Search results for: enzyme assay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1878

Search results for: enzyme assay

198 Modification of Escherichia coli PtolT Expression Vector via Site-Directed Mutagenesis

Authors: Yakup Ulusu, Numan Eczacıoğlu, İsa Gökçe, Helen Waller, Jeremy H. Lakey

Abstract:

Besides having the appropriate amino acid sequence to perform the function of proteins, it is important to have correct conformation after this sequence to process. To consist of this conformation depends on the amino acid sequence at the primary structure, hydrophobic interaction, chaperones and enzymes in charge of folding etc. Misfolded proteins are not functional and tend to be aggregated. Cysteine originating disulfide cross-links make stable this conformation of functional proteins. When two of the cysteine amino acids come side by side, disulfide bond is established that forms a cystine bridge. Due to this feature cysteine plays an important role on the formation of three-dimensional structure of many proteins. There are two cysteine amino acids (C44, C69) in the Tol-A-III protein. Unlike protein disulfide bonds from within his own, any non-specific cystine bridge causes a change in the three dimensional structure of the protein. Proteins can be expressed in various host cells as directly or fusion (chimeric). As a result of overproduction of the recombinant proteins, aggregation of insoluble proteins in the host cell can occur by forming a crystal structure called inclusion body. In general fusion proteins are produced for provide affinity tags to make proteins more soluble and production of some toxic proteins via fusion protein expression system like pTolT. Proteins can be modified by using a site-directed mutagenesis. By this way, creation of non-specific disulfide crosslinks can be prevented at fusion protein expression system via the present cysteine replaced by another amino acid such as serine, glycine or etc. To do this, we need; a DNA molecule that contains the gene that encodes for the target protein, required primers for mutation to be designed according to site directed mutagenesis reaction. This study was aimed to be replaced cysteine encoding codon TGT with serine encoding codon AGT. For this sense and reverse primers designed (given below) and used site-directed mutagenesis reaction. Several new copy of the template plasmid DNA has been formed with above mentioned mutagenic primers via polymerase chain reaction (PCR). PCR product consists of both the master template DNA (wild type) and the new DNA sequences containing mutations. Dpn-l endonuclease restriction enzyme which is specific for methylated DNA and cuts them to the elimination of the master template DNA. E. coli cells obtained after transformation were incubated LB medium with antibiotic. After purification of plasmid DNA from E. coli, the presence of the mutation was determined by DNA sequence analysis. Developed this new plasmid is called PtolT-δ.

Keywords: site directed mutagenesis, Escherichia coli, pTolT, protein expression

Procedia PDF Downloads 374
197 Calcium Release- Activated Calcium Channels as a Target in Treatment of Allergic Asthma

Authors: Martina Šutovská, Marta Jošková, Ivana Kazimierová, Lenka Pappová, Maroš Adamkov, Soňa Fraňová

Abstract:

Bronchial asthma is characterized by increased bronchoconstrictor responses to provoking agonists, airway inflammation and remodeling. All these processes involve Ca2+ influx through Ca2+-release-activated Ca2+ channels (CRAC) that are widely expressed in immune, respiratory epithelium and airway smooth muscle (ASM) cells. Our previous study pointed on possible therapeutic potency of CRAC blockers using experimental guinea pigs asthma model. Presented work analyzed complex anti-asthmatic effect of long-term administered CRAC blocker, including impact on allergic inflammation, airways hyperreactivity, and remodeling and mucociliary clearance. Ovalbumin-induced allergic inflammation of the airways according to Franova et al. was followed by 14 days lasted administration of CRAC blocker (3-fluoropyridine-4-carboxylic acid, FPCA) in the dose 1.5 mg/kg bw. For comparative purposes salbutamol, budesonide and saline were applied to control groups. The anti-inflammatory effect of FPCA was estimated by serum and bronchoalveolar lavage fluid (BALF) changes in IL-4, IL-5, IL-13 and TNF-α analyzed by Bio-Plex® assay as well as immunohistochemical staining focused on assessment of tryptase and c-Fos positivity in pulmonary samples. The in vivo airway hyperreactivity was evaluated by Pennock et al. and by organ tissue bath methods in vitro. The immunohistochemical changes in ASM actin and collagen III layer as well as mucin secretion evaluated anti-remodeling effect of FPCA. The measurement of ciliary beat frequency (CBF) in vitro using LabVIEW™ Software determined impact on mucociliary clearance. Long-term administration of FPCA to sensitized animals resulted in: i. Significant decrease in cytokine levels, tryptase and c-Fos positivity similar to budesonide effect; ii.Meaningful decrease in basal and bronchoconstrictors-induced in vivo and in vitro airway hyperreactivity comparable to salbutamol; iii. Significant inhibition of airway remodeling parameters; iv. Insignificant changes in CBF. All these findings confirmed complex anti-asthmatic effect of CRAC channels blocker and evidenced these structures as the rational target in the treatment of allergic bronchial asthma.

Keywords: allergic asthma, CRAC channels, cytokines, respiratory epithelium

Procedia PDF Downloads 521
196 Potential Cross-Protection Roles of Chitooligosaccharide in Alleviating Cd Toxicity in Edible Rape (Brassica rapa L.)

Authors: Haiying Zong, Yi Yuan, Pengcheng Li

Abstract:

Cadmium (Cd), one of the toxic heavy metals, has high solubility and mobility in agricultural soils and is readily taken up by roots and transported to the vegetative and reproductive organs which can cause deleterious effects on crop yield and quality. Excess Cd in plants can interfere with many metabolic processes, such as photosynthesis, transpiration, respiration or nutrients homeostasis. Generally, the main methods to reduce Cd accumulation in plants are to decrease the concentration of Cd in the soil solution through reduction of Cd influx into the soil system, site selection, and management practices. However, these approaches can be very costly and consume a lot of energy Therefore, it is critical to develop effective approaches to reduce the Cd concentration in plants. It is proved that chitooligosaccharide (COS) can enhance the plant's tolerance to abiotic stress including drought stress, salinity stress, and toxic metal stress. However, so far little information is known about whether foliar application with COS modulates Cd-induced toxicity in plants. The metal detoxification processes of plants treated with COS also remain unclear. In this study, edible rape (Brassica rapa L.), one of the most widely consumed leafy vegetables, was selected as an experimental mode plant. The effect of foliar application with COS on reducing Cd accumulation in edible rape was investigated. Moreover, Cd subcellular distribution pattern in response to Cd stress in the rape plant sprayed with COS was further tested in order to explore the potential detoxification mechanisms in plants. The results demonstrated that spraying COS at different concentrations (25, 50,100 and 200 mg L-1) possess diverse functions including growth-promoting,chlorophyll contents-enhancing, malondialdehyde (MDA) level-decreasing in leaves, Cd2+ concentration-decreasingin shoots and roots of edible rape under Cd stress. In addition, it was found that COS can also dramatically improve superoxide dismutase (SOD) activity, catalase (CAT) activity and peroxidase (POX) activity of edible rape leaves. The relievingeffect of COS was related to theconcentration and COS with 50-100 mg L-1 displayed the best activity. Furtherly, theexperiments results exhibitedthat COS could decrease the proportion of Cd in the organelle fraction of leaves by 40.1% while enhance the proportion of Cd in the soluble fraction by 13.2% at the concentration of 50 mg L-1. The above results showed that COS may have thepotential to improve plant resistance to Cd via promoting antioxidant enzyme activities and altering Cd subcellular distribution. All the results described here open up a new way to study the protection role of COS in alleviating Cd tolerance and lay the foundation for future research about the detoxification mechanism at subcellular level.

Keywords: chitooligosaccharide, cadmium, edible rape (Brassica rapa L.), subcellular distribution

Procedia PDF Downloads 294
195 New Bio-Strategies for Ochratoxin a Detoxification Using Lactic Acid Bacteria

Authors: José Maria, Vânia Laranjo, Luís Abrunhosa, António Inês

Abstract:

The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.

Keywords: carboxypeptidase, lactic acid bacteria, mycotoxins, ochratoxin a.

Procedia PDF Downloads 462
194 The Antagonistic/Synergistic Effect of Probiotic Yeast Saccharomyces boulardii on Candida glabrata Adhesion

Authors: Zorica Tomičić, Ružica Tomičić, Peter Raspor

Abstract:

Growing resistance of pathogenic yeast Candida glabrata to many classes of antifungal drugs has stimulated efforts to discover new agents to combat a rising number of invasive C. glabrata infections, which deserves a great deal of concern due to the high mortality rate in immunocompromised populations. One promising strategy is the use of probiotic microorganisms, which, when administered in adequate amounts, confers a health benefit. A selected number of probiotic organisms, Saccharomyces boulardii among them, have been tested as potential biotherapeutic agents. The aim of this study was to investigate the effect of the probiotic yeast S. boulardii on the adhesion of clinical isolates of C. glabrata at different temperatures, pH values, and in the presence of three clinically important antifungal drugs, such as fluconazole, itraconazole and amphotericin B. The method used to assess adhesion was crystal violet staining. The selection of antimycotics concentrations used in the adhesion assay was based on minimum inhibitory concentrations (MICs) obtained by the preliminarily performed microdilution modification of the Reference method for broth dilution antifungal susceptibility testing of yeast (Clinical and Laboratory Standards Institute (CLSI), standard M27-A2). the results showed that despite the nonadhesiveness of S. boulardii cells, probiotic yeast significantly suppressed the adhesion of C. glabrata strains. Besides, at specific strain ratios, a slight stimulatory effect was observed in some C. glabrata strains, which highlights the importance of strain specificity and opens up further research interests. When environmental conditions are considered, temperature and pH significantly influenced co-culture adhesion of C. glabrata and S. boulardii. The adhesion of C. glabrata strains was relatively equally reduced over all tested temperature range (28°C, 37°C, 39°C and 42°C) in the presence of S. boulardii cells, while the adhesion of a few C. glabrata strains were significantly stimulated at 28°C and suppressed at 42°C. Further, the adhesion was highly dependent on pH, with the highest adherence at pH 4 and lowest at pH 8.5. It was observed that S. boulardii did not manage to suppress the adhesion of C. glabrata strains at high pH. Antimycotics on the other hand showed a greater impact, since S. boulardii failed to affect co-culture adhesion at higher antimycotics concentrations. As expected, exposure to various concentrations of amphotericin B significantly reduced the adherence ability of C.glabrata strains both in a single culture and co-culture with S. boulardii. Therefore, it can be speculated that S. boulardii could substitute the effect of antimycotics in a range concentrations and with specific type of strains. This would certainly change the view on the treatment of yeast infections in the future.

Keywords: adhesion, antimycotics, candida glabrata, saccharomyces boulardii

Procedia PDF Downloads 68
193 DPAGT1 Inhibitors: Discovery of Anti-Metastatic Drugs

Authors: Michio Kurosu

Abstract:

Alterations in glycosylation not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Identification of cell type-specific glycoconjugates (tumor markers) has led to the discovery of new assay systems for certain cancers via immunodetection reagents. N- and O-linked glycans are the most abundant forms of glycoproteins. Recent studies of cancer immunotherapy are based on the immunogenicity of truncated O-glycan chains (e.g., Tn, sTn, T, and sLea/x). The prevalence of N-linked glycan changes in the development of tumor cells is known; however, therapeutic antibodies against N-glycans have not yet been developed. This is due to the lack of specificity of N-linked glycans between normal/healthy and cancer cells. Abnormal branching of N-linked glycans has been observed, particularly in solid cancer cells. While the discovery of drug-like glycosyltransferase inhibitors that block the biosynthesis of specific branching has a very low likelihood of success, altered glycosylation levels can be exploited by suppressing N-glycan biosynthesis through the inhibition of dolichyl-phosphate N-acetylglucosaminephosphotransferase1 (DPAGT1) activity. Inhibition of DPAGT1 function leads to changes of O-glycosylation on proteins associated with mitochondria and zinc finger binding proteins (indirect effects). On the basis of dynamic crosstalk between DPAGT1 and Snail/Slung/ZEB1 (a family of transcription factors that promote the repression of the adhesion molecules), we have developed pharmacologically acceptable selective DPAGT1 inhibitors. Tunicamycin kills a wide range of cancer and healthy cells in a non-selective manner. In sharp contrast, our DPAGT1 inhibitors display strong cytostatic effects against 16 solid cancers, which require the overexpression of DPAGT1 in their progression but do not affect the cell viability of healthy cells. The identified DPAGT1 inhibitors possess impressive anti-metastatic ability in various solid cancer cell lines and induce their mitochondrial structural changes, resulting in apoptosis. A prototype DPAGT1 inhibitor, APPB has already been proven to shrink solid tumors (e.g., pancreatic cancers, triple-negative breast cancers) in vivo while suppressing metastases and has strong synergistic effects when combined with current cytotoxic drugs (e.g., paclitaxel). At this conference, our discovery of selective DPAGT1 inhibitors with drug-like properties and proof-of-pharmaceutical concept studies of a novel DPAGT1 inhibitor are presented.

Keywords: DPAGT1 inhibitors, anti-metastatic drugs, natural product based drug designs, cytostatic effects

Procedia PDF Downloads 75
192 Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells

Authors: S. Pradhan, D. Pradhan, G. Tripathy

Abstract:

Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer.

Keywords: quercetin, INT3, mesenchymal transition, MCF7 breast cancer cells

Procedia PDF Downloads 311
191 Methods of Detoxification of Nuts With Aflatoxin B1 Contamination

Authors: Auteleyeva Laura, Maikanov Balgabai, Smagulova Ayana

Abstract:

In order to find and select detoxification methods, patent and information research was conducted, as a result of which 68 patents for inventions were found, among them from the near abroad - 14 (Russia), from far abroad: China – 27, USA - 6, South Korea–1, Germany - 2, Mexico – 4, Yugoslavia – 7, Austria, Taiwan, Belarus, Denmark, Italy, Japan, Canada for 1 security document. Aflatoxin B₁ in various nuts was determined by two methods: enzyme immunoassay "RIDASCREEN ® FAST Aflatoxin" with determination of optical density on a microplate spectrophotometer RIDA®ABSORPTION 96 with RIDASOFT® software Win.NET (Germany) and the method of high-performance liquid chromatography (HPLC Corporation Water, USA) according to GOST 307112001. For experimental contamination of nuts, the cultivation of strain A was carried out. flavus KWIK-STIK on the medium of Chapek (France) with subsequent infection of various nuts (peanuts, peanuts with shells, badam, walnuts with and without shells, pistachios).Based on our research, we have selected 2 detoxification methods: method 1 – combined (5% citric acid solution + microwave for 640 W for 3 min + UV for 20 min) and a chemical method with various leaves of plants: Artemisia terra-albae, Thymus vulgaris, Callogonum affilium, collected in the territory of Akmola region (Artemisia terra-albae, Thymus vulgaris) and Western Kazakhstan (Callogonum affilium). The first stage was the production of ethanol extracts of Artemisia terraea-albae, Thymus vulgaris, Callogonum affilium. To obtain them, 100 g of vegetable raw materials were taken, which was dissolved in 70% ethyl alcohol. Extraction was carried out for 2 hours at the boiling point of the solvent with a reverse refrigerator using an ultrasonic bath "Sapphire". The obtained extracts were evaporated on a rotary evaporator IKA RV 10. At the second stage, the three samples obtained were tested for antimicrobial and antifungal activity. Extracts of Thymus vulgaris and Callogonum affilium showed high antimicrobial and antifungal activity. Artemisia terraea-albae extract showed high antimicrobial activity and low antifungal activity. When testing method 1, it was found that in the first and third experimental groups there was a decrease in the concentration of aflatoxin B1 in walnut samples by 63 and 65%, respectively, but these values also exceeded the maximum permissible concentrations, while the nuts in the second and third experimental groups had a tart lemon flavor; When testing method 2, a decrease in the concentration of aflatoxin B1 to a safe level was observed by 91% (0.0038 mg/kg) in nuts of the 1st and 2nd experimental groups (Artemisia terra-albae, Thymus vulgaris), while in samples of the 2nd and 3rd experimental groups, a decrease in the amount of aflatoxin in 1 to a safe level was observed.

Keywords: nuts, aflatoxin B1, my, mycotoxins

Procedia PDF Downloads 86
190 The Effect of Probiotic and Vitamin B Complex Supplementation on Interferon-γ and Interleukin-10 Levels in Patients with TB Infection during Intensive Phase Therapy

Authors: Yulistiani Yulistiani, Wenny Nilamsari, Laurin Winarso, Rizkiya Rizkiya, Zamrotul Izzah, Budi Suprapti, Arif Bachtiar

Abstract:

Approximately, a million new cases of TB have been found out per year, making Indonesia as the second greatest country with TBC after India. Nevertheless, until now, there are still many patients failure to conventional therapy with oral anti tuberculosis. Thus, the discovery of supplement therapy is urgently needed. Many studies showed that probiotic had the positive impact in lung diseases, diarrhea, pneumonia and it was attributed to its capability to balance the level of cytokine pro-inflammatory and anti-inflammatory. It was demonstrated in active disease the production of IFN-γ is strongly depressed and IL-10 level increases. This study aimed to investigate the effect of probiotic (multi strains) and vitamin B complex supplementation on IFN-γ and IL-10 level in patients with TB infection during intensive phase therapy. A randomized controlled trial, open labeled was conducted in TB patients with the following criteria: 1) age 18-55 years old 2) receiving oral antituberculosis during intensive therapy 3) not using probiotic, vitamin B1, B6, B12 2 weeks before enrollment 4) willing to participate in this study and signed an informed consent. While, patients with HIV, pregnant, had the history of diabetes mellitus, using corticosteroid or other immunosuppressants were excluded. IFN-γ and IL-10 levels were drawn before observation and after a month observation. The assay was performed by ELISA. There were seven patients in treated group and five patients in controlled group obtained in this study. Between groups, there was no statistical difference in comorbid, age, and disease duration. The mean level of IFN-γ after a month observation increased in treated group and controlled group, which were 31.47 ± 105.46 pg/ml and 15.09 ± 24.23 pg/ml, respectively (p> 0.005). Although, there were not statistically different, treated group showed a greater increase of IFN-γ level than that of the controlled group. IFN-γ plays an important role in immune response to Mycobacterium Tuberculosis, by activating macrofag, monosit and furthermore killing Mycobacterium Tuberculosis. Thus the level was expected to increase after supplementation with probiotic and Vitamin B complex. While the mean level of IL-10 also increased after one month observation in the treated group and controlled group (4.28 ± 12.29 pg/ml and 5.77± 6.21 pg/ml, respectively) (p>0.005). To be compared, the increased level of IL-10 in the treated group were lower than the controlled group, although it was not statistically different. IL-10 is a cytokine anti-inflammatory, thus, the level after the observation was expected to decrease. In this study, a month therapy of probiotic and vitamin B complex was not able to demonstrate the decrease of the IL-10 level. It is suggested to prolong observation up to 2 months, because, in intensive phase, the level of cytokine anti-inflammatory is very high, so the longer therapy is needed. It is indicated that supplementation therapy with probiotic and vitamin B complex to Oral Anti-Tuberculosis may have a positive effect on increasing IFN-γ level and slowing the progression of IL-10.

Keywords: TB Infection, IFN-γ, IL-10, probiotic, vitamin B complex

Procedia PDF Downloads 374
189 Bioaccessible Phenolics, Phenolic Bioaccessibility and Antioxidant Activity of Pumpkin Flour

Authors: Emine Aydin, Duygu Gocmen

Abstract:

Pumpkin flour (PF) has a long shelf life and can be used as a nutritive, functional (antioxidant properties, phenolic contents, etc.) and coloring agent in many food items, especially in bakery products, sausages, instant noodles, pasta and flour mixes. Pre-treatment before drying is one of the most important factors affecting the quality of a final powdered product. Pretreatment, such as soaking in a bisulfite solution, provides that total carotenoids in raw materials rich in carotenoids, especially pumpkins, are retained in the dried product. This is due to the beneficial effect of antioxidant additives in the protection of carotenoids in the dehydrated plant foods. The oxygen present in the medium is removed by the radical SO₂, and thus the carotene degradation caused by the molecular oxygen is inhibited by the presence of SO₂. In this study, pumpkin flours (PFs) produced by two different applications (with or without metabisulfite pre-treatment) and then dried in a freeze dryer. The phenolic contents and antioxidant activities of pumpkin flour were determined. In addition to this, the compound of bioavailable phenolic substances which is obtained by PF has also been investigated using in vitro methods. As a result of researches made in recent years, it has been determined that all nutrients taken with foodstuffs are not bioavailable. Bioavailability changes depending on physical properties, chemical compounds, and capacities of individual digestion of foods. Therefore in this study; bioaccessible phenolics and phenolic bioaccessibility were also determined. The phenolics of the samples with metabisulfite application were higher than those of the samples without metabisulfite pre-treatment. Soaking in metabisulfite solution might have a protective effect for phenolic compounds. Phenolics bioaccessibility of pumpkin flours was investigated in order to assess pumpkin flour as sources of accessible phenolics. The higher bioaccessible phenolics (384.19 mg of GAE 100g⁻¹ DW) and phenolic bioaccessibility values (33.65 mL 100 mL⁻¹) were observed in the pumpkin flour with metabisulfite pre-treatment. Metabisulfite application caused an increase in bioaccessible phenolics of pumpkin flour. According to all assay (ABTS, CUPRAC, DPPH, and FRAP) results, both free and bound phenolics of pumpkin flour with metabisulfite pre-treatment had higher antioxidant activity than those of the sample without metabisulfite pre-treatment. The samples subjected to MS pre-treatment exhibited higher antioxidant activities than those of the samples without MS pre-treatment, this possibly due to higher phenolic contents of the samples with metabisulfite applications. As a result, metabisulfite application caused an increase in phenolic contents, bioaccessible phenolics, phenolic bioaccessibility and antioxidant activities of pumpkin flour. It can be said that pumpkin flour can be used as an alternative functional and nutritional ingredient in bakery products, dairy products (yoghurt, ice-cream), soups, sauces, infant formulae, confectionery, etc.

Keywords: pumpkin flour, bioaccessible phenolics, phenolic bioaccessibility, antioxidant activity

Procedia PDF Downloads 325
188 Salmonella Emerging Serotypes in Northwestern Italy: Genetic Characterization by Pulsed-Field Gel Electrophoresis

Authors: Clara Tramuta, Floris Irene, Daniela Manila Bianchi, Monica Pitti, Giulia Federica Cazzaniga, Lucia Decastelli

Abstract:

This work presents the results obtained by the Regional Reference Centre for Salmonella Typing (CeRTiS) in a retrospective study aimed to investigate, through Pulsed-field Gel Electrophoresis (PFGE) analysis, the genetic relatedness of emerging Salmonella serotypes of human origin circulating in North-West of Italy. Furthermore, the goal of this work was to create a Regional database to facilitate foodborne outbreak investigation and to monitor them at an earlier stage. A total of 112 strains, isolated from 2016 to 2018 in hospital laboratories, were included in this study. The isolates were previously identified as Salmonella according to standard microbiological techniques and serotyping was performed according to ISO 6579-3 and the Kaufmann-White scheme using O and H antisera (Statens Serum Institut®). All strains were characterized by PFGE: analysis was conducted according to a standardized PulseNet protocol. The restriction enzyme XbaI was used to generate several distinguishable genomic fragments on the agarose gel. PFGE was performed on a CHEF Mapper system, separating large fragments and generating comparable genetic patterns. The agarose gel was then stained with GelRed® and photographed under ultraviolet transillumination. The PFGE patterns obtained from the 112 strains were compared using Bionumerics version 7.6 software with the Dice coefficient with 2% band tolerance and 2% optimization. For each serotype, the data obtained with the PFGE were compared according to the geographical origin and the year in which they were isolated. Salmonella strains were identified as follow: S. Derby n. 34; S. Infantis n. 38; S. Napoli n. 40. All the isolates had appreciable restricted digestion patterns ranging from approximately 40 to 1100 kb. In general, a fairly heterogeneous distribution of pulsotypes has emerged in the different provinces. Cluster analysis indicated high genetic similarity (≥ 83%) among strains of S. Derby (n. 30; 88%), S. Infantis (n. 36; 95%) and S. Napoli (n. 38; 95%) circulating in north-western Italy. The study underlines the genomic similarities shared by the emerging Salmonella strains in Northwest Italy and allowed to create a database to detect outbreaks in an early stage. Therefore, the results confirmed that PFGE is a powerful and discriminatory tool to investigate the genetic relationships among strains in order to monitoring and control Salmonellosis outbreak spread. Pulsed-field gel electrophoresis (PFGE) still represents one of the most suitable approaches to characterize strains, in particular for the laboratories for which NGS techniques are not available.

Keywords: emerging Salmonella serotypes, genetic characterization, human strains, PFGE

Procedia PDF Downloads 105
187 The Investigation of Effect of Alpha Lipoic Acid against Damage on Neonatal Rat Lung to Maternal Tobacco Smoke Exposure

Authors: Elif Erdem, Nalan Kaya, Gonca Ozan, Durrin Ozlem Dabak, Enver Ozan

Abstract:

This study was carried out to determine the histological and biochemical changes in the lungs of the rat pups exposed to tobacco smoke during pregnancy period and to investigate the protective effects of alpha lipoic acid, which is administered during pregnancy, on these changes. In our study, 24 six-week old Spraque-Dawley female rats weighing 160 ± 10 g were used (n:7). Rats were randomly divided into four equal groups: group I (control), group II (tobacco smoke), group III (tobacco smoke + alpha lipoic acid) and group IV (alpha lipoic acid). Rats in the group II, group III were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group III. Only alpha lipoic acid was administered to the rats in the group IV. Once after the delivery, all administrations were stopped. On the 7 and 21th days, the seven pups of all groups were decapitated. A portion of the lung was taken and stained with HE, PAS and Masson. In addition to immunohistochemical staining of surfactant protein A, vascular endothelial growth factor, caspase-3, TUNEL method was also used to determine apoptosis. Biochemical analyzes were performed with some part of the lung tissue specimens. In the histological evaluations performed under light microscopy, inflammatory cell increase, hemorrhagic areas, edema, interalveolar septal thickening, alveolar numbers decrease, degeneration of some bronchi and bronchial epithelium, epithelial cells that were fallen into the lumen and hyaline membrane formation were observed in tobacco smoke group. These findings were ameliorated in tobacco smoke + ALA group. Hyaline membrane formation was not detected in this group. The TUNEL positive cell numbers a significant increase was detected in the tobacco smoke group, whereas a significant decrease was detected in the tobacco smoke + ALA group. In terms of the immunoreactivity of both SP-A and VEGF, a significant decrease was observed in the tobacco smoke group, and a significant increase was observed in the tobacco smoke + ALA group. Regarding the immunoreactivity of caspase-3, there was a significant increase in the group of tobacco smoke and a significant decrease in the group of tobacco smoke + ALA. The malondialdehyde levels were determined to be significantly increased in the tobacco smoke group, and a significant decreased in the tobacco smoke + ALA. Glutathione and superoxide dismutase enzyme activities showed a significant decrease in the group of tobacco smoke and a significant increase in the tobacco smoke + ALA group. In conclusion, we suggest that the exposure to tobacco smoke during pregnancy leads to morphological, histopathological and functional changes on lung development by causing oxidative damage in lung tissues of neonatal rats and the maternal use of alpha lipoic acid can provide a protective effect on the neonatal lung development against this oxidative stress originating from tobacco smoke.

Keywords: alpha lipoic acid, lung, neonate, tobacco smoke, pregnancy

Procedia PDF Downloads 211
186 The Biological Function and Clinical Significance of Long Non-coding RNA LINC AC008063 in Head and Neck Squamous Carcinoma

Authors: Maierhaba Mijiti

Abstract:

Objective:The aim is to understand the relationship between the expression level of the long-non-coding RNA LINC AC008063 and the clinicopathological parameters of patients with head and neck squamous cell carcinoma (HNSCC), and to clarify the biological function of LINC AC008063 in HNSCC cells. Moreover, it provides a potential biomarker for the diagnosis, treatment, and prognosis evaluation of HNSCC. Methods: The expression level of LINC AC008063 in the HNSCC was analyzed using transcriptome sequencing data from the TCGA (The cancer genome atlas) database. The expression levels of LINC AC008063 in human embryonic lung diploid cells 2BS, human immortalized keratinocytes HACAT, HNSCC cell lines CAL-27, Detroit562, AMC-HN-8, FD-LSC-1, FaDu and WSU-HN30 were determined by real-time quantitative PCR (qPCR). RNAi (RNA interference) was introduced for LINC AC008063 knockdown in HNSCC cell lines, the localization and abundance analysis of LINC AC008063 was determined by RT-qPCR, and the biological functions were examined by CCK-8, clone formation, flow cytometry, transwell invasion and migration assays, Seahorse assay. Results: LINC AC008063 was upregulated in HNSCC tissue (P<0.001), and verified b CCK-8, clone formation, flow cytometry, transwell invasion and migration assays, Seahorse assayy qPCR in HNSCC cell lines. The survival analysis revealed that the overall survival rate (OS) of patients with high LINC AC008063 expression group was significantly lower than that in the LINC AC008063 expression group, the median survival times for the two groups were 33.10 months and 61.27 months, respectively (P=0.002). The clinical correlation analysis revealed that its expression was positively correlated with the age of patients with HNSCC (P<0.001) and positively correlated with pathological state (T3+T4>T1+T2, P=0.03). The RT-qPCR results showed that LINC AC008063 was mainly enriched in cytoplasm (P=0.01). Knockdown of LINC AC008063 inhibited proliferation, colony formation, migration and invasion; the glycolytic capacity was significantly decreased in HNSCC cell lines (P<0.05). Conclusion: High level of LINC AC008063 was associated with the malignant progression of HNSCC as well as promoting the important biological functions of proliferation, colony formation, migration and invasion; in particular, the glycolytic capacity was decreased in HNSCC cells. Therefore, LINC AC008063 may serve as a potential biomarker for HNSCC and a distinct molecular target to inhibit glycolysis.

Keywords: head and neck squamous cell carcinoma, oncogene, long non-coding RNA, LINC AC008063, invasion and metastasis

Procedia PDF Downloads 10
185 Clinical Validation of C-PDR Methodology for Accurate Non-Invasive Detection of Helicobacter pylori Infection

Authors: Suman Som, Abhijit Maity, Sunil B. Daschakraborty, Sujit Chaudhuri, Manik Pradhan

Abstract:

Background: Helicobacter pylori is a common and important human pathogen and the primary cause of peptic ulcer disease and gastric cancer. Currently H. pylori infection is detected by both invasive and non-invasive way but the diagnostic accuracy is not up to the mark. Aim: To set up an optimal diagnostic cut-off value of 13C-Urea Breath Test to detect H. pylori infection and evaluate a novel c-PDR methodology to overcome of inconclusive grey zone. Materials and Methods: All 83 subjects first underwent upper-gastrointestinal endoscopy followed by rapid urease test and histopathology and depending on these results; we classified 49 subjects as H. pylori positive and 34 negative. After an overnight, fast patients are taken 4 gm of citric acid in 200 ml water solution and 10 minute after ingestion of the test meal, a baseline exhaled breath sample was collected. Thereafter an oral dose of 75 mg 13C-Urea dissolved in 50 ml water was given and breath samples were collected upto 90 minute for 15 minute intervals and analysed by laser based high precisional cavity enhanced spectroscopy. Results: We studied the excretion kinetics of 13C isotope enrichment (expressed as δDOB13C ‰) of exhaled breath samples and found maximum enrichment around 30 minute of H. pylori positive patients, it is due to the acid mediated stimulated urease enzyme activity and maximum acidification happened within 30 minute but no such significant isotopic enrichment observed for H. pylori negative individuals. Using Receiver Operating Characteristic (ROC) curve an optimal diagnostic cut-off value, δDOB13C ‰ = 3.14 was determined at 30 minute exhibiting 89.16% accuracy. Now to overcome grey zone problem we explore percentage dose of 13C recovered per hour, i.e. 13C-PDR (%/hr) and cumulative percentage dose of 13C recovered, i.e. c-PDR (%) in exhaled breath samples for the present 13C-UBT. We further explored the diagnostic accuracy of 13C-UBT by constructing ROC curve using c-PDR (%) values and an optimal cut-off value was estimated to be c-PDR = 1.47 (%) at 60 minute, exhibiting 100 % diagnostic sensitivity , 100 % specificity and 100 % accuracy of 13C-UBT for detection of H. pylori infection. We also elucidate the gastric emptying process of present 13C-UBT for H. pylori positive patients. The maximal emptying rate found at 36 minute and half empting time of present 13C-UBT was found at 45 minute. Conclusions: The present study exhibiting the importance of c-PDR methodology to overcome of grey zone problem in 13C-UBT for accurate determination of infection without any risk of diagnostic errors and making it sufficiently robust and novel method for an accurate and fast non-invasive diagnosis of H. pylori infection for large scale screening purposes.

Keywords: 13C-Urea breath test, c-PDR methodology, grey zone, Helicobacter pylori

Procedia PDF Downloads 301
184 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium

Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas

Abstract:

Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.

Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides

Procedia PDF Downloads 435
183 Prenatal Paraben Exposure Impacts Infant Overweight Development and in vitro Adipogenesis

Authors: Beate Englich, Linda Schlittenbauer, Christiane Pfeifer, Isabel Kratochvil, Michael Borte, Gabriele I. Stangl, Martin von Bergen, Thorsten Reemtsma, Irina Lehmann, Kristin M. Junge

Abstract:

The worldwide production of endocrine disrupting compounds (EDC) has risen dramatically over the last decades, as so has the prevalence for obesity. Many EDCs are believed to contribute to this obesity epidemic, by enhancing adipogenesis or disrupting relevant metabolism. This effect is most tremendous in the early prenatal period when priming effects find a highly vulnerable time window. Therefore, we investigate the impact of parabens on childhood overweight development and adipogenesis in general. Parabens are ester of 4-hydroxy-benzoic acid and part of many cosmetic products or food packing. Therefore, ubiquitous exposure can be found in the westernized world, with exposure already starting during the sensitive prenatal period. We assessed maternal cosmetic product consumption, prenatal paraben exposure and infant BMI z-scores in the prospective German LINA cohort. In detail, maternal urinary concentrations (34 weeks of gestation) of methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP) and n-butyl paraben (BuP) were quantified using UPLC-MS/MS. Body weight and height of their children was assessed during annual clinical visits. Further, we investigated the direct influence of those parabens on adipogenesis in-vitro using a human mesenchymal stem cell (MSC) differentiation assay to mimic a prenatal exposure scenario. MSC were exposed to 0.1 – 50 µM paraben during the entire differentiation period. Differentiation outcome was monitored by impedance spectrometry, real-time PCR and triglyceride staining. We found that maternal cosmetic product consumption was highly correlated with urinary paraben concentrations at pregnancy. Further, prenatal paraben exposure was linked to higher BMI Z-scores in children. Our in-vitro analysis revealed that especially the long chained paraben BuP stimulates adipogenesis by increasing the expression of adipocyte specific genes (PPARγ, ADIPOQ, LPL, etc.) and triglyceride storage. Moreover, we found that adiponectin secretion is increased whereas leptin secretion is reduced under BuP exposure in-vitro. Further mechanistic analysis for receptor binding and activation of PPARγ and other key players in adipogenesis are currently in process. We conclude that maternal cosmetic product consumption is linked to prenatal paraben exposure of children and contributes to the development of infant overweight development by triggering key pathways of adipogenesis.

Keywords: adipogenesis, endocrine disruptors, paraben, prenatal exposure

Procedia PDF Downloads 272
182 In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures

Authors: Francisco J. Cedano, Laura M. Pinzón, Camila I. Castro, Felipe Salcedo, Juan P. Casas, Juan C. Briceño

Abstract:

Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours.

Keywords: bioadhesive, bone adhesive, calcium carbonate, chitosan, hydroxyapatite, glutaraldehyde

Procedia PDF Downloads 321
181 Investigating the Essentiality of Oxazolidinones in Resistance-Proof Drug Combinations in Mycobacterium tuberculosis Selected under in vitro Conditions

Authors: Gail Louw, Helena Boshoff, Taeksun Song, Clifton Barry

Abstract:

Drug resistance in Mycobacterium tuberculosis is primarily attributed to mutations in target genes. These mutations incur a fitness cost and result in bacterial generations that are less fit, which subsequently acquire compensatory mutations to restore fitness. We hypothesize that mutations in specific drug target genes influence bacterial metabolism and cellular function, which affects its ability to develop subsequent resistance to additional agents. We aim to determine whether the sequential acquisition of drug resistance and specific mutations in a well-defined clinical M. tuberculosis strain promotes or limits the development of additional resistance. In vitro mutants resistant to pretomanid, linezolid, moxifloxacin, rifampicin and kanamycin were generated from a pan-susceptible clinical strain from the Beijing lineage. The resistant phenotypes to the anti-TB agents were confirmed by the broth microdilution assay and genetic mutations were identified by targeted gene sequencing. Growth of mono-resistant mutants was done in enriched medium for 14 days to assess in vitro fitness. Double resistant mutants were generated against anti-TB drug combinations at concentrations 5x and 10x the minimum inhibitory concentration. Subsequently, mutation frequencies for these anti-TB drugs in the different mono-resistant backgrounds were determined. The initial level of resistance and the mutation frequencies observed for the mono-resistant mutants were comparable to those previously reported. Targeted gene sequencing revealed the presence of known and clinically relevant mutations in the mutants resistant to linezolid, rifampicin, kanamycin and moxifloxacin. Significant growth defects were observed for mutants grown under in vitro conditions compared to the sensitive progenitor. Mutation frequencies determination in the mono-resistant mutants revealed a significant increase in mutation frequency against rifampicin and kanamycin, but a significant decrease in mutation frequency against linezolid and sutezolid. This suggests that these mono-resistant mutants are more prone to develop resistance to rifampicin and kanamycin, but less prone to develop resistance against linezolid and sutezolid. Even though kanamycin and linezolid both inhibit protein synthesis, these compounds target different subunits of the ribosome, thereby leading to different outcomes in terms of fitness in the mutants with impaired cellular function. These observations showed that oxazolidinone treatment is instrumental in limiting the development of multi-drug resistance in M. tuberculosis in vitro.

Keywords: oxazolidinones, mutations, resistance, tuberculosis

Procedia PDF Downloads 162
180 Extraction of Rice Bran Protein Using Enzymes and Polysaccharide Precipitation

Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim

Abstract:

Rice is a staple food as well as exported commodity of Thailand. Rice bran, a 10.5% constituent of rice grain, is a by-product of rice milling process. Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Therefore, this study aimed to increase value of defatted rice bran as obtained after extracting of rice bran oil. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which results in reduction of nutritious components in rice bran. Rice bran protein concentrate is suitable for those who are allergenic of protein from other sources eg. milk, wheat. In addition to its hypoallergenic property, rice bran protein also contains good quantity of lysine. Thus it may act as a suitable ingredient for infant food formulations while adding variety to the restricted diets of children with food allergies. The objectives of this study were to compare properties of rice bran protein concentrate (RBPC) extracted from defatted rice bran using enzymes together with precipitation step using polysaccharides (alginate and carrageenan) to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.006) exhibited the highest protein (27.55%) and yield (6.62%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming and lower foam stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products eg. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.

Keywords: alginate, carrageenan, rice bran, rice bran protein

Procedia PDF Downloads 295
179 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration

Authors: Sujatha Edla

Abstract:

Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.

Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic

Procedia PDF Downloads 62
178 A Multifactorial Algorithm to Automate Screening of Drug-Induced Liver Injury Cases in Clinical and Post-Marketing Settings

Authors: Osman Turkoglu, Alvin Estilo, Ritu Gupta, Liliam Pineda-Salgado, Rajesh Pandey

Abstract:

Background: Hepatotoxicity can be linked to a variety of clinical symptoms and histopathological signs, posing a great challenge in the surveillance of suspected drug-induced liver injury (DILI) cases in the safety database. Additionally, the majority of such cases are rare, idiosyncratic, highly unpredictable, and tend to demonstrate unique individual susceptibility; these qualities, in turn, lend to a pharmacovigilance monitoring process that is often tedious and time-consuming. Objective: Develop a multifactorial algorithm to assist pharmacovigilance physicians in identifying high-risk hepatotoxicity cases associated with DILI from the sponsor’s safety database (Argus). Methods: Multifactorial selection criteria were established using Structured Query Language (SQL) and the TIBCO Spotfire® visualization tool, via a combination of word fragments, wildcard strings, and mathematical constructs, based on Hy’s law criteria and pattern of injury (R-value). These criteria excluded non-eligible cases from monthly line listings mined from the Argus safety database. The capabilities and limitations of these criteria were verified by comparing a manual review of all monthly cases with system-generated monthly listings over six months. Results: On an average, over a period of six months, the algorithm accurately identified 92% of DILI cases meeting established criteria. The automated process easily compared liver enzyme elevations with baseline values, reducing the screening time to under 15 minutes as opposed to multiple hours exhausted using a cognitively laborious, manual process. Limitations of the algorithm include its inability to identify cases associated with non-standard laboratory tests, naming conventions, and/or incomplete/incorrectly entered laboratory values. Conclusions: The newly developed multifactorial algorithm proved to be extremely useful in detecting potential DILI cases, while heightening the vigilance of the drug safety department. Additionally, the application of this algorithm may be useful in identifying a potential signal for DILI in drugs not yet known to cause liver injury (e.g., drugs in the initial phases of development). This algorithm also carries the potential for universal application, due to its product-agnostic data and keyword mining features. Plans for the tool include improving it into a fully automated application, thereby completely eliminating a manual screening process.

Keywords: automation, drug-induced liver injury, pharmacovigilance, post-marketing

Procedia PDF Downloads 152
177 Isolation and Screening of Antagonistic Bacteria against Wheat Pathogenic Fungus Tilletia indica

Authors: Sugandha Asthana, Geetika Vajpayee, Pratibha Kumari, Shanthy Sundaram

Abstract:

An economically important disease of wheat in North Western region of India is Karnal Bunt caused by smut fungus Tilletia indica. This fungal pathogen spreads by air, soil and seed borne sporodia at the time of flowering, which ultimately leads to partial bunting of wheat kernels with fishy odor and taste to wheat flour. It has very serious effects due to quarantine measures which have to be applied for grain exports. Chemical fungicides such as mercurial compounds and Propiconazole applied to the control of Karnal bunt have been only partially successful. Considering the harmful effects of chemical fungicides on man as well as environment, many countries are developing biological control as the superior substitute to chemical control. Repeated use of fungicides can be responsible for the development of resistance in fungal pathogens against certain chemical compounds. The present investigation is based on the isolation and evaluation of antifungal properties of some isolated (from natural manure) and commercial bacterial strains against Tilletia indica. Total 23 bacterial isolates were obtained and antagonistic activity of all isolates and commercial bacterial strains (Bacillus subtilis MTCC8601, Bacillus pumilus MTCC 8743, Pseudomonas aeruginosa) were tested against T. indica by dual culture plate assay (pour plate and streak plate). Test for the production of antifungal volatile organic compounds (VOCs) by antagonistic bacteria was done by sealed plate method. Amongst all s1, s3, s5, and B. subtilis showed more than 80% inhibition. Production of extracellular hydrolytic enzymes such as protease, beta 1, 4 glucanase, HCN and ammonia was studied for confirmation of antifungal activity. s1, s3, s5 and B. subtilis were found to be the best for protease activity and s5 and B. subtilis for beta 1, 4 glucanase activity. Bacillus subtilis was significantly effective for HCN whereas s3, s5 and Bacillus subtilis for ammonia production. Isolates were identified as Pseudomonas aeruginosa (s1) and B. licheniformis (s3, s5) by various biochemical assays and confirmed by16s rRNA sequencing. Use of microorganisms or their secretions as biocontrol agents to avoid plant diseases is ecologically safe and may offer long term of protection to crop. The above study reports the promising effects of these strains in better pathogen free crop production and quality maintenance as well as prevention of the excessive use of synthetic fungicides.

Keywords: antagonistic, antifungal, biocontrol, Karnal bunt

Procedia PDF Downloads 283
176 Synthesis, Molecular Modeling and Study of 2-Substituted-4-(Benzo[D][1,3]Dioxol-5-Yl)-6-Phenylpyridazin-3(2H)-One Derivatives as Potential Analgesic and Anti-Inflammatory Agents

Authors: Jyoti Singh, Ranju Bansal

Abstract:

Fighting pain and inflammation is a common problem faced by physicians while dealing with a wide variety of diseases. Since ancient time nonsteroidal anti-inflammatory agents (NSAIDs) and opioids have been the cornerstone of treatment therapy, however, the usefulness of both these classes is limited due to severe side effects. NSAIDs, which are mainly used to treat mild to moderate inflammatory pain, induce gastric irritation and nephrotoxicity whereas opioids show an array of adverse reactions such as respiratory depression, sedation, and constipation. Moreover, repeated administration of these drugs induces tolerance to the analgesic effects and physical dependence. Further discovery of selective COX-2 inhibitors (coxibs) suggested safety without any ulcerogenic side effects; however, long-term use of these drugs resulted in kidney and hepatic toxicity along with an increased risk of secondary cardiovascular effects. The basic approaches towards inflammation and pain treatment are constantly changing, and researchers are continuously trying to develop safer and effective anti-inflammatory drug candidates for the treatment of different inflammatory conditions such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, psoriasis and multiple sclerosis. Synthetic 3(2H)-pyridazinones constitute an important scaffold for drug discovery. Structure-activity relationship studies on pyridazinones have shown that attachment of a lactam at N-2 of the pyridazinone ring through a methylene spacer results in significantly increased anti-inflammatory and analgesic properties of the derivatives. Further introduction of the heterocyclic ring at lactam nitrogen results in improvement of biological activities. Keeping in mind these SAR studies, a new series of compounds were synthesized as shown in scheme 1 and investigated for anti-inflammatory, analgesic, anti-platelet activities and docking studies. The structures of newly synthesized compounds have been established by various spectroscopic techniques. All the synthesized pyridazinone derivatives exhibited potent anti-inflammatory and analgesic activity. Homoveratryl substituted derivative was found to possess highest anti-inflammatory and analgesic activity displaying 73.60 % inhibition of edema at 40 mg/kg with no ulcerogenic activity when compared to standard drugs indomethacin. Moreover, 2-substituted-4-benzo[d][1,3]dioxole-6-phenylpyridazin-3(2H)-ones derivatives did not produce significant changes in bleeding time and emerged as safe agents. Molecular docking studies also illustrated good binding interactions at the active site of the cyclooxygenase-2 (hCox-2) enzyme.

Keywords: anti-inflammatory, analgesic, pyridazin-3(2H)-one, selective COX-2 inhibitors

Procedia PDF Downloads 200
175 Acceptability of ‘Fish Surimi Peptide’ in Under Five Children Suffering from Moderate Acute Malnutrition in Bangladesh

Authors: M. Iqbal Hossain, Azharul Islam Khan, S. M. Rafiqul Islam, Tahmeed Ahmed

Abstract:

Objective: Moderate acute malnutrition (MAM) is a major cause of morbidity and mortality in under-5 children of low-income countries. Approximately 14.6% of all under-5 mortality worldwide is attributed to MAM with >3 times increased risk of death compared to well-nourished peers. Prevalence of MAM among under-5 children in Bangladesh is ~12% (~1.7 million). Providing a diet containing adequate nutrients is the mainstay of treatment of children with MAM. It is now possible to process fish into fish peptides with longer shelf-life without refrigerator, known as ‘Fish Surimi peptide’ and this could be an attractive alternative to supply fish protein in the diet of children in low-income countries like Bangladesh. We conducted this study to assess the acceptability of Fish Surimi peptide given with various foods/meals in 2-5 years old children with MAM. Design/methods: Fish Surimi peptide is broken down from white fish meat using plant-derived enzyme and the ingredient is just fish meat consisted of 20 different kinds of amino acids including nine essential amino acids. In a convenience sample of 34 children we completed the study ward of Dhaka Hospital of icddr,b in Bangladesh during November 2014 through February 2015. For each child the study was for two consecutive days: i.e. direct observation of food intake of two lunches and two suppers. In a randomly and blinded manner and cross over design an individual child received Fish Surimi peptide (5g at lunch and 5g at supper) mixed meal [e.g. 30g rice and 30g dahl (thick lentil soup) or 60g of a vegetables-lentil-rice mixed local dish known as khichuri in one day and the same meal on other day without any Fish Surimi peptide. We observed the completeness and eagerness of eating and any possible side effect (e.g. allergy, vomiting, diarrhea etc.) over these two days. Results: The mean±SD age of the enrolled children was 38.4±9.4 months, weight 11.22±1.41 kg, height 91.0±6.3 cm, and WHZ was -2.13±0.76. Their mean±SD total feeding time (minutes) for lunch was 25.4±13.6 vs. 20.6±11.1 (p=0.130) and supper was 22.3±9.7 vs. 19.7±11.2 (p=0.297), and total amount (g) of food eaten in lunch and supper was found similar 116.1±7.0 vs. 117.7±8.0 (p=3.01) in A (Fish Surimi) and B group respectively. Score in Hedonic scale by mother on test of food given to children at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) and on overall acceptance (including the texture, smell, and appearance) of food at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) for A and B group respectively. No adverse event was observed in any food group during the study period. Conclusions: Fish Surimi peptide may be a cost effective supplementary food, which should be tested by appropriately designed randomized community level intervention trial both in wasted children and stunted children.

Keywords: protein-energy malnutrition, moderate acute malnutrition, weight-for-height z-score, mid upper arm circumference, acceptability, fish surimi peptide, under-5 children

Procedia PDF Downloads 412
174 Application of Acoustic Emissions Related to Drought Can Elicit Antioxidant Responses and Capsaicinoids Content in Chili Pepper Plants

Authors: Laura Helena Caicedo Lopez, Luis Miguel Contreras Medina, Ramon Gerardo Guevara Gonzales, Juan E. Andrade

Abstract:

In this study, we evaluated the effect of three different hydric stress conditions: Low (LHS), medium (MHS), and high (HHS) on capsaicinoid content and enzyme regulation of C. annuum plants. Five main peaks were detected using a 2 Hz resolution vibrometer laser (Polytec-B&K). These peaks or “characteristic frequencies” were used as acoustic emissions (AEs) treatment, transforming these signals into audible sound with the frequency (Hz) content of each hydric stress. Capsaicinoids (CAPs) are the main, secondary metabolites of chili pepper plants and are known to increase during hydric stress conditions or short drought-periods. The AEs treatments were applied in two plant stages: the first one was in the pre-anthesis stage to evaluate the genes that encode the transcription of enzymes responsible for diverse metabolic activities of C. annuum plants. For example, the antioxidant responses such as peroxidase (POD), superoxide dismutase (Mn-SOD). Also, phenyl-alanine ammonia-lyase (PAL) involved in the biosynthesis of the phenylpropanoid compounds. The chalcone synthase (CHS) related to the natural defense mechanisms and species-specific aquaporin (CAPIP-1) that regulate the flow of water into and out of cells. The second stage was at 40 days after flowering (DAF) to evaluate the biochemical effect of AEs related to hydric stress on capsaicinoids production. These two experiments were conducted to identify the molecular responses of C. annuum plants to AE. Moreover, to define AEs could elicit any increase in the capsaicinoids content after a one-week exposition to AEs treatments. The results show that all AEs treatment signals (LHS, MHS, and HHS) were significantly different compared to the non-acoustic emission control (NAE). Also, the AEs induced the up-regulation of POD (~2.8, 2.9, and 3.6, respectively). The gene expression of another antioxidant response was particularly treatment-dependent. The HHS induced and overexpression of Mn-SOD (~0.23) and PAL (~0.33). As well, the MHS only induced an up-regulation of the CHs gene (~0.63). On the other hand, CAPIP-1 gene gas down-regulated by all AEs treatments LHS, MHS, and HHS ~ (-2.4, -0.43 and -6.4, respectively). Likewise, the down-regulation showed particularities depending on the treatment. LHS and MHS induced downregulation of the SOD gene ~ (-1.26 and -1.20 respectively) and PAL (-4.36 and 2.05, respectively). Correspondingly, the LHS and HHS showed the same tendency in the CHs gene, respectively ~ (-1.12 and -1.02, respectively). Regarding the elicitation effect of AE on the capsaicinoids content, additional treatment controls were included. A white noise treatment (WN) to prove the frequency-selectiveness of signals and a hydric stressed group (HS) to compare the CAPs content. Our findings suggest that WN and NAE did not present differences statically. Conversely, HS and all AEs treatments induced a significant increase of capsaicin (Cap) and dihydrocapsaicin (Dcap) after one-week of a treatment. Specifically, the HS plants showed an increase of 8.33 times compared to the NAE and WN treatments and 1.4 times higher than the MHS, which was the AEs treatment with a larger induction of Capsaicinoids among treatments (5.88) and compared to the controls.

Keywords: acoustic emission, capsaicinoids, elicitors, hydric stress, plant signaling

Procedia PDF Downloads 169
173 Molecular Detection of Staphylococcus aureus in the Pork Chain Supply and the Potential Anti-Staphylococcal Activity of Natural Compounds

Authors: Valeria Velasco, Ana M. Bonilla, José L. Vergara, Alcides Lofa, Jorge Campos, Pedro Rojas-García

Abstract:

Staphylococcus aureus is both commensal bacterium and opportunistic pathogen that can cause different diseases in humans and can rapidly develop antimicrobial resistance. Since this bacterium has the ability to colonize the nares and skin of humans and animals, there is a risk of contamination of food in different steps of the food chain supply. Emerging strains have been detected in food-producing animals and meat, such as methicillin-resistant S. aureus (MRSA). The aim of this study was to determine the prevalence and oxacillin susceptibility of S. aureus in the pork chain supply in Chile and to suggest some natural antimicrobials for control. A total of 487 samples were collected from pigs (n=332), carcasses (n=85), and retail pork meat (n=70). Presumptive S. aureus colonies were isolated by selective enrichment and culture media. The confirmation was carried out by biochemical testing (Api® Staph) and molecular technique PCR (detection of nuc and mecA genes, associated with S. aureus and methicillin resistance, respectively). The oxacillin (β-lactam antibiotic that replaced methicillin) susceptibility was assessed by minimum inhibitory concentration (MIC) using the Epsilometer test (Etest). A preliminary assay was carried out to test thymol, carvacrol, oregano essential oil (Origanum vulgare L.), Maqui or Chilean wineberry extract (Aristotelia chilensis (Mol.) Stuntz) as anti-staphylococcal agents using the disc diffusion method at different concentrations. The overall prevalence of S. aureus in the pork chain supply reached 33.9%. A higher prevalence of S. aureus was determined in carcasses (56.5%) than in pigs (28.3%) and pork meat (32.9%) (P ≤ 0.05). The prevalence of S. aureus in pigs sampled at farms (40.6%) was higher than in pigs sampled at slaughterhouses (23.3%) (P ≤ 0.05). The contamination of no packaged meat with S. aureus (43.1%) was higher than in packaged meat (5.3%) (P ≤ 0.05). The mecA gene was not detected in S. aureus strains isolated in this study. Two S. aureus strains exhibited oxacillin resistance (MIC ≥ 4µg/mL). Anti-staphylococcal activity was detected in solutions of thymol, carvacrol, and oregano essential oil at all concentrations tested. No anti-staphylococcal activity was detected in Maqui extract. Finally, S. aureus is present in the pork chain supply in Chile. Although the mecA gene was not detected, oxacillin resistance was found in S. aureus and could be attributed to another resistance mechanism. Thymol, carvacrol, and oregano essential oil could be used as anti-staphylococcal agents at low concentrations. Research project Fondecyt No. 11140379.

Keywords: antimicrobials, mecA gen, nuc gen, oxacillin susceptibility, pork meat

Procedia PDF Downloads 228
172 Sterilization Effects of Low Concentration of Hydrogen Peroxide Solution on 3D Printed Biodegradable Polyurethane Nanocomposite Scaffold for Heart Valve Regeneration

Authors: S. E. Mohmad-Saberi, W. Song, N. Oliver, M. Adrian, T.C. Hsu, A. Darbyshire

Abstract:

Biodegradable polyurethane (PU) has emerged as a potential material to promote repair and regeneration of damaged/diseased tissues in heart valve regeneration due to its excellent biomechanical profile. Understanding the effects of sterilization on their properties is vital since they are more sensitive and more critical of porous structures compared to bulk ones. In this study, the effects of low concentration of hydrogen peroxide (H₂O₂) solution sterilization has been investigated to determine whether the procedure would be efficient and non-destructive to porous three-dimensional (3D) elastomeric nanocomposite, polyhedral oligomeric silsesquioxane-terminated poly (ethylene-diethylene glycol succinate-sebacate) urea-urethane (POSS-EDSS-PU) scaffold. All the samples were tested for sterility following sterilization using phosphate buffer saline (PBS) as control and 5 % v/v H₂O₂ solution. The samples were incubated in tryptic soy broth for the cultivation of microorganisms under agitation at 37˚C for 72 hours. The effects of the 5 % v/v H₂O₂ solution sterilization were evaluated in terms of morphology, chemical and mechanical properties using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and tensile tester apparatus. Toxicity effects of the 5 % v/v H₂O₂ solution decontamination were studied by in vitro cytotoxicity test, where the cellular responses of human dermal fibroblast (HDF) were examined. A clear, uncontaminated broth using 5 % v/v H₂O₂ solution method indicated efficient sterilization after 3 days, while the non-sterilized control shows clouding broth indicated contamination. The morphology of 3D POSS-EDSS-PU scaffold appeared to have similar morphology after sterilization with 5 % v/v H₂O₂ solution regarding of pore size and surface. FTIR results show that the sterilized samples and non-sterilized control share the same spectra pattern, confirming no significant alterations over the surface chemistry. For the mechanical properties of the H₂O₂ solution-treated scaffolds, the tensile strain was not significantly decreased, however, become significantly stiffer after the sterilization. No cytotoxic effects were observed after the 5 % v/v H₂O₂ solution sterilization as confirmed by cell viability assessed by Alamar Blue assay. The results suggest that low concentration of 5 % v/v hydrogen peroxide solution can be used as an alternative method for sterilizing biodegradable 3D porous scaffold with micro/nano-architecture without structural deformation. This study provides the understanding of the sterilization effects on biomechanical profile and cell proliferation of 3D POSS-EDSS-PU scaffolds.

Keywords: biodegradable, hydrogen peroxide solution, POSS-EDSS-PU, sterilization

Procedia PDF Downloads 159
171 Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties

Authors: Yik Sin Chan, Bee Ling Chuah, Wei Quan Chan, Ri Jin Cheng, Yan Hang Oon, Kong Soo Khoo, Nam Weng Sit

Abstract:

Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties.

Keywords: bactericidal, Chikungunya virus, extraction, fungicidal

Procedia PDF Downloads 403
170 Comparison of Extracellular miRNA from Different Lymphocyte Cell Lines and Isolation Methods

Authors: Christelle E. Chua, Alicia L. Ho

Abstract:

The development of a panel of differential gene expression signatures has been of interest in the field of biomarker discovery for radiation exposure. In the absence of the availability of exposed human subjects, lymphocyte cell lines have often been used as a surrogate to human whole blood, when performing ex vivo irradiation studies. The extent of variation between different lymphocyte cell lines is currently unclear, especially with regard to the expression of extracellular miRNA. This study compares the expression profile of extracellular miRNA isolated from different lymphocyte cell lines. It also compares the profile of miRNA obtained when different exosome isolation kits are used. Lymphocyte cell lines were created using lymphocytes isolated from healthy adult males of similar racial descent (Chinese American and Chinese Singaporean) and immortalised with Epstein-Barr virus. The cell lines were cultured in exosome-free cell culture media for 72h and the cell culture supernatant was removed for exosome isolation. Two exosome isolation kits were used. Total exosome isolation reagent (TEIR, ThermoFisher) is a polyethylene glycol (PEG)-based exosome precipitation kit, while ExoSpin (ES, Cell Guidance Systems) is a PEG-based exosome precipitation kit that includes an additional size exclusion chromatography step. miRNA from the isolated exosomes were isolated using miRNEASY minikit (Qiagen) and analysed using nCounter miRNA assay (Nanostring). Principal component analysis (PCA) results suggested that the overall extracellular miRNA expression profile differed between the lymphocyte cell line originating from the Chinese American donor and the cell line originating from the Chinese Singaporean donor. As the gender, age and racial origins of both donors are similar, this may suggest that there are other genetic or epigenetic differences that account for the variation in extracellular miRNA gene expression in lymphocyte cell lines. However, statistical analysis showed that only 3 miRNA genes had a fold difference > 2 at p < 0.05, suggesting that the differences may not be of that great a significance as to impact overall conclusions drawn from different cell lines. Subsequent analysis using cell lines from other donors will give further insight into the reproducibility of results when difference cell lines are used. PCA results also suggested that the method of exosome isolation impacted the expression profile. 107 miRNA had a fold difference > 2 at p < 0.05. This suggests that the inclusion of an additional size exclusion chromatography step altered the subset of the extracellular vesicles that were isolated. In conclusion, these results suggest that extracellular miRNA can be isolated and analysed from exosomes derived from lymphocyte cell lines. However, care must be taken in the choice of cell line and method of exosome isolation used.

Keywords: biomarker, extracellular miRNA, isolation methods, lymphocyte cell line

Procedia PDF Downloads 199
169 Estimation of Level of Pesticide in Recurrent Pregnancy Loss and Its Correlation with Paraoxanase1 Gene in North Indian Population

Authors: Apurva Singh, S. P. Jaiswar, Apala Priyadarshini, Akancha Pandey

Abstract:

Objective: The aim of this study is to find the association of PON1 gene polymorphism with pesticides In RPL subjects. Background: Recurrent pregnancy loss (RPL) is defined as three or more sequential abortions before the 20th week of gestation. Pesticides and its derivatives (organochlorine and organophosphate) are proposed to accommodate a ruler chemical for RPL in the sub-humid region of India. The paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity Methodology: This is a case-control study done in Department of Obstetrics & Gynaecology & Department of Biochemistry, K.G.M.U, Lucknow, India. The subjects were enrolled after fulfilling the inclusion & exclusion criteria. Inclusion criteria: Cases- Subject having two or more spontaneous abortions & Control- Healthy female having one or more alive child was selected. Exclusion criteria: Cases & Control- Subject having the following disease will be excluded from the study Diabetes mellitus, Hypertension, Tuberculosis, Immunocompromised patients, any endocrine disorder and genital, colon or breast cancer any other malignancies. Blood samples were collected in EDTA tubes from cases & healthy control women & genomic DNA was extracted by phenol-chloroform method. The estimation of pesticides residue from blood was done by HPLC. Biochemical estimation was also performed. Genotyping of PON1 gene polymorphism was performed by RFLP. Statistical analysis of the data was performed using the SPSS16.3 software. Results: A sum of total 14 pesticides (12 organochlorine and 2 organophosphate) selected on the basis of their persistent nature and consumption rate. The significant level of pesticide (ppb) estimated by the Mann whiney test and it was found to be significant at higher level of β-HCH (p:0.04), γ-HCH (p:0.001), δ-HCH (p: 0.002), chloropyrifos (p:0.001), pp-DDD (p:0.001) and fenvalrate (p: 0.001) in case group compare to its control. The level of antioxidant enzymes were found to be significantly decreased among the cases. Wild homozygous TT was more frequent and prevalent among control groups. However, heterozygous group (Tt) was more in cases than control groups (CI-0.3-1.3) (p=0.06). Conclusion: Higher levels of pesticides with endocrine disrupting potential in cases indicate the possible role of these compounds as one of the causes of recurrent pregnancy loss. Possibly, increased pesticide level appears to indicate increased levels of oxidative damage that has been associated with the possible cause of Recurrent Miscarriage, it may reflect indirect evidence of toxicity rather than the direct cause. Since both factors are reported to increase risk, individuals with higher levels of these 'Toxic compounds' especially in 'high-risk genotypes' might be more susceptible to recurrent pregnancy loss.

Keywords: paraoxonase, pesticides, PON1, RPL

Procedia PDF Downloads 143