Search results for: ungauged basins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 180

Search results for: ungauged basins

180 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 137
179 Basins of Attraction for Quartic-Order Methods

Authors: Young Hee Geum

Abstract:

We compare optimal quartic order method for the multiple zeros of nonlinear equations illustrating the basins of attraction. To construct basins of attraction effectively, we take a 600×600 uniform grid points at the origin of the complex plane and paint the initial values on the basins of attraction with different colors according to the iteration number required for convergence.

Keywords: basins of attraction, convergence, multiple-root, nonlinear equation

Procedia PDF Downloads 231
178 Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia

Authors: Fahad Alahmadi, Norhan Abd Rahman, Mohammad Abdulrazzak, Zulikifli Yusop

Abstract:

Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data.

Keywords: urban runoff modelling, arid regions, ungauged catchments, volcanic rocks, Madinah, Saudi Arabia

Procedia PDF Downloads 374
177 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin

Procedia PDF Downloads 297
176 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models

Authors: Hadush Kidane Meresa

Abstract:

The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.

Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland

Procedia PDF Downloads 566
175 Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India

Authors: Chandrakant Gurav, Md Babar, Ajaykumar Asode

Abstract:

Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape.

Keywords: GIS, Kohilla, morphometry, Shivbhadra, Yelganga

Procedia PDF Downloads 135
174 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model

Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari

Abstract:

The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.

Keywords: Tigris River, climate change, water resources, SWAT

Procedia PDF Downloads 176
173 An Analysis on Gravel of Sand-Gravel Bar at Gneiss or Granite Area of the Upper Hongcheon River in South Korea

Authors: Man Kyu Kim, Hansu Shin

Abstract:

This study is an analysis on gravel of sand-gravel bar that stretches variously in the Duchon and Naechon stream basins, which are situated on Hong-Cheon River (a well-developed sand-gravel bar in upstream river) basins in Korea. Naechon stream mostly flows through granite zone but Duchon stream mostly flows through gneiss zone. The characteristics of gravel in the sand-gravel bar of these two branches in the upper Hongcheon River were analyzed in this study in order to understand the geomorphic development of streams depending on the differences of bedrock. Through the analysis on the roundness and flatness of gravel, we figured out an irregular trend following the increase in supply of granite gravel and gneiss gravel as we traveled downstream. The result shows that the two basins have uppermost small basin condition reflecting the mountain valley environment although it may be difficult to do an equivalent comparison to other roundness researches in Korea or in Europe. This study conducted an analysis on gravels found in small scale streams unlike the previous studies trend which mostly studies large rivers. The research provides an opportunity to offer basic data for continuous comparison research on various small basins.

Keywords: flatness, geology, roundness, sand-gravel bar

Procedia PDF Downloads 339
172 Study and Modeling of Flood Watershed in Arid and Semi Arid Regions of Algeria

Authors: Belagoune Fares, Boutoutaou Djamel

Abstract:

The study on floods in Algeria established by the National Agency of Water Resources (ANRH) shows that the country is confronted with the phenomenon of very destructive floods and floods especially in arid and semiarid regions. Flooding of rivers in these areas is less known. They are characterized by their sudden duration (rain showers, thunderstorm).The duration of the flood is of the order of minutes to hours. The human and material damage caused by these floods were still high. The study area encompasses three watersheds in semi-arid and arid south and Algeria. THERE are pools of Chott-Melghir (68,751 km2), highland Constantine-07 (9578 km2) and El Hodna-05 basin (25,843 km2). The total area of this zone is about 104,500km2.Studies of protection against floods and design studies of hydraulic structures (spillway, storm basin, etc.) require the raw data which is often unknown in several places particularly at ungauged wadis of these areas. This makes it very difficult to schedules and managers working in the field of hydraulic studies. The objective of this study and propose a methodology for determining flows in the absence of observations in the semi-arid and arid south eastern Algeria. The objective of the study is to propose a methodology for these areas of flood calculation for ungauged rivers.

Keywords: flood, watershed, specific flow, coefficient of variation, arid

Procedia PDF Downloads 472
171 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study

Authors: Sadi Ali, Yaser Kishawi

Abstract:

As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.

Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, North Gaza

Procedia PDF Downloads 211
170 Application of Acid Base Accounting to Predict Post-Mining Drainage Quality in Coalfields of the Main Karoo Basin and Selected Sub-Basins, South Africa

Authors: Lindani Ncube, Baojin Zhao, Ken Liu, Helen Johanna Van Niekerk

Abstract:

Acid Base Accounting (ABA) is a tool used to assess the total amount of acidity or alkalinity contained in a specific rock sample, and is based on the total S concentration and the carbonate content of a sample. A preliminary ABA test was conducted on 14 sandstone and 5 coal samples taken from coalfields representing the Main Karoo Basin (Highveld, Vryheid and Molteno/Indwe Coalfields) and the Sub-basins (Witbank and Waterberg Coalfields). The results indicate that sandstone and coal from the Main Karoo Basin have the potential of generating Acid Mine Drainage (AMD) as they contain sufficient pyrite to generate acid, with the final pH of samples relatively low upon complete oxidation of pyrite. Sandstone from collieries representing the Main Karoo Basin are characterised by elevated contents of reactive S%. All the studied samples were characterised by an Acid Potential (AP) that is less than the Neutralizing Potential (NP) except for two samples. The results further indicate that the sandstone from the Main Karoo Basin is prone to acid generation as compared to the sandstone from the Sub-basins. However, the coal has a relatively low potential of generating any acid. The application of ABA in this study contributes to an understanding of the complexities governing water-rock interactions. In general, the coalfields from the Main Karoo Basin have much higher potential to produce AMD during mining processes than the coalfields in the Sub-basins.

Keywords: Main Karoo Basin, sub-basin, coal, sandstone, acid base accounting (ABA)

Procedia PDF Downloads 404
169 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins Performance: North Gaza Emergency Sewage Treatment Plant as Case Study

Authors: Sadi Ali, Yaser Kishawi

Abstract:

As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.

Keywords: SAT, wastewater quality, soil remediation, North Gaza

Procedia PDF Downloads 214
168 River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand

Authors: S. Chuenchooklin

Abstract:

This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.

Keywords: HEC-RAS, HMS, pumping stations, cascade weirs

Procedia PDF Downloads 362
167 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins

Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier

Abstract:

Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.

Keywords: environmental sustainability, optimization, real time control, storm water management

Procedia PDF Downloads 155
166 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware

Authors: Le Zhao, Alain Nogaret

Abstract:

We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections.

Keywords: central pattern generator, winnerless competition principle, artificial neural networks, synapses

Procedia PDF Downloads 439
165 Study on a Family of Optimal Fourth-Order Multiple-Root Solver

Authors: Young Hee Geum

Abstract:

In this paper,we develop the complex dynamics of a family of optimal fourth-order multiple-root solvers and plot their basins of attraction. Mobius conjugacy maps and extraneous fixed points applied to a prototype quadratic polynomial raised to the power of the known integer multiplicity m are investigated. A 300 x 300 uniform grid centered at the origin covering 3 x 3 square region is chosen to visualize the initial values on each basin of attraction in accordance with a coloring scheme based on their dynamical behavior. The illustrative basins of attractions applied to various test polynomials and the corresponding statistical data for convergence are shown to confirm the theoretical convergence.

Keywords: basin of attraction, conjugacy, fourth-order, multiple-root finder

Procedia PDF Downloads 266
164 Basin Professor, Petroleum Geology Assessor in Indonesia Basin

Authors: Arditya Nugraha, Herry Gunawan, Agung P. Widodo

Abstract:

The various possible strategies to find hydrocarbon are explored within a wide ranging of efforts. It started to identify petroleum concept in the basin. The main objectives of this paper are to integrate and develop information, knowledge, and evaluation from Indonesia’s sedimentary basins system in terms of their suitability for exploration activity and estimate the hydrocarbon potential available. The system which compiled data information and knowledge and comprised exploration and production data of all basins in Indonesia called as Basin Professor which stands for Basin Professional and Processor. Basin Professor is a website application using Geography Information System which consists of all information about basin montage, basin summary, petroleum system, stratigraphy, development play, risk factor, exploration history, working area, regional cross section, well correlation, prospect & lead inventory and infrastructure spatial. From 82 identified sedimentary basins, North Sumatra, Central Sumatra, South Sumatera, East Java, Kutai, and Tarakan basins are respectively positioned of the Indonesia’ s mature basin and the most productive basin. The Eastern of Indonesia also have many hydrocarbon potential and discovered several fields in Papua and East Abadi. Basin Professor compiled the well data in all of the basin in Indonesia from mature basin to frontier basin. Well known geological data, subsurface mapping, prospect and lead, resources and established infrastructures are the main factors make these basins have higher suitability beside another potential basin. The hydrocarbon potential resulted from this paper based on the degree of geological data, petroleum, and economic evaluation. Basin Professor has provided by a calculator tool in lead and prospect for estimate the hydrocarbon reserves, recoverable in place and geological risk. Furthermore, the calculator also defines the preliminary economic evaluation such as investment, POT IRR and infrastructures in each basin. From this Basin Professor, petroleum companies are able to estimate that Indonesia has a huge potential of hydrocarbon oil and gas reservoirs and still interesting for hydrocarbon exploration and production activity.

Keywords: basin summary, petroleum system, resources, economic evaluation

Procedia PDF Downloads 259
163 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 95
162 Analysis and Evaluation of the Water Catch Basins of the Erosive-Mudflow Rivers of Georgia on the Example of the River Vere

Authors: Natia Gavardashvili

Abstract:

On June 13-14 of 2015, a landslide in village Akhaldaba was formed as a result of the intense rains in the water catch basin of the river Vere. As a result of the landslide movement, freshets and mudflows originated, and unfortunately, there were victims: zoo animals and birds were drawn in the flood and 12 people died due to the flooded motor road. The goal of the study is to give the analysis of the results of the field and scientific research held in 2015-2017 and to generalize them to the water catch basins of the erosive-mudflow rivers of other mountain landscapes of Georgia. By considering the field and scientific works, the main geographic, geological, climatic, hydrological and hydraulic properties of the erosive-mudflow tributaries of the water catch basin of the river Vere were evaluated and the probabilities of mudflow formation by considering relevant risk-factors were identified. The typology of the water catch basins of erosive-mudflow rivers of Georgia was identified on the example of the river Vere based on the field and scientific study, and their genesis, frequency of mudflow formation and volume of the drift material was identified. By using the empirical and theoretical dependencies, the amount of solid admixtures in the mudflow formed in the gorge of the river Jokhona, the right tributary of the river Vere was identified by considering the shape of the stones.

Keywords: water catchment basin, erosion, mudflow, typology

Procedia PDF Downloads 254
161 Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin

Authors: Golaleh Ghaffari

Abstract:

A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region.

Keywords: erosion, Gheshlagh dam, sediment yield, SWAT

Procedia PDF Downloads 496
160 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia

Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah

Abstract:

The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.

Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin

Procedia PDF Downloads 325
159 Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods

Authors: Ramandeep Behl, S. S. Motsa

Abstract:

The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.

Keywords: basins of attraction, nonlinear equations, simple roots, super-Halley

Procedia PDF Downloads 494
158 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia

Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui

Abstract:

To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.

Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia

Procedia PDF Downloads 272
157 The Effect of Finding and Development Costs and Gas Price on Basins in the Barnett Shale

Authors: Michael Kenomore, Mohamed Hassan, Amjad Shah, Hom Dhakal

Abstract:

Shale gas reservoirs have been of greater importance compared to shale oil reservoirs since 2009 and with the current nature of the oil market, understanding the technical and economic performance of shale gas reservoirs is of importance. Using the Barnett shale as a case study, an economic model was developed to quantify the effect of finding and development costs and gas prices on the basins in the Barnett shale using net present value as an evaluation parameter. A rate of return of 20% and a payback period of 60 months or less was used as the investment hurdle in the model. The Barnett was split into four basins (Strawn Basin, Ouachita Folded Belt, Forth-worth Syncline and Bend-arch Basin) with analysis conducted on each of the basin to provide a holistic outlook. The dataset consisted of only horizontal wells that started production from 2008 to at most 2015 with 1835 wells coming from the strawn basin, 137 wells from the Ouachita folded belt, 55 wells from the bend-arch basin and 724 wells from the forth-worth syncline. The data was analyzed initially on Microsoft Excel to determine the estimated ultimate recoverable (EUR). The range of EUR from each basin were loaded in the Palisade Risk software and a log normal distribution typical of Barnett shale wells was fitted to the dataset. Monte Carlo simulation was then carried out over a 1000 iterations to obtain a cumulative distribution plot showing the probabilistic distribution of EUR for each basin. From the cumulative distribution plot, the P10, P50 and P90 EUR values for each basin were used in the economic model. Gas production from an individual well with a EUR similar to the calculated EUR was chosen and rescaled to fit the calculated EUR values for each basin at the respective percentiles i.e. P10, P50 and P90. The rescaled production was entered into the economic model to determine the effect of the finding and development cost and gas price on the net present value (10% discount rate/year) as well as also determine the scenario that satisfied the proposed investment hurdle. The finding and development costs used in this paper (assumed to consist only of the drilling and completion costs) were £1 million, £2 million and £4 million while the gas price was varied from $2/MCF-$13/MCF based on Henry Hub spot prices from 2008-2015. One of the major findings in this study was that wells in the bend-arch basin were least economic, higher gas prices are needed in basins containing non-core counties and 90% of the Barnet shale wells were not economic at all finding and development costs irrespective of the gas price in all the basins. This study helps to determine the percentage of wells that are economic at different range of costs and gas prices, determine the basins that are most economic and the wells that satisfy the investment hurdle.

Keywords: shale gas, Barnett shale, unconventional gas, estimated ultimate recoverable

Procedia PDF Downloads 275
156 Spatial Variability of Phyotoplankton Assemblages during the Intermonsoon in Baler Bay, Outer and Inner Casiguran Sound, Aurora, Fronting Philipine Rise

Authors: Aime P. Lampad-Dela Pena, Rhodora V. Azanza, Cesar L. Villanoy, Ephrime B. Metillo, Aletta T. Yniguez

Abstract:

Phytoplankton community changes in relation to environmental parameters were compared between and within, the three interconnected basins. Phytoplankton samples were collected from thirteen stations of Baler Bay and Casiguran Sound, Aurora last May 2013 by filtering 10 L buckets of surface water and 5 L Niskin samples at 20 meters and at 30 to 40 meters depths through a 20um sieve. Duplicate samples per station were preserved, counted, and identified up to genus level, in order to determine the horizontal and vertical spatial variation of different phytoplankton functional groups during the summer ebb and flood flow. Baler Bay, Outer and Inner Casiguran Sound had a total of 89 genera from four phytoplankton groups: Diatom (62), Dinoflagellate (25), Silicoflagellate (1) and Cyanobacteria (1). Non-toxic diatom Chaetoceros spp. bloom (averaged 2.0 x 105 to 2.73 x 106 cells L⁻¹) co-existed with Bacteriastrum spp. at surface waters in Inner and Outer Casiguran. Pseudonitzschia spp. (1.73 x 106 cells L⁻¹) bloomed at bottom waters of the innermost embayment near Casiguran mangrove estuary. Cyanobacteria Trichodesmium spp. significantly increased during ebb tide at the mid-water layers (20 meters depth) in the three basins (ranged from 6, 900 to 15, 125 filaments L⁻¹), forming another bloom. Gonyaulax spp. - dominated dinoflagellate did not significantly change with depth across the three basins. Overall, diatoms and dinoflagellates community assemblages significantly changed between sites (p < 0.001) while diatoms and cyanobacteria varied within Casiguran outer and inner sites (p < 0.001) only. Tidal fluctuations significantly affected dinoflagellates and diatom groups (p < 0.001) in inner and baler sites. Chlorophyll significantly varied between (KW, p < 0.001) and within each basins (KW, p < 0.05), no tidal influence, with the highest value at inner Casiguran and at deeper waters indicating deep chlorophyll maxima. Aurora’s distinct shelf morphology favoring counterclockwise circulation pattern, advective transport, and continuous stratification of the water column could basically affect the phytoplankton assemblages and water quality of Baler Bay and Casiguran inner and outer basins. Observed spatial phytoplankton community changes with multi-species diatom and cyanobacteria bloom at different water layers of the three inter-connected embayments would be vital for any environmental management initiatives in Aurora.

Keywords: aurora fronting Philippines Rise, intermonsoon, multi-species diatom bloom, spatial variability

Procedia PDF Downloads 115
155 Impact of Climate Change on Flow Regime in Himalayan Basins, Nepal

Authors: Tirtha Raj Adhikari, Lochan Prasad Devkota

Abstract:

This research studied the hydrological regime of three glacierized river basins in Khumbu, Langtang and Annapurna regions of Nepal using the Hydraologiska Byrans Vattenbalansavde (HBV), HVB-light 3.0 model. Future scenario of discharge is also studied using downscaled climate data derived from statistical downscaling method. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data from Coupled Global Circulation Model 3 (CGCM3) was used for the climate projection, under A2 and A1B SRES scenarios. In addition, the observed historical temperature, precipitation and discharge data were collected from 14 different hydro-metrological locations for the implementation of this study, which include watershed and hydro-meteorological characteristics, trends analysis and water balance computation. The simulated precipitation and temperature were corrected for bias before implementing in the HVB-light 3.0 conceptual rainfall-runoff model to predict the flow regime, in which Groups Algorithms Programming (GAP) optimization approach and then calibration were used to obtain several parameter sets which were finally reproduced as observed stream flow. Except in summer, the analysis showed that the increasing trends in annual as well as seasonal precipitations during the period 2001 - 2060 for both A2 and A1B scenarios over three basins under investigation. In these river basins, the model projected warmer days in every seasons of entire period from 2001 to 2060 for both A1B and A2 scenarios. These warming trends are higher in maximum than in minimum temperatures throughout the year, indicating increasing trend of daily temperature range due to recent global warming phenomenon. Furthermore, there are decreasing trends in summer discharge in Langtang Khola (Langtang region) which is increasing in Modi Khola (Annapurna region) as well as Dudh Koshi (Khumbu region) river basin. The flow regime is more pronounced during later parts of the future decades than during earlier parts in all basins. The annual water surplus of 1419 mm, 177 mm and 49 mm are observed in Annapurna, Langtang and Khumbu region, respectively.

Keywords: temperature, precipitation, water discharge, water balance, global warming

Procedia PDF Downloads 316
154 Evaluation of Shale Gas Resource Potential of Cambay Basin, Gujarat, India

Authors: Vaishali Sharma, Anirbid Sircar

Abstract:

Energy is one of the most eminent and fundamental strategic commodity, scarcity of which may poses great impact on the functioning of the entire commodity. According to the present study, the estimated reserves of gas in India as on 31.03.2015 stood at 1427.15 BCM. It is expected that the gas demand is set to grow significantly at a CAGR of 7% from 226.7 MMSCMD in 2012-13 to 713.5 MMSCMD in 2009-30. To bridge the gap between the demand and supply of energy, the interest towards the exploration and exploitation of unconventional resources like – Shale gas, Coal bed methane, Gas hydrates, tight gas etc has immensed. Nowadays, Shale gas prospects are emerging rapidly as a promising energy source globally. The United States of America (USA) has 240 TCF of proved reserves of shale gas and presently contributed more than 17% of total gas production. As compared to USA, shale gas production in India is at nascent stage. A resource potential of around 2000 TCF is estimated and according to preliminary data analysis, basins like Gondwana, Cambay, Krishna – Godavari, Cauvery, Assam-Arakan, Rajasthan, Vindhyan, and Bengal are the most promising shale gas basins. In the present study, the careful evaluation of Cambay Shale (Indian Shale) properties like geological age, lithology, depth, organically rich thickness, TOC, thermal maturity, porosity, permeability, clay content, quartz content, Kerogen type, Hydrocarbon window etc. has been done. And then the detailed comparison of Indian shale with USA shale will be discussed. This study investigates qualitative and quantitative nature of potential shale basins which will be helpful from exploration and exploitation point of view.

Keywords: shale, shale gas, energy source, lithology

Procedia PDF Downloads 265
153 Analyzing Changes in Runoff Patterns Due to Urbanization Using SWAT Models

Authors: Asawari Ajay Avhad

Abstract:

The Soil and Water Assessment Tool (SWAT) is a hydrological model designed to predict the complex interactions within natural and human-altered watersheds. This research applies the SWAT model to the Ulhas River basin, a small watershed undergoing urbanization and characterized by bowl-like topography. Three simulation scenarios (LC17, LC22, and LC27) are investigated, each representing different land use and land cover (LULC) configurations, to assess the impact of urbanization on runoff. The LULC for the year 2027 is generated using the MOLUSCE Plugin of QGIS, incorporating various spatial factors such as DEM, Distance from Road, Distance from River, Slope, and distance from settlements. Future climate data is simulated within the SWAT model using historical data spanning 30 years. A susceptibility map for runoff across the basin is created, classifying runoff into five susceptibility levels ranging from very low to very high. Sub-basins corresponding to major urban settlements are identified as highly susceptible to runoff. With consideration of future climate projections, a slight increase in runoff is forecasted. The reliability of the methodology was validated through the identification of sub-basins known for experiencing severe flood events, which were determined to be highly susceptible to runoff. The susceptibility map successfully pinpointed these sub-basins with a track record of extreme flood occurrences, thus reinforcing the credibility of the assessment methodology. This study suggests that the methodology employed could serve as a valuable tool in flood management planning.

Keywords: future land use impact, flood management, run off prediction, ArcSWAT

Procedia PDF Downloads 16
152 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 387
151 Estimation of Small Hydropower Potential Using Remote Sensing and GIS Techniques in Pakistan

Authors: Malik Abid Hussain Khokhar, Muhammad Naveed Tahir, Muhammad Amin

Abstract:

Energy demand has been increased manifold due to increasing population, urban sprawl and rapid socio-economic improvements. Low water capacity in dams for continuation of hydrological power, land cover and land use are the key parameters which are creating problems for more energy production. Overall installed hydropower capacity of Pakistan is more than 35000 MW whereas Pakistan is producing up to 17000 MW and the requirement is more than 22000 that is resulting shortfall of 5000 - 7000 MW. Therefore, there is a dire need to develop small hydropower to fulfill the up-coming requirements. In this regards, excessive rainfall, snow nurtured fast flowing perennial tributaries and streams in northern mountain regions of Pakistan offer a gigantic scope of hydropower potential throughout the year. Rivers flowing in KP (Khyber Pakhtunkhwa) province, GB (Gilgit Baltistan) and AJK (Azad Jammu & Kashmir) possess sufficient water availability for rapid energy growth. In the backdrop of such scenario, small hydropower plants are believed very suitable measures for more green environment and power sustainable option for the development of such regions. Aim of this study is to estimate hydropower potential sites for small hydropower plants and stream distribution as per steam network available in the available basins in the study area. The proposed methodology will focus on features to meet the objectives i.e. site selection of maximum hydropower potential for hydroelectric generation using well emerging GIS tool SWAT as hydrological run-off model on the Neelum, Kunhar and the Dor Rivers’ basins. For validation of the results, NDWI will be computed to show water concentration in the study area while overlaying on geospatial enhanced DEM. This study will represent analysis of basins, watershed, stream links, and flow directions with slope elevation for hydropower potential to produce increasing demand of electricity by installing small hydropower stations. Later on, this study will be benefitted for other adjacent regions for further estimation of site selection for installation of such small power plants as well.

Keywords: energy, stream network, basins, SWAT, evapotranspiration

Procedia PDF Downloads 190