Search results for: Mohammad Reza Golhashem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1746

Search results for: Mohammad Reza Golhashem

36 A Case Study on Problems Originated from Critical Path Method Application in a Governmental Construction Project

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

In public construction projects, determining the contract period in the award phase is one of the most important factors. The contract period establishes the baseline for creating the cash flow curve and progress payment planning in the post-award phase. If overestimated, project duration causes losses for both the owner and the contractor. Therefore, it is essential to base construction project duration on reliable forecasting. In Turkey, schedules are usually built using the bar chart (Gantt) schedule, especially for governmental construction agencies. The usage of these schedules is limited for bidding purposes. Although the bar-chart schedule is useful in some cases, it lacks logical connections between activities; it would be harder to obtain the activities that have more effects than others on the project's total duration, especially in large complex projects. In this study, a construction schedule is prepared with Critical Path Method (CPM) that addresses the above-mentioned discrepancies. CPM is a simple and effective method that displays project time and critical paths, showing results of forward and backward calculations with considering the logic relationships between activities; it is a powerful tool for planning and managing all kinds of construction projects and is a very convenient method for the construction industry. CPM provides a much more useful and precise approach than traditional bar-chart diagrams that form the basis of construction planning and control. CPM has two main application utilities in the construction field; the first one is obtaining project duration, which is called an as-planned schedule that includes as-planned activity durations with relationships between subsequent activities. Another utility is during the project execution; each activity is tracked, and their durations are recorded in order to obtain as-built schedule, which is named as a black box of the project. The latter is more useful for delay analysis, and conflict resolutions. These features of CPM have been popular around the world. However, it has not been yet extensively used in Turkey. In this study, a real construction project is investigated as a case study; CPM-based scheduling is used for establishing both of as-built and as-planned schedules. Problems that emerged during the construction phase are identified and categorized. Subsequently, solutions are suggested. Two scenarios were considered. In the first scenario, project progress was monitored based as CPM was used to track and manage progress; this was carried out based on real-time data. In the second scenario, project progress was supposedly tracked based on the assumption that the Gantt chart was used. The S-curves of the two scenarios are plotted and interpreted. Comparing the results, possible faults of the latter scenario are highlighted, and solutions are suggested. The importance of CPM implementation has been emphasized and it has been proposed to make it mandatory for preparation of construction schedule based on CPM for public construction projects contracts.

Keywords: as-built, case-study, critical path method, Turkish government sector projects

Procedia PDF Downloads 119
35 The Role of Non-Governmental Organizations in Promoting Humanitarian Development: A Case Study in Saudi Arabia

Authors: Muamar Salameh, Rania Sinno

Abstract:

Non-governmental organizations in Saudi Arabia play a vital role in promoting humanitarian development. Though this paper will emphasize this role and will provide a specific case study on the role of Prince Mohammad Bin Fahd Foundation for Humanitarian Development, yet many organizations do not provide transparent information for the accomplishments of the NGOs. This study will provide answers to the main research question regarding this role that NGOs play in promoting humanitarian development. The recent law regulating associations and foundations in Saudi Arabia was issued in December 2015 and went into effect March 2016. Any new association or foundation will need to follow these regulations. Though the registration, implementation, and workflow of the organizations still need major improvement and development, yet, the currently-registered organizations have several notable achievements. Most of these organizations adopt a centralized administration approach which in many cases still hinders progress and may be an obstacle in achieving and reaching a larger population of beneficiaries. A large portion of the existing organizations are charities, some of which have some sort of government affiliation. The laws and regulations limit registration of new organizations. Any violations to Islamic Sharia, contradictions to public order, breach to national unity, foreign and foreign-affiliation organizations prohibits any organization from registration. The lack of transparency in the operations and inner-working of NGOs in Saudi Arabia is apparent for the public. However, the regulations invoke full transparency with the governing ministry. This transparency should be available to the public and in specific to the target population that are eligible to benefit from the NGOs services. In this study, we will provide an extensive review of all related laws, regulations, policies and procedures related to all NGOs in the Eastern Province of Saudi Arabia. This review will include some examples of current NGOs, services and target population. The study will determine the main accomplishments of reputable NGOs that have impacted positively the Saudi communities. The results will highlight and concentrate on actions, services and accomplishments that achieve sustainable assistance in promoting humanitarian development and advance living conditions of target populations of the Saudi community. In particular, we will concentrate on a case study related to PMFHD; one of the largest foundations in the Eastern Province of Saudi Arabia. The authors have access to the data related to this foundation and have access to the foundation administration to gather, analyze and conclude the findings of this group. The study will also analyze whether the practices, budgets, services and annual accomplishments of the foundation have fulfilled the humanitarian role of the foundation while meeting the governmental requirements, with an analysis in the light of the new laws. The findings of the study show that great accomplishments for advancing and promoting humanitarian development in Saudi community and international communities have been achieved. Several examples will be included from several NGOs, with specific examples from PMFHD.

Keywords: development, foundation, humanitarian, non-governmental organization, Saudi Arabia

Procedia PDF Downloads 296
34 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 163
33 Rheological Characterization of Polysaccharide Extracted from Camelina Meal as a New Source of Thickening Agent

Authors: Mohammad Anvari, Helen S. Joyner (Melito)

Abstract:

Camelina sativa (L.) Crantz is an oilseed crop currently used for the production of biofuels. However, the low price of diesel and gasoline has made camelina an unprofitable crop for farmers, leading to declining camelina production in the US. Hence, the ability to utilize camelina byproduct (defatted meal) after oil extraction would be a pivotal factor for promoting the economic value of the plant. Camelina defatted meal is rich in proteins and polysaccharides. The great diversity in the polysaccharide structural features provides a unique opportunity for use in food formulations as thickeners, gelling agents, emulsifiers, and stabilizers. There is currently a great degree of interest in the study of novel plant polysaccharides, as they can be derived from readily accessible sources and have potential application in a wide range of food formulations. However, there are no published studies on the polysaccharide extracted from camelina meal, and its potential industrial applications remain largely underexploited. Rheological properties are a key functional feature of polysaccharides and are highly dependent on the material composition and molecular structure. Therefore, the objective of this study was to evaluate the rheological properties of the polysaccharide extracted from camelina meal at different conditions to obtain insight on the molecular characteristics of the polysaccharide. Flow and dynamic mechanical behaviors were determined under different temperatures (5-50°C) and concentrations (1-6% w/v). Additionally, the zeta potential of the polysaccharide dispersion was measured at different pHs (2-11) and a biopolymer concentration of 0.05% (w/v). Shear rate sweep data revealed that the camelina polysaccharide displayed shear thinning (pseudoplastic) behavior, which is typical of polymer systems. The polysaccharide dispersion (1% w/v) showed no significant changes in viscosity with temperature, which makes it a promising ingredient in products requiring texture stability over a range of temperatures. However, the viscosity increased significantly with increased concentration, indicating that camelina polysaccharide can be used in food products at different concentrations to produce a range of textures. Dynamic mechanical spectra showed similar trends. The temperature had little effect on viscoelastic moduli. However, moduli were strongly affected by concentration: samples exhibited concentrated solution behavior at low concentrations (1-2% w/v) and weak gel behavior at higher concentrations (4-6% w/v). These rheological properties can be used for designing and modeling of liquid and semisolid products. Zeta potential affects the intensity of molecular interactions and molecular conformation and can alter solubility, stability, and eventually, the functionality of the materials as their environment changes. In this study, the zeta potential value significantly decreased from 0.0 to -62.5 as pH increased from 2 to 11, indicating that pH may affect the functional properties of the polysaccharide. The results obtained in the current study showed that camelina polysaccharide has significant potential for application in various food systems and can be introduced as a novel anionic thickening agent with unique properties.

Keywords: Camelina meal, polysaccharide, rheology, zeta potential

Procedia PDF Downloads 245
32 The Link between Strategic Sense-Making and Performance in Dubai Public Sector

Authors: Mohammad Rahman, Guy Burton, Megan Mathias

Abstract:

Strategic management as an organizational practice was adopted by the public sector in the New Public Management (NPM) era that began in most parts of the world in the 1980s. Strategy as a new public management concept was subscribed by governments in both developed and developing world, as they were persuaded that clearly defined vision, mission and goals, as well as programs and projects - aligned with the goals - could potentially help achieve government vision at the national level and organizational goals at the service-delivery level. The advocates for strategic management in the public sector saw an inherent link between strategy and performance, claiming that the implementation of organizational strategy has an effect on the overall performance of an organization. Arguably, many government entities that have failed in enhancing team and individual performance had poorly-designed strategy or weak strategy implementation. Another key argument about low-level performance is linked with lack of strategic sense-making and orientation by middle managers in particular. Scholars maintain that employees at all levels need to understand strategic management plan in order to facilitate its implementation. Therefore, involving employees (particularly the middle managers) from the beginning potentially helps an organization avoid the drop in performance, and on the contrary would increase their commitment. The United Arab Emirates (UAE) is well known for adopting public sector reform strategies and tools since the 1990s. This observation is contextually pertinent in the case of the Government of Dubai, which has provided a Strategy Execution Guide to all of its entities to achieve high level strategic success in service delivery. The Dubai public sector also adopts road maps for e-Government, Smart Dubai, Expo 2020, investment, environment, education, health and other sectors. Evidently, some of these strategies are bringing tangible (e.g. Smart Dubai transformation) results in a transformational manner. However, the amount of academic research and literature on the strategy process vis-à-vis staff performance in the Government of Dubai is limited. In this backdrop, this study examines how individual performance of public sector employees in Dubai is linked with their sense-making, engagement and orientation with strategy development and implementation processes. Based on a theoretical framework, this study will undertake a sample-based questionnaire survey amongst middle managers in Dubai public sector to (a) measure the level of engagement of middle managers in strategy development and implementation processes as perceived by them; (b) observe the organizational landscape in which role expectations are placed on middle managers; and (c) examine the impact of employee engagement in strategy development process and the conditions for role expectations on individual performance. The paper is expected to provide new insights on the interface between strategic sense-making and performance in order to contribute a better understanding of the current culture/practices of staff engagement in strategic management in the public sector of Dubai.

Keywords: employee performance, government of Dubai, middle managers, strategic sense-making

Procedia PDF Downloads 197
31 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 163
30 Assessment of Food Safety Culture in Select Restaurants and a Produce Market in Doha, Qatar

Authors: Ipek Goktepe, Israa Elnemr, Hammad Asim, Hao Feng, Mosbah Kushad, Hee Park, Sheikha Alzeyara, Mohammad Alhajri

Abstract:

Food safety management in Qatar is under the shared oversight of multiple agencies in two government ministries (Ministry of Public Health and Ministry of Municipality and Environment). Despite the increasing number and diversity of the food service establishments, no systematic food surveillance system is in place in the country, which creates a gap in terms of determining the food safety attitudes and practices applied in the food service operations. Therefore, this study seeks to partially address this gap through determination of food safety knowledge among food handlers, specifically with respect to food preparation and handling practices, and sanitation methods applied in food service providers (FSPs) and a major market in Doha, Qatar. The study covered a sample of 53 FSPs randomly selected out of 200 FSPs. Face-to-face interviews with managers at participating FSPs were conducted using a 40-questions survey. Additionally, 120 produce handlers who are in direct contact with fresh produce at the major produce market in Doha were surveyed using a questionnaire containing 21 questions. A written informed consent was obtained from each survey participant. The survey data were analyzed using the chi-square test and correlation test. The significance was evaluated at p ˂ 0.05. The results from the FSPs surveys indicated that the average age of FSPs was 11 years, with the oldest and newest being established in 1982 and 2015, respectively. Most managers (66%) had college degree and 68% of them were trained on the food safety management system known as HACCP. These surveys revealed that FSP managers’ training and education level were highly correlated with the probability of their employees receiving food safety training while managers with lower education level had no formal training on food safety for themselves nor for their employees. Casual sit-in and fine dine-in restaurants consistently kept records (100%), followed by fast food (36%), and catering establishments (14%). The produce handlers’ survey results showed that none of the workers had any training on safe produce handling practices. The majority of the workers were in the age range of 31-40 years (37%) and only 38% of them had high-school degree. Over 64% of produce handlers claimed to wash their hands 4-5 times per day but field observations pointed limited handwashing as there was soap in the settings. This observation suggests potential food safety risks since a significant correlation (p ˂ 0.01) between the educational level and the hand-washing practices was determined. This assessment on food safety culture through determination of food and produce handlers' level of knowledge and practices, the first of its kind in Qatar, demonstrated that training and education are important factors which directly impact the food safety culture in FSPs and produce markets. These findings should help in identifying the need for on-site training of food handlers for effective food safety practices in food establishments in Qatar.

Keywords: food safety, food safety culture, food service providers, food handlers

Procedia PDF Downloads 339
29 Pedagogy of the Oppressed: Fifty Years Later. Implications for Policy and Reforms

Authors: Mohammad Ibrahim Alladin

Abstract:

The Pedagogy of the Oppressed by Paulo Freire was first published in 1970. Since its publication it has become one of most cited book in the social sciences. Over a million copies have been sold worldwide. The Pedagogy of the Oppressed by Paulo Freire was published in 1970 (New York: Herder and Herder), The book has caused a “revolution” in the education world and his theory has been examined and analysed. It has influenced educational policy, curriculum development and teacher education. The revolution started half a century ago. “Paolo Freire’s Pedagogy of the Oppressed develops a theory of education fitted to the needs of the disenfranchised and marginalized members of capitalist societies. Combining educational and political philosophy, the book offers an analysis of oppression and a theory of liberation. Freire believes that traditional education serves to support the dominance of the powerful within society and thereby maintain the powerful’s social, political, and economic status quo. To overcome the oppression endemic to an exploitative society, education must be remade to inspire and enable the oppressed in their struggle for liberation. This new approach to education focuses on consciousness-raising, dialogue, and collaboration between teacher and student in the effort to achieve greater humanization for all. For Freire, education is political and functions either to preserve the current social order or to transform it. The theories of education and revolutionary action he offers in Pedagogy of the Oppressed are addressed educators committed to the struggle for liberation from oppression. Freire’s own commitment to this struggle developed through years of teaching literacy to Brazilian and Chilean peasants and laborers. His efforts at educational and political reform resulted in a brief period of imprisonment followed exile from his native Brazil for fifteen years. In Pedagogy of the Oppressed begins Freire asserts the importance of consciousness-raising, or conscientização, as the means enabling the oppressed to recognize their oppression and commit to the effort to overcome it, taking full responsibility for themselves in the struggle for liberation. He addresses the “fear of freedom,” which inhibits the oppressed from assuming this responsibility. He also cautions against the dangers of sectarianism, which can undermine the revolutionary purpose as well as serve as a refuge for the committed conservative. Freire provides an alternative view of education by attacking tradition education and knowledge. He is highly critical of how is imparted and how knowledge is structured that limits the learner’s thinking. Hence, education becomes oppressive and school functions as an institution of social control. Since its publication, education has gone through a series of reforms and in some areas total transformation. This paper addresses the following: The role of education in social transformation The teacher/learner relationship :Critical thinking The paper essentially examines what happened in the last fifty years since Freire’s book. It seeks to explain what happened to Freire’s education revolution, and what is the status of the movement that started almost fifty years ago.

Keywords: pedagogy, reform, curriculum, teacher education

Procedia PDF Downloads 93
28 Fear of Gender-Based Crime and Women Empowerment: An Empirical Study among the Urban Residents of Bangladesh

Authors: Mohammad Ashraful Alam, Biro Judit

Abstract:

Fear of gender-based crime and fear of crime victimization for women is a major concern in the urban areas of Bangladesh. Based on the recent data from various human rights organizations and international literature the study found that gender-based crime especially sexual assault and rape are increasing in Bangladesh at a significant rate in comparison to other countries. The major focus of the study was to identify the relationship between fear of gender-based crime and women empowerment. To explore the fact the study followed the mixed methodological approach comprising with quantitative and qualitative methods and used secondary information from national and international sources. Corresponding global pictures the present study found that gender, age, complexion, social position, and ethnicity were more common factors of sexual assault and victimization in Bangladesh which lead to women become more fearful about crime victimization than men. Fear of gender-based crime traumatizes women which leads to withdrawal of their non-essential everyday works and some time from the essential works based on their social position, financial status, and social honor in the society. The increasing crime rate also increases the propensity to fear of criminal victimization, traumatization, and feeling of helplessness which make them vulnerable. The patriarchal culture and practices in Bangladesh based on religious culture and established social norms women always feel defenseless therefore they withdraw themselves from various social activities and own interest. Women who have already victimized feel more fear and become traumatized, and who do not victimize yet but know the severity of victimization from the media and others’ have the feeling of fear of crime. Women who find themselves as weak bonding and low networks with their neighbors and living for a short duration have a feeling of more fear and avoid visiting a certain place in a certain time and avoid some social activities. The study found the young women have more possibilities to become victimized through the feeling of fear of crime is higher among elderly women than young. Though women feel fear of all kinds of crime but usually all aged women are more fearful of sexual assault and rape than other violent crimes. Therefore, elderly women and another person in the family does not allow younger girls to go and involve outside activities to secure their family status. On the other hand, fear of crime in public transport is more common to all aged women at a higher level and sometimes they compromise their freedom, independence, financial opportunities, the job only to avoid the perceived threat, and save their social and cultural honor. The study also explores that fear of crime does not always depend on crime rate but the crime news, the severity of the crime, delay justice, the ineffectiveness of police, bail of criminals, corruption and political favoritism, etc. Finally, the study shows that the fear of gender-based crime and violence is working as a potential barrier to ensuring women's empowerment in Bangladesh.

Keywords: compromise personal freedom, fear of crime, fear of gender-based crime, fear of violent crime victimization, rape, sexual assaults, withdrawal from regular activities, women empowerment

Procedia PDF Downloads 136
27 Bioleaching of Precious Metals from an Oil-fired Ash Using Organic Acids Produced by Aspergillus niger in Shake Flasks and a Bioreactor

Authors: Payam Rasoulnia, Seyyed Mohammad Mousavi

Abstract:

Heavy fuel oil firing power plants produce huge amounts of ashes as solid wastes, which seriously need to be managed and processed. Recycling precious metals of V and Ni from these oil-fired ashes which are considered as secondary sources of metals recovery, not only has a great economic importance for use in industry, but also it is noteworthy from the environmental point of view. Vanadium is an important metal that is mainly used in the steel industry because of its physical properties of hardness, tensile strength, and fatigue resistance. It is also utilized in oxidation catalysts, titanium–aluminum alloys and vanadium redox batteries. In the present study bioleaching of vanadium and nickel from an oil-fired ash sample was conducted using Aspergillus niger fungus. The experiments were carried out using spent-medium bioleaching method in both Erlenmeyer flasks and also bubble column bioreactor, in order to compare them together. In spent-medium bioleaching the solid waste is not in direct contact with the fungus and consequently the fungal growth is not retarded and maximum organic acids are produced. In this method the metals are leached through biogenic produced organic acids present in the medium. In shake flask experiments the fungus was cultured for 15 days, where the maximum production of organic acids was observed, while in bubble column bioreactor experiments a 7 days fermentation period was applied. The amount of produced organic acids were measured using high performance liquid chromatography (HPLC) and the results showed that depending on the fermentation period and the scale of experiments, the fungus has different major lixiviants. In flask tests, citric acid was the main produced organic acid by the fungus and the other organic acids including gluconic, oxalic, and malic were excreted in much lower concentrations, while in the bioreactor oxalic acid was the main lixiviant and it was produced considerably. In Erlenmeyer flasks during 15 days fermentation of Aspergillus niger, 8080 ppm citric acid and 1170 ppm oxalic acid was produced, while in bubble column bioreactor over 7 days of fungal growth, 17185 ppm oxalic acid and 1040 ppm citric acid was secreted. The leaching tests using the spent-media obtained from both of fermentation experiments, were performed at the same conditions of leaching duration of 7 days, leaching temperature of 60 °C and pulp density up to 3% (w/v). The results revealed that in Erlenmeyer flask experiments 97% of V and 50% of Ni were extracted while using spent medium produced in bubble column bioreactor, V and Ni recoveries were achieved to 100% and 33%, respectively. These recovery yields indicate that in both scales almost total vanadium can be recovered, while nickel recovery was lower. With help of the bioreactor spent-medium nickel recovery yield was lower than that of obtained from the flask experiments, which it could be due to precipitation of some values of Ni in presence of high levels of oxalic acid existing in its spent medium.

Keywords: Aspergillus niger, bubble column bioreactor, oil-fired ash, spent-medium bioleaching

Procedia PDF Downloads 229
26 The Efficacy of Government Strategies to Control COVID 19: Evidence from 22 High Covid Fatality Rated Countries

Authors: Imalka Wasana Rathnayaka, Rasheda Khanam, Mohammad Mafizur Rahman

Abstract:

TheCOVID-19 pandemic has created unprecedented challenges to both the health and economic states in countries around the world. This study aims to evaluate the effectiveness of governments' decisions to mitigate the risks of COVID-19 through proposing policy directions to reduce its magnitude. The study is motivated by the ongoing coronavirus outbreaks and comprehensive policy responses taken by countries to mitigate the spread of COVID-19 and reduce death rates. This study contributes to filling the knowledge by exploiting the long-term efficacy of extensive plans of governments. This study employs a Panel autoregressive distributed lag (ARDL) framework. The panels incorporate both a significant number of variables and fortnightly observations from22 countries. The dependent variables adopted in this study are the fortnightly death rates and the rates of the spread of COVID-19. Mortality rate and the rate of infection data were computed based on the number of deaths and the number of new cases per 10000 people.The explanatory variables are fortnightly values of indexes taken to investigate the efficacy of government interventions to control COVID-19. Overall government response index, Stringency index, Containment and health index, and Economic support index were selected as explanatory variables. The study relies on the Oxford COVID-19 Government Measure Tracker (OxCGRT). According to the procedures of ARDL, the study employs (i) the unit root test to check stationarity, (ii) panel cointegration, and (iii) PMG and ARDL estimation techniques. The study shows that the COVID-19 pandemic forced immediate responses from policymakers across the world to mitigate the risks of COVID-19. Of the four types of government policy interventions: (i) Stringency and (ii) Economic Support have been most effective and reveal that facilitating Stringency and financial measures has resulted in a reduction in infection and fatality rates, while (iii) Government responses are positively associated with deaths but negatively with infected cases. Even though this positive relationship is unexpected to some extent in the long run, social distancing norms of the governments have been broken by the public in some countries, and population age demographics would be a possible reason for that result. (iv) Containment and healthcare improvements reduce death rates but increase the infection rates, although the effect has been lower (in absolute value). The model implies that implementation of containment health practices without association with tracing and individual-level quarantine does not work well. The policy implication based on containment health measures must be applied together with targeted, aggressive, and rapid containment to extensively reduce the number of people infected with COVID 19. Furthermore, the results demonstrate that economic support for income and debt relief has been the key to suppressing the rate of COVID-19 infections and fatality rates.

Keywords: COVID-19, infection rate, deaths rate, government response, panel data

Procedia PDF Downloads 76
25 Element Distribution and REE Dispersal in Sandstone-Hosted Copper Mineralization within Oligo-Miocene Strata, NE Iran: Insights from Lithostratigraphy and Mineralogy

Authors: Mostafa Feiz, Mohammad Safari, Hossein Hadizadeh

Abstract:

The Chalpo copper area is located in northeastern Iran, which is part of the structural zone of central Iran and the back-arc basin of Sabzevar. This sedimentary basin accumulated in destructive-oligomiocene sediments is named the Nasr-Chalpo-Sangerd (NCS) basin. The sedimentary layers in this basin originated mainly from Upper Cretaceous ophiolitic rocks and intermediate to mafic-post ophiolitic volcanic rocks, deposited as a nonconformity. The mineralized sandstone layers in the Chalpo area include leached zones (with a thickness of 5 to 8 meters) and mineralized lenses with a thickness of 0.5 to 0.7 meters. Ore minerals include primary sulfide minerals, such as chalcocite, chalcopyrite, and pyrite, as well as secondary minerals, such as covellite, digenite, malachite, and azurite, formed in three stages that comprise primary, simultaneously, and supergene stage. The best agents that control the mineralization in this area include the permeability of host rocks, the presence of fault zones as the conduits for copper oxide solutions, and significant amounts of plant fossils, which create a reducing environment for the deposition of mineralized layers. The calculations of mass changes on copper-bearing layers and primary sandstone layers indicate that Pb, As, Cd, Te, and Mo are enriched in the mineralized zones, whereas SiO₂, TiO₂, Fe₂O₃, V, Sr, and Ba are depleted. The combination of geological, stratigraphic, and geochemical studies suggests that the origin of copper may have been the underlying red strata that contained hornblende, plagioclase, biotite, alkaline feldspar, and labile minerals. Dehydration and hydrolysis of these minerals during the diagenetic process caused the leaching of copper and associated elements by circling fluids, which formed an oxidant-hydrothermal solution. Copper and silver in this oxidant solution might have moved upwards through the basin-fault zones and deposited in the reducing environments in the sandstone layers that have had abundant organic matter. Copper in these solutions was probably carried by chloride complexes. The collision of oxidant and reduced solutions caused the deposition of Cu and Ag, whereas some s elements in oxidant environments (e.g., Fe₂O₃, TiO₂, SiO₂, REEs) become uns in the reduced condition. Therefore, the copper-bearing sandstones in the study area are depleted from these elements resulting from the leaching process. The results indicate that during the mineralization stage, LREEs and MREEs were depleted, but Cu, Ag, and S were enriched. Based on field evidence, it seems that the circulation of connate fluids in the reb-bed strata, produced by diagenetic processes, encountered to reduced facies, which formed earlier by abundant fossil-plant debris in the sandstones, is the best model for precipitating sulfide-copper minerals.

Keywords: Chalpo, Oligo-Miocene red beds, sandstone-hosted copper mineralization, mass change, LREEs and MREEs

Procedia PDF Downloads 25
24 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 301
23 Effect of Double-Skin Facade Configuration on the Energy Performance of Office Building in Maritime Desert Climate

Authors: B. Umaru Mohammed, Faris A. Al-Maziad, Mohammad Y. Numan

Abstract:

One of the most important factors affecting the energy performance within a building is a carefully and efficiently designed facade. The primary aim of this research was to identify and present the potentiality of utilising Double-Skin Facade (DSF) construction and critically examine its effect on the energy consumption of an office building located within a maritime desert climate as to the conventional single-skin curtain wall system. A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilised. A computer dynamic modelling was utilised in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin façade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilized. A computer dynamic modelling was utilized in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin facade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.

Keywords: computer dynamics modelling, comparative analysis, energy computation, double skin facade, single skin curtain wall, maritime desert climate

Procedia PDF Downloads 342
22 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions

Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak

Abstract:

Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.

Keywords: energy saving, lightweight construction, PCM, simulation

Procedia PDF Downloads 285
21 Effects of Pulsed Electromagnetic and Static Magnetic Fields on Musculoskeletal Low Back Pain: A Systematic Review Approach

Authors: Mohammad Javaherian, Siamak Bashardoust Tajali, Monavvar Hadizadeh

Abstract:

Objective: This systematic review study was conducted to evaluate the effects of Pulsed Electromagnetic (PEMF) and Static Magnetic Fields (SMG) on pain relief and functional improvement in patients with musculoskeletal Low Back Pain (LBP). Methods: Seven electronic databases were searched by two researchers independently to identify the published Randomized Controlled Trials (RCTs) on the efficacy of pulsed electromagnetic, static magnetic, and therapeutic nuclear magnetic fields. The identified databases for systematic search were Ovid Medline®, Ovid Cochrane RCTs and Reviews, PubMed, Web of Science, Cochrane Library, CINAHL, and EMBASE from 1968 to February 2016. The relevant keywords were selected by Mesh. After initial search and finding relevant manuscripts, all references in selected studies were searched to identify second hand possible manuscripts. The published RCTs in English would be included to the study if they reported changes on pain and/or functional disability following application of magnetic fields on chronic musculoskeletal low back pain. All studies with surgical patients, patients with pelvic pain, and combination of other treatment techniques such as acupuncture or diathermy were excluded. The identified studies were critically appraised and the data were extracted independently by two raters (M.J and S.B.T). Probable disagreements were resolved through discussion between raters. Results: In total, 1505 abstracts were found following the initial electronic search. The abstracts were reviewed to identify potentially relevant manuscripts. Seventeen possibly appropriate studies were retrieved in full-text of which 48 were excluded after reviewing their full-texts. Ten selected articles were categorized into three subgroups: PEMF (6 articles), SMF (3 articles), and therapeutic nuclear magnetic fields (tNMF) (1 article). Since one study evaluated tNMF, we had to exclude it. In the PEMF group, one study of acute LBP did not show significant positive results and the majority of the other five studies on Chronic Low Back Pain (CLBP) indicated its efficacy on pain relief and functional improvement, but one study with the lowest sessions (6 sessions during 2 weeks) did not report a significant difference between treatment and control groups. In the SMF subgroup, two articles reported near significant pain reduction without any functional improvement although more studies are needed. Conclusion: The PEMFs with a strength of 5 to 150 G or 0.1 to 0.3 G and a frequency of 5 to 64 Hz or sweep 7 to 7KHz can be considered as an effective modality in pain relief and functional improvement in patients with chronic low back pain, but there is not enough evidence to confirm their effectiveness in acute low back pain. To achieve the appropriate effectiveness, it is suggested to perform this treatment modality 20 minutes per day for at least 9 sessions. SMFs have not been reported to be substantially effective in decreasing pain or improving the function in chronic low back pain. More studies are necessary to achieve more reliable results.

Keywords: pulsed electromagnetic field, static magnetic field, magnetotherapy, low back pain

Procedia PDF Downloads 205
20 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate

Authors: Syfur Rahman, Mohammad J. Khattak

Abstract:

Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.

Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash

Procedia PDF Downloads 137
19 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.

Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI

Procedia PDF Downloads 50
18 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 164
17 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 150
16 Saudi State Arabia’s Struggle for a Post-Rentier Regional Order

Authors: Omair Anas

Abstract:

The Persian Gulf has been in turmoil for a long time since the colonial administration has handed over the role to the small and weak kings and emirs who were assured of protection in return of many economic and security promises to them. The regional order, Saudi Arabia evolved was a rentier regional order secured by an expansion of rentier economy and taking responsibility for much of the expenses of the regional order on behalf of relatively poor countries. The two oil booms helped the Saudi state to expand the 'rentier order' driven stability and bring the countries like Egypt, Jordan, Syria, and Palestine under its tutelage. The disruptive misadventure, however, came with Iran's proclamation of the Islamic Revolution in 1979 which it wanted to be exported to its 'un-Islamic and American puppet' Arab neighbours. For Saudi Arabia, even the challenge presented by the socialist-nationalist Arab dictators like Gamal Abdul Nasser and Hafez Al-Assad was not that much threatening to the Saudi Arabia’s then-defensive realism. In the Arab uprisings, the Gulf monarchies saw a wave of insecurity and Iran found it an opportune time to complete the revolutionary process it could not complete after 1979. An alliance of convenience and ideology between Iran and Islamist groups had the real potential to challenge both Saudi Arabia’s own security and its leadership in the region. The disruptive threat appeared at a time when the Saudi state had already sensed an impending crisis originating from the shifts in the energy markets. Low energy prices, declining global demands, and huge investments in alternative energy resources required Saudi Arabia to rationalize its economy according to changing the global political economy. The domestic Saudi reforms remained gradual until the death of King Abdullah in 2015. What is happening now in the region, the Qatar crisis, the Lebanon crisis and the Saudi-Iranian proxy war in Iraq, Syria, and Yemen has combined three immediate objectives, rationalising Saudi economy and most importantly, the resetting the Saudi royal power for Saudi Arabia’s longest-serving future King Mohammad bin Salman. The Saudi King perhaps has no time to wait and watch the power vacuum appearing because of Iran’s expansionist foreign policy. The Saudis appear to be employing an offensive realism by advancing a pro-active regional policy to counter Iran’s threatening influence amid disappearing Western security from the region. As the Syrian civil war is coming to a compromised end with ceding much ground to Iran-controlled militias, Hezbollah and Al-Hashad, the Saudi state has lost much ground in these years and the threat from Iranian proxies is more than a reality, more clearly in Bahrain, Iraq, Syria, and Yemen. This paper attempts to analyse the changing Saudi behaviour in the region, which, the author understands, is shaped by an offensive-realist approach towards finding a favourable security environment for the Saudi-led regional order, a post-rentier order perhaps.

Keywords: terrorism, Saudi Arabia, Rentier State, gulf crisis

Procedia PDF Downloads 136
15 Dynamics of Protest Mobilization and Rapid Demobilization in Post-2001 Afghanistan: Facing Enlightening Movement

Authors: Ali Aqa Mohammad Jawad

Abstract:

Taking a relational approach, this paper analyzes the causal mechanisms associated with successful mobilization and rapid demobilization of the Enlightening Movement in post-2001 Afghanistan. The movement emerged after the state-owned Da Afghan Bereshna Sherkat (DABS) decided to divert the route for the Turkmenistan-Uzbekistan-Tajikistan-Afghanistan-Pakistan (TUTAP) electricity project. The grid was initially planned to go through the Hazara-inhabited province of Bamiyan, according to Afghanistan’s Power Sector Master Plan. The reroute served as an aide-mémoire of historical subordination to other ethno-religious groups for the Hazara community. It was also perceived as deprivation from post-2001 development projects, financed by international aid. This torched the accumulated grievances, which then gave birth to the Enlightening Movement. The movement had a successful mobilization. However, it demobilized after losing much of its mobilizing capabilities through an amalgamation of external and internal relational factors. The successful mobilization yet rapid demobilization constitutes the puzzle of this paper. From the theoretical perspective, this paper is significant as it establishes the applicability of contentious politics theory to protest mobilizations that occurred in Afghanistan, a context-specific, characterized by ethnic politics. Both primary and secondary data are utilized to address the puzzle. As for the primary resources, media coverage, interviews, reports, public media statements of the movement, involved in contentious performances, and data from Social Networking Services (SNS) are used. The covered period is from 2001-2018. As for the secondary resources, published academic articles and books are used to give a historical account of contentious politics. For data analysis, a qualitative comparative historical method is utilized to uncover the causal mechanisms associated with successful mobilization and rapid demobilization of the Movement. In this pursuit, both mobilization and demobilization are considered as larger political processes that could be decomposed to constituent mechanisms. Enlightening Movement’s framing and campaigns are first studied to uncover the associated mechanisms. Then, to avoid introducing some ad hoc mechanisms, the recurrence of mechanisms is checked against another case. Mechanisms qualify as robust if they are “recurrent” in different episodes of contention. Checking the recurrence of causal mechanisms is vital as past contentious events tend to reinforce future events. The findings of this paper suggest that the public sphere in Afghanistan is drastically different from Western democracies known as the birthplace of social movements. In Western democracies, when institutional politics did not respond, movement organizers occupied the public sphere, undermining the legitimacy of the government. In Afghanistan, the public sphere is ethicized. Considering the inter- and intra-relational dynamics of ethnic groups in Afghanistan, the movement reduced to an erosive inter- and intra-ethnic conflict. This undermined the cohesiveness of the movement, which then kicked-off its demobilization process.

Keywords: enlightening movement, contentious politics, mobilization, demobilization

Procedia PDF Downloads 194
14 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
13 The Prevalence of Soil Transmitted Helminths among Newly Arrived Expatriate Labors in Jeddah, Saudi Arabia

Authors: Mohammad Al-Refai, Majed Wakid

Abstract:

Introduction: Soil-transmitted diseases (STD) are caused by intestinal worms that are transmitted via various routes into the human body resulting in various clinical manifestations. The intestinal worms causing these infections are known as soil transmitted helminths (STH), including Hook worms, Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), and Strongyloides sterocoralis (S. sterocoralis). Objectives: The aim of this study was to investigate the prevalence of STH among newly arrived expatriate labors in Jeddah city, Saudi Arabia, using three different techniques (direct smears, sedimentation concentration, and real-time PCR). Methods: A total of 188 stool specimens were collected and investigated at the parasitology laboratory in the Special Infectious Agents Unit at King Fahd Medical Research Center, King Abdulaziz University in Jeddah, Saudi Arabia. Microscopic examination of wet mount preparations using normal saline and Lugols Iodine was carried out, followed by the formal ether sedimentation method. In addition, real-time PCR was used as a molecular tool to detect several STH and hookworm speciation. Results: Out of 188 stool specimens analyzed, in addition to STH parasite, several other types were detected. 9 samples (4.79%) were positive for Entamoeba coli, 7 samples (3.72%) for T. trichiura, 6 samples (3.19%) for Necator americanus, 4 samples (2.13%) for S. sterocoralis, 4 samples (2.13%) for A. lumbricoides, 4 samples (2.13%) for E. histolytica, 3 samples (1.60%) for Blastocystis hominis, 2 samples (1.06%) for Ancylostoma duodenale, 2 samples (1.06%) for Giardia lamblia, 1 sample (0.53%) for Iodamoeba buetschlii, 1 sample (0.53%) for Hymenolepis nana, 1 sample (0.53%) for Endolimax nana, and 1 sample (0.53%) for Heterophyes heterophyes. Out of the 35 infected cases, 26 revealed single infection, 8 with double infections, and only one triple infection of different STH species and other intestinal parasites. Higher rates of STH infections were detected among housemaids (11 cases) followed by drivers (7 cases) when compared to other occupations. According to educational level, illiterate participants represent the majority of infected workers (12 cases). The majority of workers' positive cases were from the Philippines. In comparison between laboratory techniques, out of the 188 samples screened for STH, real-time PCR was able to detect the DNA in (19/188) samples followed by Ritchie sedimentation technique (18/188), and direct wet smear (7/188). Conclusion: STH infections are a major public health issue to healthcare systems around the world. Communities must be educated on hygiene practices and the severity of such parasites to human health. As far as drivers and housemaids come to close contact with families, including children and elderlies. This may put family members at risk of developing serious side effects related to STH, especially as the majority of workers were illiterate, lacking the basic hygiene knowledge and practices. We recommend the official authority in Jeddah and around the kingdom of Saudi Arabia to revise the standard screening tests for newly arrived workers and enforce regular follow-up inspections to minimize the chances of the spread of STH from expatriate workers to the public.

Keywords: expatriate labors, Jeddah, prevalence, soil transmitted helminths

Procedia PDF Downloads 149
12 Rheological and Microstructural Characterization of Concentrated Emulsions Prepared by Fish Gelatin

Authors: Helen S. Joyner (Melito), Mohammad Anvari

Abstract:

Concentrated emulsions stabilized by proteins are systems of great importance in food, pharmaceutical and cosmetic products. Controlling emulsion rheology is critical for ensuring desired properties during formation, storage, and consumption of emulsion-based products. Studies on concentrated emulsions have focused on rheology of monodispersed systems. However, emulsions used for industrial applications are polydispersed in nature, and this polydispersity is regarded as an important parameter that also governs the rheology of the concentrated emulsions. Therefore, the objective of this study was to characterize rheological (small and large deformation behaviors) and microstructural properties of concentrated emulsions which were not truly monodispersed as usually encountered in food products such as margarines, mayonnaise, creams, spreads, and etc. The concentrated emulsions were prepared at different concentrations of fish gelatin (0.2, 0.4, 0.8% w/v in the whole emulsion system), oil-water ratio 80-20 (w/w), homogenization speed 10000 rpm, and 25oC. Confocal laser scanning microscopy (CLSM) was used to determine the microstructure of the emulsions. To prepare samples for CLSM analysis, FG solutions were stained by Fluorescein isothiocyanate dye. Emulsion viscosity profiles were determined using shear rate sweeps (0.01 to 100 1/s). The linear viscoelastic regions (LVRs) of the emulsions were determined using strain sweeps (0.01 to 100% strain) for each sample. Frequency sweeps were performed in the LVR (0.1% strain) from 0.6 to 100 rad/s. Large amplitude oscillatory shear (LAOS) testing was conducted by collecting raw waveform data at 0.05, 1, 10, and 100% strain at 4 different frequencies (0.5, 1, 10, and 100 rad/s). All measurements were performed in triplicate at 25oC. The CLSM results revealed that increased fish gelatin concentration resulted in more stable oil-in-water emulsions with homogeneous, finely dispersed oil droplets. Furthermore, the protein concentration had a significant effect on emulsion rheological properties. Apparent viscosity and dynamic moduli at small deformations increased with increasing fish gelatin concentration. These results were related to increased inter-droplet network connections caused by increased fish gelatin adsorption at the surface of oil droplets. Nevertheless, all samples showed shear-thinning and weak gel behaviors over shear rate and frequency sweeps, respectively. Lissajous plots, or plots of stress versus strain, and phase lag values were used to determine nonlinear behavior of the emulsions in LAOS testing. Greater distortion in the elliptical shape of the plots followed by higher phase lag values was observed at large strains and frequencies in all samples, indicating increased nonlinear behavior. Shifts from elastic-dominated to viscous dominated behavior were also observed. These shifts were attributed to damage to the sample microstructure (e.g. gel network disruption), which would lead to viscous-type behaviors such as permanent deformation and flow. Unlike the small deformation results, the LAOS behavior of the concentrated emulsions was not dependent on fish gelatin concentration. Systems with different microstructures showed similar nonlinear viscoelastic behaviors. The results of this study provided valuable information that can be used to incorporate concentrated emulsions in emulsion-based food formulations.

Keywords: concentrated emulsion, fish gelatin, microstructure, rheology

Procedia PDF Downloads 275
11 Exploiting the Tumour Microenvironment in Order to Optimise Sonodynamic Therapy for Cancer

Authors: Maryam Mohammad Hadi, Heather Nesbitt, Hamzah Masood, Hashim Ahmed, Mark Emberton, John Callan, Alexander MacRobert, Anthony McHale, Nikolitsa Nomikou

Abstract:

Sonodynamic therapy (SDT) utilises ultrasound in combination with sensitizers, such as porphyrins, for the production of cytotoxic reactive oxygen species (ROS) and the confined ablation of tumours. Ultrasound can be applied locally, and the acoustic waves, at frequencies between 0.5-2 MHz, are transmitted efficiently through tissue. SDT does not require highly toxic agents, and the cytotoxic effect only occurs upon ultrasound exposure at the site of the lesion. Therefore, this approach is not associated with adverse side effects. Further highlighting the benefits of SDT, no cancer cell population has shown resistance to therapy-triggered ROS production or their cytotoxic effects. This is particularly important, given the as yet unresolved issues of radiation and chemo-resistance, to the authors’ best knowledge. Another potential future benefit of this approach – considering its non-thermal mechanism of action – is its possible role as an adjuvant to immunotherapy. Substantial pre-clinical studies have demonstrated the efficacy and targeting capability of this therapeutic approach. However, SDT has yet to be fully characterised and appropriately exploited for the treatment of cancer. In this study, a formulation based on multistimulus-responsive sensitizer-containing nanoparticles that can accumulate in advanced prostate tumours and increase the therapeutic efficacy of SDT has been developed. The formulation is based on a polyglutamate-tyrosine (PGATyr) co-polymer carrying hematoporphyrin. The efficacy of SDT in this study was demonstrated using prostate cancer as the translational exemplar. The formulation was designed to respond to the microenvironment of advanced prostate tumours, such as the overexpression of the proteolytic enzymes, cathepsin-B and prostate-specific membrane antigen (PSMA), that can degrade the nanoparticles, reduce their size, improving both diffusions throughout the tumour mass and cellular uptake. The therapeutic modality was initially tested in vitro using LNCaP and PC3 cells as target cell lines. The SDT efficacy was also examined in vivo, using male SCID mice bearing LNCaP subcutaneous tumours. We have demonstrated that the PGATyr co-polymer is digested by cathepsin B and that digestion of the formulation by cathepsin-B, at tumour-mimicking conditions (acidic pH), leads to decreased nanoparticle size and subsequent increased cellular uptake. Sonodynamic treatment, at both normoxic and hypoxic conditions, demonstrated ultrasound-induced cytotoxic effects only for the nanoparticle-treated prostate cancer cells, while the toxicity of the formulation in the absence of ultrasound was minimal. Our in vivo studies in immunodeficient mice, using the hematoporphyrin-containing PGATyr nanoparticles for SDT, showed a 50% decrease in LNCaP tumour volumes within 24h, following IV administration of a single dose. No adverse effects were recorded, and body weight was stable. The results described in this study clearly demonstrate the promise of SDT to revolutionize cancer treatment. It emphasizes the potential of this therapeutic modality as a fist line treatment or in combination treatment for the elimination or downstaging of difficult to treat cancers, such as prostate, pancreatic, and advanced colorectal cancer.

Keywords: sonodynamic therapy, nanoparticles, tumour ablation, ultrasound

Procedia PDF Downloads 138
10 Evaluation of Genetic Potentials of Onion (Allium Cepa L.) Cultivars of North Western Nigeria

Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche

Abstract:

Onion (Allium cepa var. cepa L.) is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. North Western Nigeria (Sokoto, Kebbi and Zamfara States) constitute the major onion producing zone in Nigeria, which is primarily during the dry season. However, onion production in the zone is seriously affected by two main factors i.e. diseases and storage losses, in addition to other constraints that limits the cultivation of the crop during the rainy season which include lack of prolonged rainy season to allow for proper maturation of the crop. The major onion disease in this zone is purple blotch caused by a fungus Alternaria porri and currently efforts are on to develop onion hybrids resistant to the disease. Genetic diversity plays an important role in plant breeding either to exploit heterosis or to generate productive recombinants. Assessment of a large number of genotypes for a genetic diversity is the first step in this direction. The objective of this research therefore is to evaluate the genetic potentials of the onion cultivars of North Western Nigeria, with a view of developing new cultivars that address the major production challenges to onion cultivation in North Western, Nigeria. Thirteen onion cultivars were collected during an expedition covering North western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. The objective of the research was to determine the genetic potentials of onion cultivars of north western Nigeria as a basis for breeding purposes. Combined analysis of the results revealed highly significant variation between the cultivars across the locations with respect to plant height, number of leaves/plant, bolting %, bulb height, bulb weight, mean bulb yield and cured bulb weight, with significant variation in terms of bulb diameter. Tasa from Warra Local Government Area of Kebbi State (V4) recorded the greatest mean fresh bulb yield with Jar Albasa (V8) from Illela Local Government Area of Sokoto State recording the least. Similarly Marsa (V5) from Silame Local Government Area recorded the greatest mean cured bulb yield (marketable bulb)with Kiba (V11) from Goronyo Local Government of Sokoto State recording the least. Significant variation was recorded between the locations with respect to all characters, with Sokoto being better in terms of plant height, number of leaves/plant, bolting % and bulb diameter. Jega was better in terms of bulb height, bulb yield and cured bulb weight. Significant variation was therefore observed between the cultivars.

Keywords: evaluation, genetic, onions, North Western Nigeria

Procedia PDF Downloads 406
9 Correlation Studies and Heritability Estimates among Onion (Allium Cepa L.) Cultivars of North Western Nigeria

Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche

Abstract:

Onion (Allium cepa var. cepa L.), is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. Heritability defined as the proportion of the observed total variability that is genetic, and its estimates from variance components give more useful information of genotypic variation from the total phenotypic differences and environmental effects on the individuals or families. It therefore guide the breeder with respect to the ease with which selection of traits can be carried out. Heritability estimates guide the breeder with respect to ease of selection of traits while correlations suggest how selection among characters can be practiced. Correlations explain relationship between characters and suggest how selection among characters can be practiced in breeding programmes. Highly significant correlations have been reported, between yield, maturity, rings/bulb and storage loss in onions. Similarly significant positive correlation exists between total bulb yield and plant height, leaf number/plant, bulb diameter and bulb yield/plant. Moderate positive correlations have been observed between maturity date and yield, dry matter content was highly correlated with soluble solids, and higher correlations were also observed between storage loss and soluble solids. The objective of the study is to determine heritability estimates and correlations for characters among onion cultivars of North Western Nigeria. This is envisaged will assist in the breeding of superior onion cultivars within the zone. Thirteen onion cultivars were collected during an expedition covering north western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. Combined analysis of the results revealed fresh bulb yield is highly significantly positively correlated with bulb height and cured bulb yield, and significant positive correlation with plant height and bulb diameter. It also recorded significant negative correlation with mean No. of leaves/plant and non significant negative correlation with bolting %. Cured bulb yield (marketable yield) had highly significant positive correlation with mean bulb weight and fresh bulb yield/ha, with significant positive correlation with bulb height. It also recorded highly significant negative correlation with No. of leaves/plant and significant negative correlation with bolting % and non significant positive correlation with plant height and non significant negative correlation with bulb diameter. High broad sense heritability estimates were recorded for plant height, fresh bulb yield, number of leaves/plant, bolting % and cured bulb yield. Medium to low broad sense heritabilities were also observed for mean bulb weight, plant height and bulb diameter.

Keywords: correlation, heritability, onions, North Western Nigeria

Procedia PDF Downloads 402
8 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups

Authors: John Hardy

Abstract:

Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.

Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism

Procedia PDF Downloads 291
7 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance

Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher

Abstract:

The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.

Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis

Procedia PDF Downloads 45