Search results for: robust diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3434

Search results for: robust diagnosis

1754 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology

Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh

Abstract:

In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.

Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.

Procedia PDF Downloads 58
1753 Application of Envelope Spectrum Analysis and Spectral Kurtosis to Diagnose Debris Fault in Bearing Using Acoustic Signals

Authors: Henry Ogbemudia Omoregbee, Mabel Usunobun Olanipekun

Abstract:

Debris fault diagnosis based on acoustic signals in rolling element bearing running at low speed and high radial loads are more of low amplitudes, particularly in the case of debris faults whose signals necessitate high sensitivity analyses. As the rollers in the bearing roll over debris trapped in grease used to lubricate the bearings, the envelope signal created by amplitude demodulation carries additional diagnostic information that is not available through ordinary spectrum analysis of the raw signal. The kurtosis value obtained for three different scenarios (debris induced, outer crack induced, and a normal good bearing) couldn't be used to easily identify whether the used bearings were defective or not. It was established in this work that the envelope spectrum analysis detected the fault signature and its harmonics induced in the debris bearings when bandpass filtering of the raw signal with the frequency band specified by kurtogram and spectral kurtosis was made.

Keywords: rolling bearings, rolling element bearing noise, bandpass filtering, harmonics, envelope spectrum analysis, spectral kurtosis

Procedia PDF Downloads 86
1752 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.

Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable

Procedia PDF Downloads 275
1751 Comprehensive Review of Adversarial Machine Learning in PDF Malware

Authors: Preston Nabors, Nasseh Tabrizi

Abstract:

Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.

Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion

Procedia PDF Downloads 39
1750 Healthcare Seeking Behaviors of Parents Who Have Children with Disabilities: A Case Study at the Effutu Municipality, Winneba-Central Region, Ghana-West Africa

Authors: Priscilla Deede Hammond

Abstract:

Healthcare seeking behaviour has emerged as a tool to tackle perceived ill-health by taking remedial actions. And currently, efforts are being directed towards encouraging people (especially parents) to learn and use health-promoting behaviours in seeking their children’s healthcare. Regardless of these efforts, most parents encounter challenges with raising a child with a disability. The purpose of the study was to explore the healthcare-seeking behaviours of parents of children with disabilities. In order to achieve the purpose of the study, a case study design was employed where the researcher used a qualitative approach such as semi-structured interview to gather the required data. Data from participants were analysed using a thematic analysis approach. It was revealed from the findings of the study that, some of the parents after the first diagnosis by health professionals consulted a spiritualist or a herbalist for help. Also, some parents stated that their response to their children’s healthcare depended on the severity of the sickness. The study recommends the Ministry of Gender, Children and Social Protection and other social agencies such as the Social Welfare Department to provide health assessment and financial support to families of children with disabilities.

Keywords: healthcare, health, parents, disabilities

Procedia PDF Downloads 224
1749 Potential Determinants of Research Output: Comparing Economics and Business

Authors: Osiris Jorge Parcero, Néstor Gandelman, Flavia Roldán, Josef Montag

Abstract:

This paper uses cross-country unbalanced panel data of up to 146 countries over the period 1996 to 2015 to be the first study to identify potential determinants of a country’s relative research output in Economics versus Business. More generally, it is also one of the first studies comparing Economics and Business. The results show that better policy-related data availability, higher income inequality, and lower ethnic fractionalization relatively favor economics. The findings are robust to two alternative fixed effects specifications, three alternative definitions of economics and business, two alternative measures of research output (publications and citations), and the inclusion of meaningful control variables. To the best of our knowledge, our paper is also the first to demonstrate the importance of policy-related data as drivers of economic research. Our regressions show that the availability of this type of data is the single most important factor associated with the prevalence of economics over business as a research domain. Thus, our work has policy implications, as the availability of policy-related data is partially under policy control. Moreover, it has implications for students, professionals, universities, university departments, and research-funding agencies that face choices between profiles oriented toward economics and those oriented toward business. Finally, the conclusions show potential lines for further research.

Keywords: research output, publication performance, bibliometrics, economics, business, policy-related data

Procedia PDF Downloads 134
1748 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: inland waterways, YOLO, sensor fusion, self-attention

Procedia PDF Downloads 124
1747 ADHD: Assessment of Pragmatic Skills in Adults

Authors: Elena Even-Simkin

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most frequently diagnosed disorders in children, but in many cases, the diagnosis is not provided until adulthood. Diagnosing adults with ADHD faces different obstacles due to numerous factors, such as educational or under-resourced familial environment, high intelligence compensating for stress-inducing difficulties, and additional comorbidities. Undiagnosed children and adolescents with ADHD may become undiagnosed adults with ADHD, who miss out on the early treatment and may experience significant social and pragmatic difficulties, leading to functional problems that subsequently affect their lifestyle, education, and occupational functioning. The proposed study presents a cost-effective and unique consideration of the pragmatic aspect among adults with ADHD. It provides a systematic and standardized evaluation of the pragmatic level in adults with ADHD, based on a comprehensive approach introduced by Arcara & Bambini (2016) for the assessment of pragmatic abilities in neuro-typical individuals. This assessment tool can promote the inclusion of pragmatic skills in the cognitive profile in the diagnostic practice of ADHD, and, thus, the proposed instrument can help not only identify the pragmatic difficulties in the ADHD population but also advance effective intervention programs that specifically focus on pragmatic skills in the targeted population.

Keywords: ADHD, adults, assessment, pragmatics

Procedia PDF Downloads 76
1746 A Rare Case of Dissection of Cervical Portion of Internal Carotid Artery, Diagnosed Postpartum

Authors: Bidisha Chatterjee, Sonal Grover, Rekha Gurung

Abstract:

Postpartum dissection of the internal carotid artery is a relatively rare condition and is considered as an underlying aetiology in 5% to 25% of strokes under the age of 30 to 45 years. However, 86% of these cases recover completely and 14% have mild focal neurological symptoms. Prognosis is generally good with early intervention. The risk quoted for a repeat carotid artery dissection in subsequent pregnancies is less than 2%. 36-year Caucasian primipara presented on postnatal day one of forceps delivery with tachycardia. In the intrapartum period she had a history of prolonged rupture of membranes and developed intrapartum sepsis and was treated with antibiotics. Postpartum ECG showed septal inferior T wave inversion and a troponin level of 19. Subsequently Echocardiogram ruled out post-partum cardiomyopathy. Repeat ECG showed improvement of the previous changes and in the absence of symptoms no intervention was warranted. On day 4 post-delivery, she had developed symptoms of droopy right eyelid, pain around the right eye and itching in the right ear. On examination, she had developed right sided ptosis, unequal pupils (Rt miotic pupil). Cranial nerve examination, reflexes, sensory examination and muscle power was normal. Apart from migraine, there was no medical or family history of note. In view of Horner’s on the right, she had a CT Angiogram and subsequently MR/MRA and was diagnosed with dissection of the cervical portion of the right internal carotid artery. She was discharged on a course of Aspirin 75mg. By 6 week post-natal follow up patient had recovered significantly with occasional episodes of unequal pupils and tingling of right toes which resolved spontaneously. Cervical artery dissection, including VAD and carotid artery dissection, are rare complications of pregnancy with an estimated annual incidence of 2.6–3 per 100,000 pregnancy hospitalizations. Aetiology remains unclear though trauma during straining at labour, underlying arterial disease and preeclampsia have been implicated. Hypercoagulable state during pregnancy and puerperium could also be an important factor. 60-90% cases present with severe headache and neck pain and generally precede neurological symptoms like ipsilateral Horner’s syndrome, retroorbital pain, tinnitus and cranial nerve palsy. Although rare, the consequences of delayed diagnosis and management can lead to severe and permanent neurological deficits. Patients with a strong index of suspicion should undergo an MRI or MRA of head and neck. Antithrombotic and antiplatelet therapy forms the mainstay of therapy with selected cases needing endovascular stenting. Long term prognosis is favourable with either complete resolution or minimal deficit if treatment is prompt. Patients should be counselled about the recurrence risk and possibility of stroke in future pregnancy. Coronary artery dissection is rare and treatable but needs early diagnosis and treatment. Post-partum headache and neck pain with neurological symptoms should prompt urgent imaging followed by antithrombotic and /or antiplatelet therapy. Most cases resolve completely or with minimal sequelae.

Keywords: postpartum, dissection of internal carotid artery, magnetic resonance angiogram, magnetic resonance imaging, antiplatelet, antithrombotic

Procedia PDF Downloads 97
1745 Formulation of a Stress Management Program for Human Error Prevention in Nuclear Power Plants

Authors: Hyeon-Kyo Lim, Tong-il Jang, Yong-Hee Lee

Abstract:

As for any nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. Thus, for accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Among lots factors, stress has been reported to have significant influence on human performance. Stress level of a person may fluctuate over time. To handle the possibility over time, robust stress management program is required, especially in nuclear power plants. Therefore, to overcome the possibility of human errors, this study aimed to develop a stress management program as a part of Fitness-for-Duty (FFD) Program for the workers in nuclear power plants. The meaning of FFD might be somewhat different by research objectives, appropriate definition of FFD was accomplished in this study with special reference to human error prevention, and diverse stress factors were elicited for management of human error susceptibility. In addition, with consideration of conventional FFD management programs, appropriate tests and interventions were introduced over the whole employment cycle including selection and screening of workers, job allocation, job rotation, and disemployment as well as Employee-Assistance-Program (EAP). The results showed that most tools mainly concentrated their weights on common organizational factors such as Demands, Supports, and Relationships in sequence, which were referred as major stress factors.

Keywords: human error, accident prevention, work performance, stress, fatigue

Procedia PDF Downloads 326
1744 Understanding Different Facets of Chromosome Abnormalities: A 17-year Cytogenetic Study and Indian Perspectives

Authors: Lakshmi Rao Kandukuri, Mamata Deenadayal, Suma Prasad, Bipin Sethi, Srinadh Buragadda, Lalji Singh

Abstract:

Worldwide; at least 7.6 million children are born annually with severe genetic or congenital malformations and among them 90% of these are born in mid and low-income countries. Precise prevalence data are difficult to collect, especially in developing countries, owing to the great diversity of conditions and also because many cases remain undiagnosed. The genetic and congenital disorder is the second most common cause of infant and childhood mortality and occurs with a prevalence of 25-60 per 1000 births. The higher prevalence of genetic diseases in a particular community may, however, be due to some social or cultural factors. Such factors include the tradition of consanguineous marriage, which results in a higher rate of autosomal recessive conditions including congenital malformations, stillbirths, or mental retardation. Genetic diseases can vary in severity, from being fatal before birth to requiring continuous management; their onset covers all life stages from infancy to old age. Those presenting at birth are particularly burdensome and may cause early death or life-long chronic morbidity. Genetic testing for several genetic diseases identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use and more are being developed. Chromosomal abnormalities are the major cause of human suffering, which are implicated in mental retardation, congenital malformations, dysmorphic features, primary and secondary amenorrhea, reproductive wastage, infertility neoplastic diseases. Cytogenetic evaluation of patients is helpful in the counselling and management of affected individuals and families. We present here especially chromosomal abnormalities which form a major part of genetic disease burden in India. Different programmes on chromosome research and human reproductive genetics primarily relate to infertility since this is a major public health problem in our country, affecting 10-15 percent of couples. Prenatal diagnosis of chromosomal abnormalities in high-risk pregnancies helps in detecting chromosomally abnormal foetuses. Such couples are counselled regarding the continuation of pregnancy. In addition to the basic research, the team is providing chromosome diagnostic services that include conventional and advanced techniques for identifying various genetic defects. Other than routine chromosome diagnosis for infertility, also include patients with short stature, hypogonadism, undescended testis, microcephaly, delayed developmental milestones, familial, and isolated mental retardation, and cerebral palsy. Thus, chromosome diagnostics has found its applicability not only in disease prevention and management but also in guiding the clinicians in certain aspects of treatment. It would be appropriate to affirm that chromosomes are the images of life and they unequivocally mirror the states of human health. The importance of genetic counseling is increasing with the advancement in the field of genetics. The genetic counseling can help families to cope with emotional, psychological, and medical consequences of genetic diseases.

Keywords: India, chromosome abnormalities, genetic disorders, cytogenetic study

Procedia PDF Downloads 315
1743 Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures

Authors: Ramona Zharfpeykan, Paul Rouse

Abstract:

Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI).

Keywords: data envelopment analysis, sustainability, sustainability performance measurement system, sustainability performance index, global reporting initiative

Procedia PDF Downloads 181
1742 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 77
1741 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback

Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU

Abstract:

The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.

Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate

Procedia PDF Downloads 106
1740 Negative RT-PCR in a Newborn Infected with Zika Virus: A Case Report

Authors: Vallejo Michael, Acuña Edgar, Roa Juan David, Peñuela Rosa, Parra Alejandra, Casallas Daniela, Rodriguez Sheyla

Abstract:

Congenital Zika Virus Syndrome is an entity composed by a variety of birth defects presented in newborns that have been exposed to the Zika Virus during pregnancy. The syndrome characteristic features are severe microcephaly, cerebral tissue abnormalities, ophthalmological abnormalities such as uveitis and chorioretinitis, arthrogryposis, clubfoot deformity and muscular tone abnormalities. The confirmatory test is the Reverse transcription polymerase chain reaction (RT-PCR) associated to the physical findings. Here we present the case of a newborn with microcephaly whose mother presented a confirmed Zika Virus infection during the third trimester of pregnancy, despite of the evident findings and the history of Zika infection the RT-PCR in amniotic and cerebrospinal fluid of the newborn was negative. RT-PCR has demonstrated a low sensibility in samples with low viral loads, reason why, we propose a clinical diagnosis in patients with clinical history of Zika Virus infection during pregnancy accompanied by evident clinical manifestations of the child.

Keywords: congenital, Zika virus, microcephaly, reverse transcriptase polymerase chain reaction

Procedia PDF Downloads 211
1739 Lobbyists’ Competencies as a Basis for Shaping the Positive Image of Modern Lobbying

Authors: Joanna Dzieńdziora

Abstract:

Lobbying is an instrument of influence in various decision-making processes. It is also the underestimated issue as a research problem. The lack of research on the modern lobbyist competencies is the most crucial element. The paper presents attempts of finding answers to the following questions: Who should run the lobbying activity? What competencies should a lobbyist possess in order to implement lobbying activities effectively? Searching for answers for the mentioned above questions requires positioning the opportunity to change the image of lobbying in the area of competencies of entities that provide lobbying activities. The aim of the paper is presenting the lobbyist competencies profile in the framework of his professional role. The essence of lobbying activity and its significance in the modern economy as well as areas, the scope of lobbying activities, diagnosis of a modern lobbyist’s competences, lobbyist’s competencies profile that is focused on the professionalization of the lobbying activity, will have been presented in this paper. Indicated research tasks let emerge lobbyist’s competencies in the way that allows identifying and elaborating the lobbyist competencies profile. The profile lets improve lobbying activities. Its elaboration is based on the author’s research results analysis. Taking into consideration the shortages within the theory and research on the lobbying activity, the implementation of this research enables to fill the cognitive gap existing in the theory of management sciences.

Keywords: competencies, competencies profile, lobbying, lobbyist

Procedia PDF Downloads 155
1738 Empowering Certificate Management with Blockchain Technology

Authors: Yash Ambekar, Kapil Vhatkar, Prathamesh Swami, Kartikey Singh, Yashovardhan Kaware

Abstract:

The rise of online courses and certifications has created new opportunities for individuals to enhance their skills. However, this digital transformation has also given rise to coun- terfeit certificates. To address this multifaceted issue, we present a comprehensive certificate management system founded on blockchain technology and strengthened by smart contracts. Our system comprises three pivotal components: certificate generation, authenticity verification, and a user-centric digital locker for certificate storage. Blockchain technology underpins the entire system, ensuring the immutability and integrity of each certificate. The inclusion of a cryptographic hash for each certificate is a fundamental aspect of our design. Any alteration in the certificate’s data will yield a distinct hash, a powerful indicator of potential tampering. Furthermore, our system includes a secure digital locker based on cloud storage that empowers users to efficiently manage and access all their certificates in one place. Moreover, our project is committed to providing features for certificate revocation and updating, thereby enhancing the system’s flexibility and security. Hence, the blockchain and smart contract-based certificate management system offers a robust and one-stop solution to the escalating problem of counterfeit certificates in the digital era.

Keywords: blockchain technology, smart contracts, counterfeit certificates, authenticity verification, cryptographic hash, digital locker

Procedia PDF Downloads 46
1737 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
1736 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories

Authors: Umesh Kumar Singh, Chanchala Joshi

Abstract:

With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.

Keywords: CVSS score, risk level, security measurement, vulnerability category

Procedia PDF Downloads 321
1735 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification

Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah

Abstract:

The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.

Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator

Procedia PDF Downloads 287
1734 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 26
1733 Template-less Self-Assembled Morphologically Cubic BiFeO₃ for Improved Electrical Properties

Authors: Jenna Metera, Olivia Graeve

Abstract:

Ceramic capacitor technologies using lead based materials is being phased out for its environmental and handling hazards. Bismuth ferrite (BiFeO₃) is the next best replacement for those lead-based technologies. Unfortunately, the electrical properties in bismuth systems are not as robust as the lead alternatives. The improvement of electrical properties such as charge density, charge anisotropy, relative permittivity, and dielectric loss are the parameters that will make BiFeO₃ a competitive alternative to lead-based ceramic materials. In order to maximize the utility of these properties, we propose the ordering and an evaporation-induced self-assembly of a cubic morphology powder. Evaporation-induced self-assembly is a template-less, bottom-up, self-assembly option. The capillary forces move the particles closer together when the solvent evaporates, promoting organized agglomeration at the particle faces. The assembly of particles into organized structures can lead to enhanced properties compared to unorganized structures or single particles themselves. The interactions between the particles can be controlled based on the long-range order in the organized structure. The cubic particle morphology is produced through a hydrothermal synthesis with changes in the concentration of potassium hydroxide, which changes the morphology of the powder. Once the assembly materializes, the powder is fabricated into workable substrates for electrical testing after consolidation.

Keywords: evaporation, lead-free, morphology, self-assembly

Procedia PDF Downloads 123
1732 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
1731 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 151
1730 Assessment of Exposure Dose Rate from Scattered X-Radiation during Diagnostic Examination in Nigerian University Teaching Hospital

Authors: Martins Gbenga., Orosun M. M., Olowookere C. J., Bamidele Lateef

Abstract:

Radiation exposures from diagnostic medical examinations are almost always justified by the benefits of accurate diagnosis of possible disease conditions. The aim is to assess the influence of selected exposure parameters on scattered dose rates. The research was carried out using Gamma Scout software installation on the Computer system (Laptop) to record the radiation counts, pulse rate, and dose rate for 136 patients. Seventy-three patients participated in the male category with 53.7%, while 63 females participated with 46.3%. The mean and standard deviation value for each parameter is recorded, and tube potential is within 69.50±11.75 ranges between 52.00 and 100.00, tube current is within 23.20±17.55 ranges between 4.00 and 100.00, focus skin distance is within 73.195±33.99 and ranges between 52.00 and 100.00. Dose Rate (DRate in µSv/hr) is significant at an interval of 0.582 and 0.587 for tube potential and body thickness (cm). Tube potential is significant at an interval of 0.582 and 0.842 of DRate (µSv/hr) and body thickness (cm). The study was compared with other studies. The exposure parameters selected during each examination contributed to scattered radiation. A quality assurance program (QAP) is advised for the center.

Keywords: x-radiation, exposure rate, dose rate, tube potentials, scattered radiation, diagnostic examination

Procedia PDF Downloads 146
1729 Starch Valorization: Biorefinery Concept for the Circular Bioeconomy

Authors: Maider Gómez Palmero, Ana Carrasco Pérez, Paula de la Sen de la Cruz, Francisco Javier Royo Herrer, Sonia Ascaso Malo

Abstract:

The production of bio-based products for different purposes is one of the strategies that has grown the most at European and even global levels, seeking to contribute to mitigating the impacts associated with climate change and to achieve the ambitious objectives set in this regard. However, the substitution of fossil-based products for bio-based products requires a challenging and deep transformation and adaptation of the secondary and primary sectors and, more specifically, in the latter, the agro-industries. The first step to developing a bio-based value chain focuses on the availability of a resource with the right characteristics for the substitution sought. This, in turn, requires a significant reshaping of the forestry/agricultural sector but also of the agro-industry, which has a relevant potential to be deployed as a supplier and develop a robust logistical supply chain and to market a biobased raw material at a competitive price. However, this transformation may involve a profound restructuring of its traditional business model to incorporate biorefinery concepts. In this sense, agro-industries that generate by-products in their processes that are currently not valorized, such as potato processing rejects or the starch found in washing water, constitute a potential raw material that can be used for different bio-applications. This article aims to explore this potential to evaluate the most suitable bio applications to target and identify opportunities and challenges.

Keywords: starch valorisation, biorefinery, bio-based raw materials, bio-applications

Procedia PDF Downloads 51
1728 Managerial Overconfidence, Payout Policy, and Corporate Governance: Evidence from UK Companies

Authors: Abdullah AlGhazali, Richard Fairchild, Yilmaz Guney

Abstract:

We examine the effect of managerial overconfidence on UK firms’ payout policy for the period 2000 to 2012. The analysis incorporates, in addition to common firm-specific factors, a wide range of corporate governance factors and managerial characteristics that have been documented to affect the relationship between overconfidence and payout policy. Our results are robust to several estimation considerations. The findings show that the influence of overconfident CEOs on the amount of, and the propensity to pay, dividends is significant within the UK context. Specifically, we detect that there is a reduction in dividend payments in firms managed by overconfident managers compared to their non-overconfident counterparts. Moreover, we affirm that cash flows, firm size and profitability are positively correlated, while leverage, firm growth and investment are negatively correlated with the amount of and propensity to pay dividends. Interestingly, we demonstrate that firms with the potential for undervaluation reduce dividend payments. Some of the corporate governance factors are shown to motivate firms to pay more dividends while these factors seem to have no influence on the propensity to pay dividends. The results also show that in general higher overconfidence leads to more share repurchases but the lower total payout. Overall, managerial overconfidence should be considered as an important factor influencing payout policy in addition to other known factors.

Keywords: dividends, repurchases, UK firms, overconfidence, corporate governance, undervaluation

Procedia PDF Downloads 269
1727 Corporate Governance Reforms in a Developing Economy: Making a Case for Upstream and Downstream Interventions

Authors: Franklin Nakpodia, Femi Olan

Abstract:

A blend of internal factors (firm performance, internal stakeholders) and external pressures (globalisation, technology, corporate scandals) have intensified calls for corporate governance reforms. While several countries and their governments have responded to these calls, the effect of such reforms on corporate governance systems across countries remains mixed. In particular, the literature reports that the effectiveness of corporate governance interventions in many developing economies is limited. Relying on the corporate governance system in Africa’s largest economy (Nigeria), this research addresses two issues. First, this study explores why previous corporate governance reforms have failed and second, the article investigates what reforms could improve corporate governance practices in the country. In addressing the above objectives, this study adopts a qualitative approach that permits data collection via semi-structured interviews with 21 corporate executives. The data supports the articulation of two sequential levels of reforms (i.e., the upstream and downstream reforms). The upstream reforms focus on two crucial but often overlooked areas that undermine reform effectiveness, i.e., the extent of government commitment and an enabling environment. The downstream reforms combine awareness and regulatory elements to proffer a path to robust corporate governance in the country. Furthermore, findings from this study stress the need to consider the use of a bottom-up approach to corporate governance practice and policymaking in place of the dominant top-down strategy.

Keywords: bottom-up approach, corporate governance, reforms, regulation

Procedia PDF Downloads 201
1726 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition

Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni

Abstract:

Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.

Keywords: BEMD, breast density, contend-based, image retrieval, mammography

Procedia PDF Downloads 232
1725 Quality Assurance in Cardiac Disorder Detection Images

Authors: Anam Naveed, Asma Andleeb, Mehreen Sirshar

Abstract:

In the article, Image processing techniques have been applied on cardiac images for enhancing the image quality. Two types of methodologies considers for survey, invasive techniques and non-invasive techniques. Different image processes for improvement of cardiac image quality and reduce the amount of radiation exposure for invasive techniques are explored. Different image processing algorithms for enhancing the noninvasive cardiac image qualities are described. Beside these two methodologies, third methodology has applied on live streaming of heart rate on ECG window for extracting necessary information, removing noise and enhancing quality. Sensitivity analyses have been carried out to investigate the impacts of cardiac images for diagnosis of cardiac arteries disease and how the enhancement on images will help the cardiologist to diagnoses disease. The paper evaluates strengths and weaknesses of different techniques applied for improved the image quality and draw a conclusion. Some specific limitations must be considered for whole survey, like the patient heart beat must be 70-75 beats/minute while doing the angiography, similarly patient weight and exposure radiation amount has some limitation.

Keywords: cardiac images, CT angiography, critical analysis, exposure radiation, invasive techniques, invasive techniques, non-invasive techniques

Procedia PDF Downloads 352