improving fine hand skills or increasing the period of training.

Keywords: autism spectrum disorder, Montessori method, fine motor skills, Lincoln-Oseretsky assessment

Procedia PDF Downloads 97
23935 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 167
23934 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points

Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk

Abstract:

The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.

Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression

Procedia PDF Downloads 166
23933 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 379
23932 Relationship between Driving under the Influence and Traffic Safety

Authors: Eun Hak Lee, Young-Hyun Seo, Hosuk Shin, Seung-Young Kho

Abstract:

Among traffic crashes, driving under the influence (DUI) of alcohol is the most dangerous behavior in Seoul, South Korea. In 2016 alone 40 deaths occurred on of 2,857 cases of DUI. Since DUI is one of the major factors in increasing the severity of crashes, the intensive management of DUI required to reduce traffic crash deaths and the crash damages. This study aims to investigate the relationship between DUI and traffic safety in order to establish countermeasures for traffic safety improvement. The analysis was conducted on the habitual drivers who drove under the influence. Information of habitual drivers is matched to crash data and fine data. The descriptive statistics on data used in this study, which consists of driver license acquisition, traffic fine, and crash data provided by the Korean National Police Agency, are described. The drivers under the influence are classified by statistically significant criteria, such as driver’s age, license type, driving experience, and crash reasons. With the results of the analysis, we propose some countermeasures to enhance traffic safety.

Keywords: driving under influence, traffic safety, traffic crash, traffic fine

Procedia PDF Downloads 224
23931 Simplified Measurement of Occupational Energy Expenditure

Authors: J. Wicks

Abstract:

Aim: To develop a simple methodology to allow collected heart rate (HR) data from inexpensive wearable devices to be expressed in a suitable format (METs) to quantitate occupational (and recreational) activity. Introduction: Assessment of occupational activity is commonly done by utilizing questionnaires in combination with prescribed MET levels of a vast range of previously measured activities. However for any individual the intensity of performing a specific activity can vary significantly. Ideally objective measurement of individual activity is preferred. Though there are a wide range of HR recording devices there is a distinct lack methodology to allow processing of collected data to quantitate energy expenditure (EE). The HR index equation expresses METs in relation to relative HR i.e. the ratio of activity HR to resting HR. The use of this equation provides a simple utility for objective measurement of EE. Methods: During a typical occupational work period of approximately 8 hours HR data was recorded using a Polar RS 400 wrist monitor. Recorded data was downloaded to a Windows PC and non HR data was stripped from the ASCII file using ‘Notepad’. The HR data was exported to a spread sheet program and sorted by HR range into a histogram format. Three HRs were determined, namely a resting HR (the HR delimiting the lowest 30 minutes of recorded data), a mean HR and a peak HR (the HR delimiting the highest 30 minutes of recorded data). HR indices were calculated (mean index equals mean HR/rest HR and peak index equals peak HR/rest HR) with mean and peak indices being converted to METs using the HR index equation. Conclusion: Inexpensive HR recording devices can be utilized to make reasonable estimates of occupational (or recreational) EE suitable for large scale demographic screening by utilizing the HR index equation. The intrinsic value of the HR index equation is that it is independent of factors that influence absolute HR, namely fitness, smoking and beta-blockade.

Keywords: energy expenditure, heart rate histograms, heart rate index, occupational activity

Procedia PDF Downloads 297
23930 Empirical Study of Running Correlations in Exam Marks: Same Statistical Pattern as Chance

Authors: Weisi Guo

Abstract:

It is well established that there may be running correlations in sequential exam marks due to students sitting in the order of course registration patterns. As such, a random and non-sequential sampling of exam marks is a standard recommended practice. Here, the paper examines a large number of exam data stretching several years across different modules to see the degree to which it is true. Using the real mark distribution as a generative process, it was found that random simulated data had no more sequential randomness than the real data. That is to say, the running correlations that one often observes are statistically identical to chance. Digging deeper, it was found that some high running correlations have students that indeed share a common course history and make similar mistakes. However, at the statistical scale of a module question, the combined effect is statistically similar to the random shuffling of papers. As such, there may not be the need to take random samples for marks, but it still remains good practice to mark papers in a random sequence to reduce the repetitive marking bias and errors.

Keywords: data analysis, empirical study, exams, marking

Procedia PDF Downloads 184
23929 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 41
23928 Acetic Acid Adsorption and Decomposition on Pt(111): Comparisons to Ni(111)

Authors: Lotanna Ezeonu, Jason P. Robbins, Ziyu Tang, Xiaofang Yang, Bruce E. Koel, Simon G. Podkolzin

Abstract:

The interaction of organic molecules with metal surfaces is of interest in numerous technological applications, such as catalysis, bone replacement, and biosensors. Acetic acid is one of the main products of bio-oils produced from the pyrolysis of hemicellulosic feedstocks. However, their high oxygen content makes them unsuitable for use as fuels. Hydrodeoxygenation is a proven technique for catalytic deoxygenation of bio-oils. An understanding of the energetics and control of the bond-breaking sequences of biomass-derived oxygenates on metal surfaces will enable a guided optimization of existing catalysts and the development of more active/selective processes for biomass transformations to fuels. Such investigations have been carried out with the aid of ultrahigh vacuum and its concomitant techniques. The high catalytic activity of platinum in biomass-derived oxygenate transformations has sparked a lot of interest. We herein exploit infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption(TPD), and density functional theory(DFT) to study the adsorption and decomposition of acetic acid on a Pt(111) surface, which was then compared with Ni(111), a model non-noble metal. We found that acetic acid adsorbs molecularly on the Pt(111) surface, interacting through the lone pair of electrons of one oxygen atomat 90 K. At 140 K, the molecular form is still predominant, with some dissociative adsorption (in the form of acetate and hydrogen). Annealing to 193 K led to complete dehydrogenation of molecular acetic acid species leaving adsorbed acetate. At 440 K, decomposition of the acetate species occurs via decarbonylation and decarboxylation as evidenced by desorption peaks for H₂,CO, CO₂ and CHX fragments (x=1, 2) in theTPD.The assignments for the experimental IR peaks were made using visualization of the DFT-calculated vibrational modes. The results showed that acetate adsorbs in a bridged bidentate (μ²η²(O,O)) configuration. The coexistence of linear and bridge bonded CO was also predicted by the DFT results. Similar molecular acid adsorption energy was predicted in the case of Ni(111) whereas a significant difference was found for acetate adsorption.

Keywords: acetic acid, platinum, nickel, infared-absorption spectrocopy, temperature programmed desorption, density functional theory

Procedia PDF Downloads 111
23927 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 95
23926 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 421
23925 Identify Users Behavior from Mobile Web Access Logs Using Automated Log Analyzer

Authors: Bharat P. Modi, Jayesh M. Patel

Abstract:

Mobile Internet is acting as a major source of data. As the number of web pages continues to grow the Mobile web provides the data miners with just the right ingredients for extracting information. In order to cater to this growing need, a special term called Mobile Web mining was coined. Mobile Web mining makes use of data mining techniques and deciphers potentially useful information from web data. Web Usage mining deals with understanding the behavior of users by making use of Mobile Web Access Logs that are generated on the server while the user is accessing the website. A Web access log comprises of various entries like the name of the user, his IP address, a number of bytes transferred time-stamp etc. A variety of Log Analyzer tools exists which help in analyzing various things like users navigational pattern, the part of the website the users are mostly interested in etc. The present paper makes use of such log analyzer tool called Mobile Web Log Expert for ascertaining the behavior of users who access an astrology website. It also provides a comparative study between a few log analyzer tools available.

Keywords: mobile web access logs, web usage mining, web server, log analyzer

Procedia PDF Downloads 364
23924 Identification and Management of Septic Arthritis of the Untouched Glenohumeral Joint

Authors: Sumit Kanwar, Manisha Chand, Gregory Gilot

Abstract:

Background: Septic arthritis of the shoulder has infrequently been discussed. Focus on infection of the untouched shoulder has not heretofore been described. We present four patients with glenohumeral septic arthritis. Methods: Case 1: A 59 year old male with left shoulder pain in the anterior, posterior and superior aspects. Case 2: A 60 year old male with fever, chills, and generalized muscle aches. Case 3: A 70 year old male with right shoulder pain about the anterior and posterior aspects. Case 4: A 55 year old male with global right shoulder pain, swelling, and limited ROM. Results: In case 1, the left shoulder was affected. Physical examination, swelling was notable, there was global tenderness with a painful range of motion (ROM). The lab values indicated an erythrocyte sedimentation rate (ESR) of 96, and a C-reactive protein (CRP) of 304.30. Imaging studies were performed and MRI indicated a high suspicion for an abscess with osteomyelitis of the humeral head. Our second case’s left arm was affected. He had swelling, global tenderness and painful ROM. His ESR was 38, CRP was 14.9. X-ray showed severe arthritis. Case 3 differed with the right arm being affected. Again, global tenderness and painful ROM was observed. His ESR was 94, and CRP was 10.6. X-ray displayed an eroded glenoid space. Our fourth case’s right shoulder was affected. He had global tenderness and painful, limited ROM. ESR was 108 and CRP was 2.4. X-ray was non-significant. Discussion: Monoarticular septic arthritis of the virgin glenohumeral joint is seldom diagnosed in clinical practice. Common denominators include elevated ESR, painful, limited ROM, and involvement of the dominant arm. The male population is more frequently affected with an average age of 57. Septic arthritis is managed with incision and drainage or needle aspiration of synovial fluid supplemented with 3-6 weeks of intravenous antibiotics. Due to better irrigation and joint visualization, arthroscopy is preferred. Open surgical drainage may be indicated if the above methods fail. Conclusion: If a middle-aged male presents with vague anterior or posterior shoulder pain, elevated inflammatory markers and a low grade fever, an x-ray should be performed. If this displays degenerative joint disease, the complete further workup with advanced imaging, such as an MRI, CT scan, or an ultrasound. If these imaging modalities display anterior space joint effusion with soft tissue involvement, we can suspect septic arthritis of the untouched glenohumeral joint and surgery is indicated.

Keywords: glenohumeral joint, identification, infection, septic arthritis, shoulder

Procedia PDF Downloads 423
23923 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 119
23922 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 277
23921 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea

Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama

Abstract:

Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.

Keywords: satellite, sea surface temperature, upwelling, wind stress

Procedia PDF Downloads 160
23920 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization

Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati

Abstract:

In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.

Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network

Procedia PDF Downloads 383
23919 Investigation of Maritime Accidents with Exploratory Data Analysis in the Strait of Çanakkale (Dardanelles)

Authors: Gizem Kodak

Abstract:

The Strait of Çanakkale, together with the Strait of Istanbul and the Sea of Marmara, form the Turkish Straits System. In other words, the Strait of Çanakkale is the southern gate of the system that connects the Black Sea countries with the other countries of the world. Due to the heavy maritime traffic, it is important to scientifically examine the accident characteristics in the region. In particular, the results indicated by the descriptive statistics are of critical importance in order to strengthen the safety of navigation. At this point, exploratory data analysis offers strategic outputs in terms of defining the problem and knowing the strengths and weaknesses against possible accident risk. The study aims to determine the accident characteristics in the Strait of Çanakkale with temporal and spatial analysis of historical data, using Exploratory Data Analysis (EDA) as the research method. The study's results will reveal the general characteristics of maritime accidents in the region and form the infrastructure for future studies. Therefore, the text provides a clear description of the research goals and methodology, and the study's contributions are well-defined.

Keywords: maritime accidents, EDA, Strait of Çanakkale, navigational safety

Procedia PDF Downloads 101
23918 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 410
23917 SA-SPKC: Secure and Efficient Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography

Authors: Merad Boudia Omar Rafik, Feham Mohammed

Abstract:

Data aggregation in wireless sensor networks (WSNs) provides a great reduction of energy consumption. The limited resources of sensor nodes make the choice of an encryption algorithm very important for providing security for data aggregation. Asymmetric cryptography involves large ciphertexts and heavy computations but solves, on the other hand, the problem of key distribution of symmetric one. The latter provides smaller ciphertexts and speed computations. Also, the recent researches have shown that achieving the end-to-end confidentiality and the end-to-end integrity at the same is a challenging task. In this paper, we propose (SA-SPKC), a novel security protocol which addresses both security services for WSNs, and where only the base station can verify the individual data and identify the malicious node. Our scheme is based on stateful public key encryption (StPKE). The latter combines the best features of both kinds of encryption along with state in order to reduce the computation overhead. Our analysis

Keywords: secure data aggregation, wireless sensor networks, elliptic curve cryptography, homomorphic encryption

Procedia PDF Downloads 301
23916 Solar Seawater Desalination Still with Seawater Preheater Using Efficient Heat Transfer Oil: Numerical Investigation and Data Verification

Authors: Ahmed N. Shmroukh, Gamal Tag Abdel-Jaber, Rashed D. Aldughpassi

Abstract:

The feasibility of improving the performance of the proposed solar still unit which operated in very hot climate is investigated numerically and verified with experimental data. This solar desalination unit with proposed auxiliary device as seawater preheating system using petrol based textherm oil was used to produce pure fresh water from seawater. The effective evaporation area of basin is about 1 m2. The unit was tested in two main operation modes which are normal and with seawater preheating system. The results showed that, there is good agreement between the theoretical data and the experimental data; this means that the numerical model can be accurately dependable for predicting the proposed solar still performance and design parameters. The results also showed that the fresh water productivity of the solar still in the modified preheating case which is higher than normal case, leads to an increase in productivity of 42%.

Keywords: improving productivity, seawater desalination, solar stills, theoretical model

Procedia PDF Downloads 138
23915 The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery

Authors: Khadidja Belbachir, Hafida Belbachir

Abstract:

subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.

Keywords: association rules, distributed data mining, partition, parallel algorithms

Procedia PDF Downloads 422
23914 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 184
23913 The Response of Adaptive Mechanism of Fluorescent Proteins from Coral Species and Target Cell Properties on Signalling Capacity as Biosensor

Authors: Elif Tugce Aksun Tumerkan

Abstract:

Fluorescent proteins (FPs) have become very popular since green fluorescent protein discovered from crystal jellyfish. It is known that Anthozoa species have a wide range of chromophore organisms, and the initial crystal structure for non-fluorescent chromophores obtained from the reef-building coral has been determined. There are also differently coloured pigments in non-bioluminescent Anthozoa zooxanthellate and azooxanthellate which are frequently members of the GFP-like protein family. The development of fluorescent proteins (FPs) and their applications is an outstanding example of basic science leading to practical biotechnological and medical applications. Fluorescent proteins have several applications in science and are used as important indicators in molecular biology and cell-based research. With rising interest in cell biology, FPs have used as biosensor indicators and probes in pharmacology and cell biology. Using fluorescent proteins in genetically encoded metabolite sensors has many advantages than chemical probes for metabolites such as easily introduced into any cell or organism in any sub-cellular localization and giving chance to fixing to fluoresce of different colours or characteristics. There are different factors effects to signalling mechanism when they used as a biosensor. While there are wide ranges of research have been done on the significance and applications of fluorescent proteins, the cell signalling response of FPs and target cell are less well understood. In this study, it was aimed to clarify the response of adaptive mechanisms of coral species such as pH, temperature and symbiotic relationship and target cells properties on the signalling capacity. Corals are a rich natural source of fluorescent proteins that change with environmental conditions such as light, heat stress and injury. Adaptation mechanism of coral species to these types of environmental variations is important factor due to FPs properties have affected by this mechanism. Since fluorescent proteins obtained from nature, their own ecological property like the symbiotic relationship is observed very commonly in coral species and living conditions have the impact on FPs efficiency. Target cell properties also have an effect on signalling and visualization. The dynamicity of detector that used for reading fluorescence and the level of background fluorescence are key parameters for the quality of the fluorescent signal. Among the factors, it can be concluded that coral species adaptive characteristics have the strongest effect on FPs signalling capacity.

Keywords: biosensor, cell biology, environmental conditions, fluorescent protein, sea anemone

Procedia PDF Downloads 171