Search results for: soil reclamation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3070

Search results for: soil reclamation

1390 Familiarity with Flood and Engineering Solutions to Control It

Authors: Hamid Fallah

Abstract:

Undoubtedly, flood is known as a natural disaster, and in practice, flood is considered the most terrible natural disaster in the world both in terms of loss of life and financial losses. From 1988 to 1997, about 390,000 people were killed by natural disasters in the world, 58% of which were related to floods, 26% due to earthquakes, and 16% due to storms and other disasters. The total damages in these 10 years were about 700 billion dollars, which were 33, 29, 28% related to floods, storms and earthquakes, respectively. In this regard, the worrisome point has been the increasing trend of flood deaths and damages in the world in recent decades. The increase in population and assets in flood plains, changes in hydro systems and the destructive effects of human activities have been the main reasons for this increase. During rain and snow, some of the water is absorbed by the soil and plants. A percentage evaporates and the rest flows and is called runoff. Floods occur when the soil and plants cannot absorb the rainfall, and as a result, the natural river channel does not have the capacity to pass the generated runoff. On average, almost 30% of precipitation is converted into runoff, which increases with snow melting. Floods that occur differently create an area called flood plain around the river. River floods are often caused by heavy rains, which in some cases are accompanied by snow melt. A flood that flows in a river without warning or with little warning is called a flash flood. The casualties of these rapid floods that occur in small watersheds are generally more than the casualties of large river floods. Coastal areas are also subject to flooding caused by waves caused by strong storms on the surface of the oceans or waves caused by underground earthquakes. Floods not only cause damage to property and endanger the lives of humans and animals, but also leave other effects. Runoff caused by heavy rains causes soil erosion in the upstream and sedimentation problems in the downstream. The habitats of fish and other animals are often destroyed by floods. The high speed of the current increases the damage. Long-term floods stop traffic and prevent drainage and economic use of land. The supports of bridges, river banks, sewage outlets and other structures are damaged, and there is a disruption in shipping and hydropower generation. The economic losses of floods in the world are estimated at tens of billions of dollars annually.

Keywords: flood, hydrological engineering, gis, dam, small hydropower, suitablity

Procedia PDF Downloads 71
1389 The Results of the Systematic Archaeological Survey of Sistan (Iran)

Authors: Reza Mehrafarin, Nafiseh Mirshekari

Abstract:

The Sistan plain has always been a site for the settlement of various human societies, thanks to its favorable environmental conditions, such as abundant water from the Hirmand River and fertile sedimentary soil. Consequently, there was a need for a systematic archaeological investigation in the area. The survey had multiple objectives, with the most significant ones being the creation of an archaeological map and the identification and documentation of all ancient sites to establish their records and chronology. The survey was carried out in two phases, with each phase covering half of the area. The research method involved fieldwork, with two teams of professional archaeologists conducting a comprehensive survey of each of the 22 areas in Sistan. Once an area was identified, various recording, scientific, and field operations were executed to study the site. In the first phase (2007), an intensive field survey focused on the residential area of Sistan, including its northern and eastern regions. This phase resulted in the identification of 808 sites in eleven selected areas. In the second phase (2009), the desert area of Sistan, or its southern half, was surveyed, leading to the identification of approximately 853 sites. Overall, these surveys resulted in the identification of 1661 sites in Sistan. Among these sites, approximately 899 belong to the Bronze Age (late 4th millennium BCE to early 2nd millennium BCE). Of these sites, around 501 date back to the historical period, while nearly 590 sites pertain to the Islamic period. The archaeological investigations of both phases revealed that Sistan has consistently possessed fertile soil, abundant water, and a skilled workforce, making it capable of becoming Iran's granary and the center of the East once again if these conditions are restored.

Keywords: sistan, field surveys, archaeology, archaeological map

Procedia PDF Downloads 70
1388 Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas

Authors: Alireza Nejadmohammad Namaghi

Abstract:

Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly.

Keywords: mulch, cotton, arid land management, irrigation systems

Procedia PDF Downloads 89
1387 Effects of Foliar Application of Glycine Betaine under Nickel Toxicity of Oat (Avena Sativa L.)

Authors: Khizar Hayat Bhatti, Fiza Javed, Misbah Zafar

Abstract:

Oat (Avena sativa L.) is a major cereal plant belonging to the family Poaceae. It is a very important source of carbohydrates, starch, minerals, vitamins and proteins that are beneficial for general health. Plants grow in the heavy metals contaminated soils that results in decline in growth. Glycine betaine application may improve plant growth, survival and resistance to metabolic disturbances due to stresses. Heavy metals, like nickels, have been accumulated for a long time in the soil because of industrial waste and sewage. The experiment was intended to alleviate the detrimental effects of heavy metal nickel stress on two oat varieties ‘Sgd-2011 and Hay’ using Glycine betain. Nickel was induced through soil application while GB was applied as foliar spray. After 10 days of nickel treatment, an exogenous spray of glycine betaine on the intact plant leaves. Data analysis was carried out using a Completely Randomized Design (CRD) with three replications in this study. For the analysis of all the data of the current research, Mini-Tab 19 software was used to compare the mean value of all treatments and Microsoft Excel software for generating the bars graphs. Significant accelerated plant growth was recorded when Ni exposed plants were treated with GB. Based on data findings, 3mM GB caused significant recovery from Ni stress doses. Overall results also demonstrated that the sgd-2011 variety of oats had the greatest outcomes for all parameters.

Keywords: CRD, foliar spray method, glycine betaine, heavy metals, nickel, ROS

Procedia PDF Downloads 14
1386 Wheat (Triticum Aestivum) Yield Improved with Irrigation Scheduling under Salinity

Authors: Taramani Yadav, Gajender Kumar, R.K. Yadav, H.S. Jat

Abstract:

Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.

Keywords: Irrigation, Salinity, Wheat, Yield

Procedia PDF Downloads 170
1385 Compaction of Municipal Solid Waste

Authors: Jovana Jankovic Pantic, Dragoslav Rakic, Tina Djuric, Irena Basaric Ikodinovic, Snezana Bogdanovic

Abstract:

Regardless of the numerous activities undertaken to reduce municipal solid waste, its annual volumes continue to grow. In Serbia, the most common and the only one form of waste disposal is at municipal landfills with daily compaction and soil covering. Municipal waste compacting is one of the basic components of the disposal process. Well compacted waste takes up less volume and allows much safer storage. In order to better predict the behavior of municipal waste at landfills, it is necessary to define compaction parameters: the maximum dry unit weight and optimal moisture content. In current geotechnical practice, the most common method of determination compaction parameters is by the standard method (Proctor compaction test) used in soil mechanics, with an eventual reduction of compaction energy. Although this methodology is accepted in newer geotechnical scientific discipline "waste mechanics", different treatments of municipal waste at the landfill itself (including pretreatment), indicate the need to change this classical approach. The main reason for that is the simulation of the operation of compactors (hedgehogs) at the landfill. Therefore, during the research, various innovative solutions are introduced, such as changing the classic flat Proctor hammer, by adding spikes, whose function is, in addition to compaction, destruction and shredding of municipal waste. The paper presents the behavior of municipal waste for four synthetic waste samples with different waste compositions (Plandište landfill). The samples were tested in standard Proctor apparatus at the same compaction energy, but with two different hammers: standard flat hammer and hammer with spikes.

Keywords: compaction, hammer with spikes, landfill, municipal solid waste, proctor compaction test

Procedia PDF Downloads 229
1384 Lovely, Lyrical, Lilting: Kubrick’s Translation of Lolita’s Voice

Authors: Taylor La Carriere

Abstract:

“What I had madly possessed was not she, but my own creation, another, fanciful Lolita perhaps, more real than Lolita; overlapping, encasing he and having no will, no consciousness indeed, no life of her own,” Vladimir Nabokov writes in his seminal work, Lolita. Throughout Nabokov’s novel, the eponymous character is rendered nonexistent through unreliable narrator Humbert Humbert’s impenetrable narrative, infused with lyrical rationalization. Instead, Lolita is “safely solipsised,” as Humbert muses, solidifying the potential for the erasure of Lolita’s agency and identity. In this literary work, Lolita’s voice is reduced to a nearly invisible presence, only seen through the eyes of her captor. However, in Stanley Kubrick’s film adaptation of Lolita (1962), the “nymphet,” as Nabokov coins, reemerges with a voice of her own, fueled by a lyric impulse, that displaces Humbert’s first-person narration. The lyric, as defined by Catherine Ing, is the voice of the invisible; it is also characterized by performance, the concentrated utterance of individual emotion, and the appearance of spontaneity. The novel’s lyricism is largely in the service of Humbert’s “seductive” voice, while the film reorients it more to Lolita’s subjectivity. Through a close analysis of Kubrick’s cinematic techniques, this paper examines the emergence and translation of Lolita’s voice in contrast with Humbert’s attempts to silence her in Nabokov’s Lolita, hypothesizing that Kubrick translates Lolita’s presence into a visual and aural voice with lyrical attributes, exemplified through the establishment of an altered power dynamic, Sue Lyon’s transformative performance as the titular character, Nelson Riddle and Bob Harris’ musical score, and the omission of Humbert’s first-person point-of-view. In doing so, the film reclaims Lolita’s agency by taking instances of Lolita’s voice in the novel as depicted in the last half of the work and expanding upon them in a way only cinematic depictions could allow. The results of this study suggest that Lolita’s voice in Kubrick’s adaptation functions without disrupting the lyricism present in Nabokov’s source text, materializing through the actions, expressions, and performance of Sue Lyon in the film. This voice, fueled by a lyric impulse of its own, refutes the silence bestowed upon the titular character and enables its ultimate reclamation upon the silver screen.

Keywords: cinema, adaptation, Lolita, lyric voice

Procedia PDF Downloads 197
1383 Ways of Innovative Sustainable Agriculture in India

Authors: Shailja Thakur

Abstract:

In this paper it is shown that how farmers are suffering from all sides including vagaries of weather then price fluctuations, demand supply constraints, poor soil health etc. Also the ICT can prove to be of great help if incorporated rightly into Indian agriculture. Some innovative ways to reward farmers and distribution of subsidies to them can improve the current scenario.

Keywords: cost of farming, information and communication technology, innovative steps, roof gardening, vermicomposting

Procedia PDF Downloads 311
1382 Tolerance of Some Warm Season Turfgrasses to Compaction under Shade and Sunlight Conditions of Riyadh, Saudi Arabia

Authors: Mohammed A. Al-Yafrsi, Fahed A. Al-Mana

Abstract:

A study was conducted to evaluate the compaction-tolerance ability of some warm season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass (Cynodon dactylon): 'Tifway' and 'Tifsport', seashore paspalum (Paspalum vaginatum) and its cultivar 'Sea Isle 2000' were used. The study area was divided into two sections where one was exposed to sunlight and the other one was maintained under shade using green plastic grille (shade 70%). Turfgrasses were planted by sods in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil compaction was applied using a locally-made cylindrical roll (weighing 250 kg), passing four times over the growing turfgrasses for 3 days/week. The results revealed that compaction treatment led to a decrease in grass height, and it was the lowest (4.0 cm) for paspalum 'Sea Isle 2000' in February. At the shaded area, paspalum turfgrasses retained its high quality degree (4.0) in April, May, and June. In the sunlight area, the grass quality degree was the greatest (4.0) in 'Sea Isle 2000' and the lowest (3.0) in 'Tifsport'. Paspalum turfgrasses gave higher color degree (4) than bermuda grasses (2.5) in April, May, and June. The compaction also led to a decline in leaf area, fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade tolerant turfgrasses are 'Sea Isle 2000' and seashore paspalum.

Keywords: hybrid bermudagrass, seashore paspalum, soil compaction, shade area, sunlight condition

Procedia PDF Downloads 124
1381 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.

Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation

Procedia PDF Downloads 141
1380 Organic Farming for Sustainable Production of Some Promising Halophytic Species in Saline Environment

Authors: Medhat Tawfik, Ezzat Abd El Lateef, Bahr Amany, Mohamed Magda

Abstract:

Applying organic farming systems in biosaline agriculture is unconventional approach for sustainable use of marginal soil and desert land for planting non-traditional halophytic crops such as Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens. These plants are highly salt tolerant C4 halophytic forage plants grown well in coastal salt marsh. These halophytic plant will take important place in the farming system, especially in the coastal areas and salt-affected land. We can call it environmentally smart crops because they ensure food security, contribute to energy security, guarantee environmental sustainability, and mitigate the negative impacts of climate change. Organic Agriculture is the most important and widely practiced agro-ecological farming system. It is claimed to be the most sustainable approach and long term adaptation strategy. It promotes soil fertility and diversity at all levels and makes soils less susceptible to erosion. It is also reported to be climate change resilience farming systems as it promotes the proper management of soil, water, biodiversity and local knowledge and provides producers with ecologically sound management decisions. A field experiment was carried out at the Model Farm of National Research Centre, El Tour, South Sinai to study the impact of (Mycorrhiza 1kg/fed., charcoal 4 tons/fed., chicken manure 5 tons/fed., in addition to control treatment) on some growth characters, photosynthetic pigments content, and some physiological aspects i.e. prolind and soluble carbohydrates content, succulence and osmotic pressure values, as well as nutritive values i.e. Crude fat (CF), Acid detergent fiber (ADF), Neutral detergent fiber (NDF), Ether extract (EE) and Nitrogen-free extract (NFE) of five halophytic plant species (Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens). Our results showed that organic fertilizer treatment enhanced all the previous character as compared with control with superiority to chicken manure over the other treatments.

Keywords: organic agriculture, halophytic plants, saline environment, water security

Procedia PDF Downloads 230
1379 Triticum Aestivum Yield Enhanced with Irrigation Scheduling Strategy under Salinity

Authors: Taramani Yadav, Gajender Kumar, R. K. Yadav, H. S. Jat

Abstract:

Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.

Keywords: Irrigation Scheduling, Saline Environment, Triticum aestivum, Yield

Procedia PDF Downloads 146
1378 Impact of Mucormycosis Infection In Limb Salvage for Trauma Patients

Authors: Katie-Beth Webster

Abstract:

Mucormycosis is a rare opportunistic fungal infection that, if left untreated, can cause large scale tissue necrosis and death. There are a number of cases of this in the literature, most commonly in the head and neck region arising from sinuses. It is also usually found in immunocompromised patient subgroups. This study reviewed a number of cases of mucormycosis in previously fit and healthy young trauma patients to assess predisposing factors for infection and adequacy of current treatment paradigms. These trauma patients likely contracted the fungal infection from the soil at the site of the incident. Despite early washout and debridement of the wounds at the scene of the injury and on arrival in hospital, both these patients contracted mucormycosis. It was suspected that inadequate early debridement of soil contaminated limbs was one of the major factors that can lead to catastrophic tissue necrosis. In both cases, this resulted in the patients having a higher level of amputation than would have initially been required based on the level of their injury. This was secondary to cutaneous and soft tissue necrosis secondary to the fungal infiltration leading to osteomyelitis and systemic sepsis. In the literature, it appears diagnosis is often protracted in this condition secondary to inadequate early treatment and long processing times for fungal cultures. If fungal cultures were sent at the time of first assessment and adequate debridements are performed aggressively early, it could lead to these critically unwell trauma patients receiving appropriate antifungal and surgical treatment earlier in their episode of care. This is likely to improve long term outcomes for these patients.

Keywords: mucormycosis, plastic surgery, osteomyelitis, trauma

Procedia PDF Downloads 211
1377 Worldwide GIS Based Earthquake Information System/Alarming System for Microzonation/Liquefaction and It’s Application for Infrastructure Development

Authors: Rajinder Kumar Gupta, Rajni Kant Agrawal, Jaganniwas

Abstract:

One of the most frightening phenomena of nature is the occurrence of earthquake as it has terrible and disastrous effects. Many earthquakes occur every day worldwide. There is need to have knowledge regarding the trends in earthquake occurrence worldwide. The recoding and interpretation of data obtained from the establishment of the worldwide system of seismological stations made this possible. From the analysis of recorded earthquake data, the earthquake parameters and source parameters can be computed and the earthquake catalogues can be prepared. These catalogues provide information on origin, time, epicenter locations (in term of latitude and longitudes) focal depths, magnitude and other related details of the recorded earthquakes. Theses catalogues are used for seismic hazard estimation. Manual interpretation and analysis of these data is tedious and time consuming. A geographical information system is a computer based system designed to store, analyzes and display geographic information. The implementation of integrated GIS technology provides an approach which permits rapid evaluation of complex inventor database under a variety of earthquake scenario and allows the user to interactively view results almost immediately. GIS technology provides a powerful tool for displaying outputs and permit to users to see graphical distribution of impacts of different earthquake scenarios and assumptions. An endeavor has been made in present study to compile the earthquake data for the whole world in visual Basic on ARC GIS Plate form so that it can be used easily for further analysis to be carried out by earthquake engineers. The basic data on time of occurrence, location and size of earthquake has been compiled for further querying based on various parameters. A preliminary analysis tool is also provided in the user interface to interpret the earthquake recurrence in region. The user interface also includes the seismic hazard information already worked out under GHSAP program. The seismic hazard in terms of probability of exceedance in definite return periods is provided for the world. The seismic zones of the Indian region are included in the user interface from IS 1893-2002 code on earthquake resistant design of buildings. The City wise satellite images has been inserted in Map and based on actual data the following information could be extracted in real time: • Analysis of soil parameters and its effect • Microzonation information • Seismic hazard and strong ground motion • Soil liquefaction and its effect in surrounding area • Impacts of liquefaction on buildings and infrastructure • Occurrence of earthquake in future and effect on existing soil • Propagation of earth vibration due of occurrence of Earthquake GIS based earthquake information system has been prepared for whole world in Visual Basic on ARC GIS Plate form and further extended micro level based on actual soil parameters. Individual tools has been developed for liquefaction, earthquake frequency etc. All information could be used for development of infrastructure i.e. multi story structure, Irrigation Dam & Its components, Hydro-power etc in real time for present and future.

Keywords: GIS based earthquake information system, microzonation, analysis and real time information about liquefaction, infrastructure development

Procedia PDF Downloads 318
1376 In-Situ Determination of Radioactivity Levels and Radiological Hazards in and around the Gold Mine Tailings of the West Rand Area, South Africa

Authors: Paballo M. Moshupya, Tamiru A. Abiye, Ian Korir

Abstract:

Mining and processing of naturally occurring radioactive materials could result in elevated levels of natural radionuclides in the environment. The aim of this study was to evaluate the radioactivity levels on a large scale in the West Rand District in South Africa, which is dominated by abandoned gold mine tailings and the consequential radiological exposures to members of the public. The activity concentrations of ²³⁸U, ²³²Th and 40K in mine tailings, soil and rocks were assessed using the BGO Super-Spec (RS-230) gamma spectrometer. The measured activity concentrations for ²³⁸U, ²³²Th and 40K in the studied mine tailings were found to range from 209.95 to 2578.68 Bq/kg, 19.49 to 108.00 Bq/kg and 31.30 to 626.00 Bq/kg, respectively. In surface soils, the overall average activity concentrations were found to be 59.15 Bq/kg, 34.91 and 245.64 Bq/kg for 238U, ²³²Th and 40K, respectively. For the rock samples analyzed, the mean activity concentrations were 32.97 Bq/kg, 32.26 Bq/kg and 351.52 Bg/kg for ²³⁸U, ²³²Th and 40K, respectively. High radioactivity levels were found in mine tailings, with ²³⁸U contributing significantly to the overall activity concentration. The external gamma radiation received from surface soil in the area is generally low, with an average of 0.07 mSv/y. The highest annual effective doses were estimated from the tailings dams and the levels varied between 0.14 mSv/y and 1.09 mSv/y, with an average of 0.51 mSv/y. In certain locations, the recommended dose constraint of 0.25 mSv/y from a single source to the average member of the public within the exposed population was exceeded, indicating the need for further monitoring and regulatory control measures specific to these areas to ensure the protection of resident members of the public.

Keywords: activity concentration, gold mine tailings, in-situ gamma spectrometry, radiological exposures

Procedia PDF Downloads 132
1375 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: day night band, SAR, fishery, South China Sea

Procedia PDF Downloads 237
1374 On-Farm Biopurification Systems: Fungal Bioaugmentation of Biomixtures For Carbofuran Removal

Authors: Carlos E. Rodríguez-Rodríguez, Karla Ruiz-Hidalgo, Kattia Madrigal-Zúñiga, Juan Salvador Chin-Pampillo, Mario Masís-Mora, Elizabeth Carazo-Rojas

Abstract:

One of the main causes of contamination linked to agricultural activities is the spillage and disposal of pesticides, especially during the loading, mixing or cleaning of agricultural spraying equipment. One improvement in the handling of pesticides is the use of biopurification systems (BPS), simple and cheap degradation devices where the pesticides are biologically degraded at accelerated rates. The biologically active core of BPS is the biomixture, which is constituted by soil pre-exposed to the target pesticide, a lignocellulosic substrate to promote the activity of ligninolitic fungi and a humic component (peat or compost), mixed at a volumetric proportion of 50:25:25. Considering the known ability of lignocellulosic fungi to degrade a wide range of organic pollutants, and the high amount of lignocellulosic waste used in biomixture preparation, the bioaugmentation of biomixtures with these fungi represents an interesting approach for improving biomixtures. The present work aimed at evaluating the effect of the bioaugmentation of rice husk based biomixtures with the fungus Trametes versicolor in the removal of the insectice/nematicide carbofuran (CFN) and to optimize the composition of the biomixture to obtain the best performance in terms of CFN removal and mineralization, reduction in formation of transformation products and decrease in residual toxicity of the matrix. The evaluation of several lignocellulosic residues (rice husk, wood chips, coconut fiber, sugarcane bagasse or newspaper print) revealed the best colonization by T. versicolor in rice husk. Pre-colonized rice husk was then used in the bioaugmentation of biomixtures also containing soil pre-exposed to CFN and either peat (GTS biomixture) or compost (GCS biomixture). After spiking with 10 mg/kg CBF, the efficiency of the biomixture was evaluated through a multi-component approach that included: monitoring of CBF removal and production of CBF transformation products, mineralization of radioisotopically labeled carbofuran (14C-CBF) and changes in the toxicity of the matrix after the treatment (Daphnia magna acute immobilization test). Estimated half-lives of CBF in the biomixtures were 3.4 d and 8.1 d in GTS and GCS, respectively. The transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, however their concentration continuously disappeared. Mineralization of 14C-CFN was also faster in GTS than GCS. The toxicological evaluation showed a complete toxicity removal in the biomixtures after 48 d of treatment. The composition of the GCS biomixture was optimized using a central composite design and response surface methodology. The design variables were the volumetric content of fungally pre-colonized rice husk and the volumetric ratio compost/soil. According to the response models, maximization of CFN removal and mineralization rate, and minimization in the accumulation of transformation products were obtained with an optimized biomixture of composition 30:43:27 (pre-colonized rice husk:compost:soil), which differs from the 50:25:25 composition commonly employed in BPS. Results suggest that fungal bioaugmentation may enhance the performance of biomixtures in CFN removal. Optimization reveals the importance of assessing new biomixture formulations in order to maximize their performance.

Keywords: bioaugmentation, biopurification systems, degradation, fungi, pesticides, toxicity

Procedia PDF Downloads 313
1373 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor

Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra

Abstract:

The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.

Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor

Procedia PDF Downloads 342
1372 The Role of Vibro-Stone Column for Enhancing the Soft Soil Properties

Authors: Mohsen Ramezan Shirazi, Orod Zarrin, Komeil Valipourian

Abstract:

This study investigated the behavior of improved soft soils through the vibro replacement technique by considering their settlements and consolidation rates and the applicability of this technique in various types of soils and settlement and bearing capacity calculations.

Keywords: bearing capacity, expansive clay, stone columns, vibro techniques

Procedia PDF Downloads 588
1371 Design and Modeling of Light Duty Trencher

Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu

Abstract:

From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.

Keywords: hydraulics, modelling, trenching, ditch

Procedia PDF Downloads 217
1370 The Discussion on the Composition of Feng Shui by the Environmental Planning Viewpoint

Authors: Jhuang Jin-Jhong, Hsieh Wei-Fan

Abstract:

Climate change causes natural disasters persistently. Therefore, nowadays environmental planning objective tends to the issues of respecting nature and coexisting with nature. As a result, the natural environment analysis, e.g., the analysis of topography, soil, hydrology, climate, vegetation, is highly emphasized. On the other hand, Feng Shui has been a criterion of site selection for residence in Eastern since the ancient times and has had farther influence on site selection for castles and even for temples and tombs. The primary criterion of site selection is judging the quality of Long: mountain range, Sha: nearby mountains, Shui: hydrology, Xue: foundation, Xiang: aspect, which are similar to the environmental variables of mountain range, topography, hydrology and aspect. For the reason, a lot researchers attempt to probe into the connection between the criterion of Feng Shui and environmental planning factors. Most researches only discussed with the composition and theory of space of Feng Shui, but there is no research which explained Feng Shui through the environmental field. Consequently, this study reviewed the theory of Feng Shui through the environmental planning viewpoint and assembled essential composition factors of Feng Shui. The results of this study point. From literature review and comparison of theoretical meanings, we find that the ideal principles for planning the Feng Shui environment can also be used for environmental planning. Therefore, this article uses 12 ideal environmental features used in Feng Shui to contrast the natural aspects of the environment and make comparisons with previous research and classifies the environmental factors into climate, topography, hydrology, vegetation, and soil.

Keywords: the composition of Feng Shui, environmental planning, site selection, main components of the Feng Shui environment

Procedia PDF Downloads 515
1369 Eco-Friendly Cultivation

Authors: Shah Rucksana Akhter Urme

Abstract:

Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.

Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming

Procedia PDF Downloads 65
1368 Land-Use Suitability Analysis for Merauke Agriculture Estates

Authors: Sidharta Sahirman, Ardiansyah, Muhammad Rifan, Edy-Melmambessy

Abstract:

Merauke district in Papua, Indonesia has a strategic position and natural potential for the development of agricultural industry. The development of agriculture in this region is being accelerated as part of Indonesian Government’s declaration announcing Merauke as one of future national food barns. Therefore, land-use suitability analysis for Merauke need to be performed. As a result, the mapping for future agriculture-based industries can be done optimally. In this research, a case study is carried out in Semangga sub district. The objective of this study is to determine the suitability of Merauke land for some food crops. A modified agro-ecological zoning is applied to reach the objective. In this research, land cover based on satellite imagery is combined with soil, water and climate survey results to come up with preliminary zoning. Considering the special characteristics of Merauke community, the agricultural zoning maps resulted based on those inputs will be combined with socio-economic information and culture to determine the final zoning map for agricultural industry in Merauke. Examples of culture are customary rights of local residents and the rights of local people and their own local food patterns. This paper presents the results of first year of the two-year research project funded by The Indonesian Government through MP3EI schema. It shares the findings of land cover studies, the distribution of soil physical and chemical parameters, as well as suitability analysis of Semangga sub-district for five different food plants.

Keywords: agriculture, agro-ecological, Merauke, zoning

Procedia PDF Downloads 317
1367 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 72
1366 Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions

Authors: Jose Ruiz, Jose Velasquez, Holger Lovon

Abstract:

Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings.

Keywords: fragility functions, university buildings, loss assessment, Montecarlo simulation, latin hypercube

Procedia PDF Downloads 147
1365 Influence of Sewage Sludge on Agricultural Land Quality and Crop

Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu

Abstract:

Since the accumulation of large quantities of sewage sludge is producing serious environmental problems, numerous environmental specialists are looking for solutions to solve this problem. The sewage sludge obtained by treatment of municipal wastewater may be used as fertiliser on agricultural soils because such sludge contains large amounts of nitrogen, phosphorus and organic matter. In many countries, sewage sludge is used instead of chemical fertilizers in agriculture, this being the most feasible method to reduce the increasingly larger quantities of sludge. The use of sewage sludge on agricultural soils is allowed only with a strict monitoring of their physical and chemical parameters, because heavy metals exist in varying amounts in sewage sludge. Exceeding maximum permitted quantities of harmful substances may lead to pollution of agricultural soil and may cause their removal aside because the plants may take up the heavy metals existing in soil and these metals will most probably be found in humans and animals through food. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), total organic carbon (TOC) (mg L⁻¹), N-total (mg L⁻¹), P-total (mg L⁻¹), N-NH₄ (mg L⁻¹), N-NO₂ (mg L⁻¹), N-NO₃ (mg L⁻¹), Fe-total (mg L⁻¹), Cr-total (mg L⁻¹), Cu (mg L⁻¹), Zn (mg L⁻¹), Cd (mg L⁻¹), Pb (mg L⁻¹), Ni (mg L⁻¹). The determination methods were electrometrical (pH, C, TSD) - with a portable HI 9828 HANNA electrodes committed multiparameter and spectrophotometric - with a Spectroquant NOVA 60 - Merck spectrophotometer and with specific Merck parameter kits. The tests made pointed out the fact that the sludge analysed is low heavy metal falling within the legal limits, the quantities of metals measured being much lower than the maximum allowed. The results of the tests made to determine the content of nutrients in the sewage sludge have shown that the existing nutrients may be used to increase the fertility of agricultural soils. Other tests were carried out on lands where sewage sludge was applied in order to establish the maximum quantity of sludge that may be used so as not to constitute a source of pollution. The tests were made on three plots: a first batch with no mud and no chemical fertilizers applied, a second batch on which only sewage sludge was applied, and a third batch on which small amounts of chemical fertilizers were applied in addition to sewage sludge. The results showed that the production increases when the soil is treated with sludge and small amounts of chemical fertilizers. Based on the results of the present research, a fertilization plan has been suggested. This plan should be reconsidered each year based on the crops planned, the yields proposed, the agrochemical indications, the sludge analysis, etc.

Keywords: agricultural use, crops, physico–chemical parameters, sewage sludge

Procedia PDF Downloads 294
1364 Groundwater Quality and Its Suitability for Agricultural Use in the Jeloula Basin, Tunisia

Authors: Intissar Farid

Abstract:

Groundwater quality assessment is crucial for sustainable water use, especially in semi-arid regions like the Jeloula basin in Tunisia, where groundwater is essential for domestic and agricultural needs. The present research aims to characterize the suitability of groundwater for irrigational purposes by considering various parameters: total salt concentration as measured by Electrical Conductivity EC, relative proportions of Na⁺ as expressed by %Na and SAR, Kelly’s ratio, Permeability Index, Magnesium hazard and Residual Sodium chloride. Chemical data indicate that the percent sodium (%Na) in the study area ranged from 26.3 to 45.3%. According to the Wilcox diagram, the quality classification of irrigation water suggests that analyzed groundwaters are suitable for irrigation purposes. The SAR values vary between 2.1 and 5. Most of the groundwater samples plot in the Richards’C3S1 water class and indicate little danger from sodium content to soil and plant growth. The Kelly’s ratio of the analyzed samples ranged from 0.3 to 0.8. These values indicate that the waters are fit for agricultural purposes. Magnesium hazard (MH) values range from 27.5 to 52.6, with an average of 38.9 in the analyzed waters. Hence, the Mg²⁺ content of the groundwater from the shallow aquifer cannot cause any problem to the soil permeability. Permeability index (PI) values computed for the area ranged from 33.6 to 52.7%. The above result, therefore, suggests that most of the water samples fall within class I of the Doneen chart and can be categorized as good irrigation water. The groundwaters collected from the Jeloula shallow aquifer were found to be within the safe limits and thus suitable for irrigation purposes.

Keywords: Kelly's ratio, magnesium hazard, permeability index, residual sodium chloride

Procedia PDF Downloads 34
1363 Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context

Authors: Shrikant Charhate, Gayatri Deshpande

Abstract:

Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.

Keywords: connections, geotextile, permeable ACB, pavements, stone base

Procedia PDF Downloads 290
1362 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection

Authors: Pukhrambam Helena Chanu, Janardan Yadav

Abstract:

This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.

Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.

Procedia PDF Downloads 53
1361 Hydrological Response of the Glacierised Catchment: Himalayan Perspective

Authors: Sonu Khanal, Mandira Shrestha

Abstract:

Snow and Glaciers are the largest dependable reserved sources of water for the river system originating from the Himalayas so an accurate estimate of the volume of water contained in the snowpack and the rate of release of water from snow and glaciers are, therefore, needed for efficient management of the water resources. This research assess the fusion of energy exchanges between the snowpack, air above and soil below according to mass and energy balance which makes it apposite than the models using simple temperature index for the snow and glacier melt computation. UEBGrid a Distributed energy based model is used to calculate the melt which is then routed by Geo-SFM. The model robustness is maintained by incorporating the albedo generated from the Landsat-7 ETM images on a seasonal basis for the year 2002-2003 and substrate map derived from TM. The Substrate file includes predominantly the 4 major thematic layers viz Snow, clean ice, Glaciers and Barren land. This approach makes use of CPC RFE-2 and MERRA gridded data sets as the source of precipitation and climatic variables. The subsequent model run for the year between 2002-2008 shows a total annual melt of 17.15 meter is generate from the Marshyangdi Basin of which 71% is contributed by the glaciers , 18% by the rain and rest being from the snow melt. The albedo file is decisive in governing the melt dynamics as 30% increase in the generated surface albedo results in the 10% decrease in the simulated discharge. The melt routed with the land cover and soil variables using Geo-SFM shows Nash-Sutcliffe Efficiency of 0.60 with observed discharge for the study period.

Keywords: Glacier, Glacier melt, Snowmelt, Energy balance

Procedia PDF Downloads 457