Search results for: community based sports
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31438

Search results for: community based sports

14308 Signature Verification System for a Banking Business Process Management

Authors: A. Rahaf, S. Liyakathunsia

Abstract:

In today’s world, unprecedented operational pressure is faced by banks that test the efficiency, effectiveness, and agility of their business processes. In a typical banking process, a person’s authorization is usually based on his signature on most all of the transactions. Signature verification is considered as one of the highly significant information needed for any bank document processing. Banks usually use Signature Verification to authenticate the identity of individuals. In this paper, a business process model has been proposed in order to increase the quality of the verification process and to reduce time and needed resources. In order to understand the current process, a survey has been conducted and distributed among bank employees. After analyzing the survey, a process model has been created using Bizagi modeler which helps in simulating the process after assigning time and cost of it. The outcomes show that the automation of signature verification process is highly recommended for a banking business process.

Keywords: business process management, process modeling, quality, Signature Verification

Procedia PDF Downloads 428
14307 H.264 Video Privacy Protection Method Using Regions of Interest Encryption

Authors: Taekyun Doo, Cheongmin Ji, Manpyo Hong

Abstract:

Like a closed-circuit television (CCTV), video surveillance system is widely placed for gathering video from unspecified people to prevent crime, surveillance, or many other purposes. However, abuse of CCTV brings about concerns of personal privacy invasions. In this paper, we propose an encryption method to protect personal privacy system in H.264 compressed video bitstream with encrypting only regions of interest (ROI). There is no need to change the existing video surveillance system. In addition, encrypting ROI in compressed video bitstream is a challenging work due to spatial and temporal drift errors. For this reason, we propose a novel drift mitigation method when ROI is encrypted. The proposed method was implemented by using JM reference software based on the H.264 compressed videos, and experimental results show the verification of our proposed methods and its effectiveness.

Keywords: H.264/AVC, video encryption, privacy protection, post compression, region of interest

Procedia PDF Downloads 340
14306 Mine Production Index (MPi): New Method to Evaluate Effectiveness of Mining Machinery

Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati

Abstract:

OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPi shovel has been developed by team of experts and researchers for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovelcan properly evaluate production effectiveness of shovels and determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.

Keywords: mining, overall equipment efficiency (OEE), mine production index, shovels

Procedia PDF Downloads 463
14305 Idea, Creativity, Design, and Ultimately, Playing with Mathematics

Authors: Yasaman Azarmjoo

Abstract:

Since ancient times, it has been said that mathematics is the mother of all sciences and the foundation of basic concepts in every field and profession. It would be great if, after learning this subject, we could enable students to create games and activities based on the same mathematical concepts. This article explores the design of various mathematical activities in the form of games, utilizing different mathematical topics such as algebra, equations, binary systems, and one-to-one correspondence. The theoretical significance of this article lies in uncovering alternative approaches to teaching and learning mathematics. By employing creative and interactive methods such as game design, it challenges the traditional perception of mathematics as a difficult and laborious subject. The theoretical significance of this article lies in demonstrating that mathematics can be made more accessible and enjoyable, which can result in heightened interest and engagement in the subject. In general, this article reveals another aspect of mathematics.

Keywords: playing with mathematics, algebra and equations, binary systems, one-to-one correspondence

Procedia PDF Downloads 93
14304 Load Balancing and Resource Utilization in Cloud Computing

Authors: Gagandeep Kaur

Abstract:

Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.

Keywords: resource utilization, response time, load balancing, performance cost

Procedia PDF Downloads 183
14303 Heat Transfer Enhancement through Hybrid Metallic Nanofluids Flow with Viscous Dissipation and Joule Heating Effect

Authors: Khawar Ali

Abstract:

We present the numerical study of unsteady hydromagnetic (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting water-based hybrid metallic nanofluid (containing Cu-Au/ H₂O nanoparticles) between two orthogonally moving porous coaxial disks with suction. Different from the classical shooting methodology, we employ a combination of a direct and an iterative method (SOR with optimal relaxation parameter) for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar nonlinear ODEs. Effects of the governing parameters on the flow and heat transfer are discussed and presented through tables and graphs. The findings of the present investigation may be beneficial for the electronic industry in maintaining the electronic components under effectiveand safe operational conditions.

Keywords: heat transfer enhancement, hybrid metallic nanofluid, viscous dissipation and joule heating effect , Two dimensional flow

Procedia PDF Downloads 229
14302 Functional Dyspepsia and Irritable Bowel Syndrome: Life sketches of Functional Illnesses (Non-Organic) in West Bengal, India

Authors: Urmita Chakraborty

Abstract:

To start with, Organic Illnesses are no longer considered as only health difficulties. Functional Illnesses that are emotional in origin have become the search areas in many investigations. In the present study, an attempt has made to study the psychological nature of Functional Gastro-Intestinal Disorders (FGID) in West Bengal. In the specialty of Gastroenterology, the medically unexplained symptom-based conditions are known as Functional Gastrointestinal Disorder (FGID). In the present study, Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) have been taken for investigations. 72 cases have been discussed in this context. Results of the investigation have been analyzed in terms of a qualitative framework. Theoretical concepts on persistent thoughts and behaviors will be delineated in the analysis. Processes of self-categorization will be implemented too. Aspects of Attachments and controlling of affect as well as meta-cognitive appraisals are further considered for the depiction.

Keywords: functional dyspepsia, irritable bowel syndrome, self-categorization

Procedia PDF Downloads 566
14301 The Effect of Land Cover on Movement of Vehicles in the Terrain

Authors: Krisstalova Dana, Mazal Jan

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths

Procedia PDF Downloads 425
14300 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks

Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo

Abstract:

In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.

Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm

Procedia PDF Downloads 228
14299 Recycling of Sclareolide in the Crystallization Mother Liquid of Sclareolide by Adsorption and Chromatography

Authors: Xiang Li, Kui Chen, Bin Wu, Min Zhou

Abstract:

Sclareolide is made from sclareol by oxidiative synthesis and subsequent crystallization, while the crystallization mother liquor still contains 15%~30%wt of sclareolide to be reclaimed. With the reaction material of sclareol is provided as plant extract, many sorts of complex impurities exist in the mother liquor. Due to the difficulty in recycling sclareolide after solvent recovery, it is common practice for the factories to discard the mother liquor, which not only results in loss of sclareolide, but also contributes extra environmental burden. In this paper, a process based on adsorption and elution has been presented for recycling of sclareolide from mother liquor. After pretreatment of the crystallization mother liquor by HZ-845 resin to remove parts of impurities, sclareolide is adsorbed by HZ-816 resin. The HZ-816 resin loaded with sclareolide is then eluted by elution solvent. Finally, the eluent containing sclareolide is concentrated and fed into the crystallization step in the process. By adoption of the recycle from mother liquor, total yield of sclareolide increases from 86% to 90% with a stable purity of the final sclareolide products maintained.

Keywords: sclareolide, resin, adsorption, chromatography

Procedia PDF Downloads 239
14298 In Silico Study of the Biological and Pharmacological Activity of Nigella sativa

Authors: Ammar Ouahab, Meriem Houichi , Sanna Mihoubi

Abstract:

Background: Nigella sativa is an annual flowering plant, belongs to the Ranunculaceae family. It has many pharmacological activities such as anti-inflammatory; anti-bacterial; anti-hepatotoxic activities etc. Materials: In order to predict the pharmacological activity of Nigella Sativa’s compounds, some web based servers were used, namely, PubChem, Molinspiration, ADMET-SAR, PASS online and PharMapper. In addition to that, AutoDOCK was used to investigate the different molecular interactions between the selected compounds and their target proteins. Results: All compounds displayed a stable interaction with their targets and satisfactory binding energies, which means that they are active on their targets. Conclusion: Nigella sativa is an effective medicinal plant that has several ethno-medical uses; the latter uses are proven herein via an in-silico study of their pharmacological activities.

Keywords: Nigella sativa, AutoDOCK, PubChem, Molinspiration, ADMET-SAR, PharMapper, PASS online server, docking

Procedia PDF Downloads 134
14297 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 56
14296 Analysis of Universal Mobile Telecommunications Service (UMTS) Planning Using High Altitude Platform Station (HAPS)

Authors: Yosika Dian Komala, Uke Kurniawan Usman, Yuyun Siti Rohmah

Abstract:

The enable technology fills up needs of high-speed data service is Universal Mobile Telecommunications Service (UMTS). UMTS has a data rate up to 2Mbps.UMTS terrestrial system has a coverage area about 1-2km. High Altitude Platform Station (HAPS) can be built by a macro cell that is able to serve the wider area. Design method of UMTS using HAPS is planning base on coverage and capacity. The planning method is simulated with 2.8.1 Atoll’s software. Determination of radius of the cell based on the coverage uses free space loss propagation model. While the capacity planning to determine the average cell through put is available with the Offered Bit Quantity (OBQ).

Keywords: UMTS, HAPS, coverage planning, capacity planning, signal level, Ec/Io, overlapping zone, throughput

Procedia PDF Downloads 639
14295 Assessment on Communication Students’ Internship Performances from the Employers’ Perspective

Authors: Yesuselvi Manickam, Tan Soon Chin

Abstract:

Internship is a supervised and structured learning experience related to one’s field of study or career goal. Internship allows students to obtain work experience and the opportunity to apply skills learned during university. Internship is a valuable learning experience for students; however, literature on employer assessment is scarce on Malaysian student’s internship experience. This study focuses on employer’s perspective on student’s performances during their three months of internship. The results are based on the descriptive analysis of 45 sets of question gathered from the on-site supervisors of the interns. The survey of 45 on-site supervisor’s feedback was collected through postal mail. It was found that, interns have not met their on-site supervisor’s expectations in many areas. The significance of this study is employer’s assessment on the internship shall be used as feedback to improve on ways how to prepare students for their internship and employments in future.

Keywords: employers perspective, internship, structured learning, student’s performances

Procedia PDF Downloads 295
14294 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
14293 Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany

Authors: Dustin Schöder

Abstract:

The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed.

Keywords: highly automated driving, autonomous driving, SAE level 4, railport operations, container depot, intermodal logistics, potentials of autonomization

Procedia PDF Downloads 79
14292 Civil Liability for Digital Crimes

Authors: Pál Mészáros

Abstract:

The aim of this research topic is to examine civil law consequences caused by crimes committed in the digital space. During the commission of certain crimes, not only the rights of one person are violated, but also the rights of an entire institution, for example, if the information system of a university is attacked. The consequences of these crimes committed in the digital space may also be that the victim himself is liable to other third parties, for example, in the event that health data comes into the possession of unauthorized persons, and it can be proved that the service provider's IT system was inadequate. An interesting question may also be the civil liability of credit institutions if someone becomes a victim of fraud but is not expected from him/her to notice the fraud. In such a case, the liability of the credit institution may arise if they do not respond in time in the case of unauthorized bank transactions. Based on the above, the main topic of the research is the civil liability of the victim, or another person or company related to the victim in the case of damages caused by crimes.

Keywords: civil liability, digital crimes, transfer of responsibility, civil law

Procedia PDF Downloads 64
14291 Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: functionally graded beam, free vibration, elastic foundation, Engesser-Timoshenko beam theory

Procedia PDF Downloads 418
14290 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 368
14289 Political Cinema: Rewriting The Malaysian Political History Through Documentary Films

Authors: Raja Rodziah Binti Raja Zainal Hassan

Abstract:

The development of Malaysian political cinema is rapidly taking shape in the local film industry. The paper focuses on the production of independent political documentary by two Malaysian filmmakers, Amir Muhammad and Fahmi Reza. Revolutionary cinema can be understood by utilizing the Third Cinema Theory in order to analyse the meaning and its impact on the audience. The issue surrounding the political cinema in Malaysia is the question of national identity. The implementation of racial or ethnic based politics has resulted in hostility within Malaysia’s multiracial society. Amir Muhammad and Fahmi Reza revisit the Malaysian political history through their films in order to understand the reasons behind the hostility and conflict.

Keywords: Political cinema, third cinema theory, revolutionary cinema, national identity, racial or ethnic politics

Procedia PDF Downloads 433
14288 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 381
14287 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing

Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang

Abstract:

With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.

Keywords: heat island effect, neural network, comprehensive evaluation, visualization

Procedia PDF Downloads 133
14286 Analysis of a Power Factor Correction Converter for Light Emitting Diode Driver Application

Authors: Edwina G. Rodrigues, S. J. Bindhu, A. V. Rajesh

Abstract:

This paper proposes a switched capacitor based driver circuit for high power light emitting diodes with a front end rectifier. LEDs are low-voltage light sources, requiring a constant DC voltage or current to operate optimally. LEDs, therefore, require a device that can convert incoming AC power to the proper DC voltage, and regulate the current flowing through the LED during operation. Proposed topology has a front end converter. It is an AC-DC rectifier that works on bridgeless boost topology which shapes the input current waveform. The front end converter is followed by a DC-DC converter which provides a constant DC voltage across the LEDs. A 12V AC input is given to the input of frontend converter which rectifies and boost the voltage to 24v DC and gives it to the DC-DC converter. The DC-DC converter converts the 24V DC and regulates this constant DC voltage across the LEDs.

Keywords: bridgeless rectifier, power factor correction(PFC), SC converter, total harmonic distortion (THD)

Procedia PDF Downloads 873
14285 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control

Procedia PDF Downloads 118
14284 Advancement in Carbon Based Battery System

Authors: Mohini M. Sain, Vijay Kumar, Tasmia Tabassem, Jimi Tjong

Abstract:

In the recent times, the Lithium-sulfur batteries (LiSBs) have emerged as a highly promising next generation of secondary batteries for their high theoretical specific capacity (1675 mAh/g) and low cost, and they have shown immense possibilities in utilizing in battery operated electric vehicles (BEVs). However, the commercialization of LiSBs is restricted due to the slow redox kinetics of sulfur cathode and shuttling effect of polysulfides during battery operation. Thus, the development of novel host materials is crucial for suppressing the dissolution of polysulfides into electrolyte, and this eventually helps in resolving the long-term cycling problem in LiSBs. This work provides a simple and straightforward method to design carbon materials with optimized nitrogen content with high surface area and thus simultaneously reveals new methods and strategies for realizing high performance host material design for practical LiSBs.

Keywords: Li ion battery, graphtitic carbon, electrode fabrication, BeV

Procedia PDF Downloads 532
14283 The Increasing Importance of the Role of AI in Higher Education

Authors: Joshefina Bengoechea Fernandez, Alex Bell

Abstract:

In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.

Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics

Procedia PDF Downloads 105
14282 Design of Residential Geothermal Cooling System in Kuwait

Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi

Abstract:

Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.

Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy

Procedia PDF Downloads 85
14281 Tax Morale Dimensions Analysis in Portugal and Spain

Authors: Cristina Sá, Carlos Gomes, António Martins

Abstract:

The reasons that explain different behaviors towards tax obligations in similar countries are not completely understood yet. The main purpose of this paper is to identify and compare the factors that influence tax morale levels in Portugal and Spain. We use data from European Values Study (EVS). Using a sample of 2,652 individuals, a factor analysis was used to extract the underlying dimensions of tax morale of Portuguese and Spanish taxpayers. Based on a factor analysis, the results of this paper show that sociological and behavioral factors, psychological factors and political factors are important for a good understanding of taxpayers’ behavior in Iberian Peninsula. This paper added value relies on the analyses of a wide range of variables and on the comparison between Portugal and Spain. Our conclusions provided insights that tax authorities and politicians can use to better focus their strategies and actions in order to increase compliance, reduce tax evasion, fight underground economy and increase country´s competitiveness.

Keywords: compliance, tax morale, Portugal, Spain

Procedia PDF Downloads 308
14280 Experimental and Numerical Analysis of a Historical Bell Tower

Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi

Abstract:

In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.

Keywords: bell tower, FEM, masonry, modal analysis, non-destructive testing

Procedia PDF Downloads 355
14279 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 457