Search results for: Jhuang Jin-Jhong
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Jhuang Jin-Jhong

2 The Discussion on the Composition of Feng Shui by the Environmental Planning Viewpoint

Authors: Jhuang Jin-Jhong, Hsieh Wei-Fan

Abstract:

Climate change causes natural disasters persistently. Therefore, nowadays environmental planning objective tends to the issues of respecting nature and coexisting with nature. As a result, the natural environment analysis, e.g., the analysis of topography, soil, hydrology, climate, vegetation, is highly emphasized. On the other hand, Feng Shui has been a criterion of site selection for residence in Eastern since the ancient times and has had farther influence on site selection for castles and even for temples and tombs. The primary criterion of site selection is judging the quality of Long: mountain range, Sha: nearby mountains, Shui: hydrology, Xue: foundation, Xiang: aspect, which are similar to the environmental variables of mountain range, topography, hydrology and aspect. For the reason, a lot researchers attempt to probe into the connection between the criterion of Feng Shui and environmental planning factors. Most researches only discussed with the composition and theory of space of Feng Shui, but there is no research which explained Feng Shui through the environmental field. Consequently, this study reviewed the theory of Feng Shui through the environmental planning viewpoint and assembled essential composition factors of Feng Shui. The results of this study point. From literature review and comparison of theoretical meanings, we find that the ideal principles for planning the Feng Shui environment can also be used for environmental planning. Therefore, this article uses 12 ideal environmental features used in Feng Shui to contrast the natural aspects of the environment and make comparisons with previous research and classifies the environmental factors into climate, topography, hydrology, vegetation, and soil.

Keywords: the composition of Feng Shui, environmental planning, site selection, main components of the Feng Shui environment

Procedia PDF Downloads 480
1 High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications

Authors: Meng-Chyi Wu, Bonn Lin, Jyun-Hao Liao, Chein-Ju Chen, Yu-Cheng Jhuang, Mau-Phon Houng, Fang-Hsing Wang, Min-Chu Liu, Cheng-Fu Yang, Cheng-Shong Hong

Abstract:

Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in.

Keywords: ultraviolet (UV) communication, light-emitting diodes (LEDs), modulation bandwidth, LED array, 370 nm

Procedia PDF Downloads 367